首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Forward genetic screens in model organisms are an attractive means to identify those genes involved in any complex biological process, including neural circuit assembly. Although mutagenesis screens are readily performed to saturation, gene identification rarely is, being limited by the considerable effort generally required for positional cloning. Here, we apply a systematic positional cloning strategy to identify many of the genes required for neuronal wiring in the Drosophila visual system. From a large-scale forward genetic screen selecting for visual system wiring defects with a normal retinal pattern, we recovered 122 mutations in 42 genetic loci. For 6 of these loci, the underlying genetic lesions were previously identified using traditional methods. Using SNP-based mapping approaches, we have now identified 30 additional genes. Neuronal phenotypes have not previously been reported for 20 of these genes, and no mutant phenotype has been previously described for 5 genes. The genes encode a variety of proteins implicated in cellular processes such as gene regulation, cytoskeletal dynamics, axonal transport, and cell signalling. We conducted a comprehensive phenotypic analysis of 35 genes, scoring wiring defects according to 33 criteria. This work demonstrates the feasibility of combining large-scale gene identification with large-scale mutagenesis in Drosophila, and provides a comprehensive overview of the molecular mechanisms that regulate visual system wiring.  相似文献   

11.
Fanconi anaemia (FA) is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average). Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population.  相似文献   

12.
13.
14.
15.
两栖动物的性别决定机制主要包括遗传性别决定(genetic sex determination,GSD)和环境性别决定(environmental sex determination,ESD).近年来,在两栖动物性别决定和性腺分化机制的研究中,运用分子生物学技术探讨性别决定相关基因及其相互关系方面的研究已获得新的成果....  相似文献   

16.
OVCA1 is a tumor suppressor identified by positional cloning from chromosome 17p13.3, a hot spot for chromosomal aberration in breast and ovarian cancers. It has been shown that expression of OVCA1 is reduced in some tumors and that it regulates cell proliferation, embryonic development, and tumorigenesis. However, the biochemical function of OVCA1 has remained unknown. Recently, we isolated a novel mutant resistant to diphtheria toxin and Pseudomonas exotoxin A from the gene trap insertional mutants library of Chinese hamster ovary cells. In this mutant, the Ovca1 gene was disrupted by gene trap mutagenesis, and this disruption well correlated with the toxin-resistant phenotype. We demonstrated direct evidence that the tumor suppressor OVCA1 is a component of the biosynthetic pathway of diphthamide on elongation factor 2, the target of bacterial ADP-ribosylating toxins. A functional genetic approach utilizing the random gene trap mutants library of mammalian cells should become a useful strategy to identify the genes responsible for specific phenotypes.  相似文献   

17.
18.
19.
Hox genes determine anterior–posterior specificity of an animal body. In mammals, these genes map onto four chromosomal loci in a clustered manner, and their expression is regulated in a coordinated manner according to their chromosomal structure. In the present study, we analysed the Hoxb9 promoter and found that promoter activity in cultured cells is linked to secondary structure formation of promoter DNA. In nuclear extracts, we also detected binding activity specific for secondary-structured DNA. We successfully isolated a candidate gene encoding this specific DNA-binding protein, FBXL10, and demonstrated the effects of the gene product on Hoxb9 promoter activity. Our results suggest that DNA can regulate gene expression by other, non-sequence-specific modes of genetic coding.  相似文献   

20.
Recent evidence suggests that cell-to-cell difference at the gene expression level is an order of magnitude greater than previously thought even for isogenic bacterial populations. Such gene expression heterogeneity determines the fate of individual bacterial cells in populations and could also affect the ultimate fate of populations themselves. To quantify the heterogeneity and its biological significance, quantitative methods to measure gene expression in single bacterial cells are needed. In this work, we developed two SYBR Green-based RT-qPCR methods to determine gene expression directly in single bacterial cells. The first method involves a single-tube operation that can analyze one gene from each bacterial cell. The second method is featured by a two-stage protocol that consists of RNA isolation from a single bacterial cell and cDNA synthesis in the first stage, and qPCR in the second stage, which allows determination of expression level of multiple genes simultaneously for single bacterial cells of both gram-positive and negative. We applied the methods to stress-treated (i.e. low pH and high temperature) Escherichia coli populations. The reproducible results demonstrated that the method is sensitive enough not only for measuring cellular responses at the single-cell level, but also for revealing gene expression heterogeneity among the bacterial cells. Furthermore, our results showed that the two-stage method can reproducibly measure multiple highly expressed genes from a single E. coli cell, which exhibits important foundation for future development of a high throughput and lab-on-chips whole-genome RT-qPCR methodology for single bacterial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号