首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Presently there is no serum biomarker of rhabdomyosarcoma (RMS). Several studies have shown that profiles of microRNA (miRNA) expression differ among tumor types. Here we evaluated the feasibility of using muscle-specific miRNAs (miR-1, -133a, -133b and -206) as biomarkers of RMS. Expression of muscle-specific miRNAs, especially miR-206, was significantly higher in RMS cell lines than in other tumor cell lines, as well as in RMS tumor specimens. Further, serum levels of muscle-specific miRNAs were significantly higher in patients with RMS tumors than in patients with non-RMS tumors. Normalized serum miR-206 expression level could be used to differentiate between RMS and non-RMS tumors, with sensitivity of 1.0 and specificity of 0.913. These results raise the possibility of using circulating muscle-specific miRNAs, especially miR-206, as landmark biomarkers for RMS.  相似文献   

2.
The development of proteomic technologies that display a wide variety of antigenic structures has led to the identification of autoantibodies to cancer-derived tumor antigens. These autoantibodies have been detected in sera from patients with multiple cancer types, and are being evaluated as biomarkers for early cancer detection. It is not known whether these antibodies also contribute to active immune surveillance or even tumorigenicity of developing tumors. Here, we review which tumor antigen-specific antibodies are prognostic biomarkers of cancer outcome, and emerging proteomic methods for the isolation and cloning of these antibodies for potential molecular diagnostics and therapeutics.  相似文献   

3.
The development of proteomic technologies that display a wide variety of antigenic structures has led to the identification of autoantibodies to cancer-derived tumor antigens. These autoantibodies have been detected in sera from patients with multiple cancer types, and are being evaluated as biomarkers for early cancer detection. It is not known whether these antibodies also contribute to active immune surveillance or even tumorigenicity of developing tumors. Here, we review which tumor antigen-specific antibodies are prognostic biomarkers of cancer outcome, and emerging proteomic methods for the isolation and cloning of these antibodies for potential molecular diagnostics and therapeutics.  相似文献   

4.
To characterize biomarkers in neural tumors, we analyzed the acidic lipid fractions of 13 neural tumor cell lines using enzyme-linked immunoabsorbent assay (ELISA) and high-performance thin-layer chromatography (HPTLC) immunostaining. Sulfated glucuronosyl glycosphingolipids (SGGLs) are cell surface molecules that are endowed with the Human Natural Killer-1 (HNK-1) carbohydrate epitope. These glycosphingolipids (GSLs) were expressed in all cell lines with concentrations ranging from 210 to 330 ng per 2 x 10(6) cells. Sulfoglucuronosyl paragloboside (SGPG) was the prominent species with lesser amounts of sulfoglucuronosyl lactosaminyl paragloboside (SGLPG) in these tumor cell lines as assessed by quantitative HPTLC immunostaining. Among the gangliosides surveyed, GD3 and 9-O-acetylated GD3 (OAc-GD3) were expressed in all tumor cell lines. In contrast, fucosyl-GM1 was not found to restrict to small cell lung carcinoma cells. In addition, we have analyzed serum antibody titers against SGPG, GD3, and OAc-GD3 in patients with neural tumors by ELISA and HPTLC immunostaining. All sera had high titers of antibodies of the IgM isotype against SGPG (titers over 1:3,200), especially in tumors such as meningiomas, germinomas, orbital tumors, glioblastomas, medulloblastomas, and subependymomas. Serum in a patient with subependymomas also had a high anti-SGGL antibody titer of the IgG and IgA types (titers over 12,800). The titer of anti-GD3 antibody was also elevated in patients with subependymomas and medulloblastomas; the latter cases also had a high titer of antibody against OAc-GD3. Our data indicate that certain GSL antigens, especially SGGLs, GD3, and OAc-GD3, are expressed in neural tumor cells and may be considered as tumor-associated antigens that represent important biomarkers for neural tumors. Furthermore, antibody titers in sera of patients with these tumors may be of diagnostic value for monitoring the presence of tumor cells and tumor progression.  相似文献   

5.
This cross-sectional study evaluated the association between radiographic evidence of alveolar bone loss and the concentration of host-derived bone resorptive factors (interleukin-1 beta, tumor necrosis factor-alpha, interleukin-6, prostaglandin-E2), and markers of bone turnover [pyridinoline cross-linked carboxyterminal telopeptide of type I collagen (ICTP), osteocalcin, osteonectin] in stimulated human whole saliva collected from 110 untreated dental patients. Alveolar bone loss scores for each patient were derived from radiographic examination. Variables positively associated with increased bone loss score were: age, current smoking, use of bisphosphonate drugs, and salivary interleukin-1beta levels above the median. Salivary osteonectin levels above the median were associated with a decreased bone loss score. Additional in vitro studies were carried out to determine the fate of interleukin-1beta, interleukin-6 and tumor necrosis factor-alpha added to whole and parotid saliva. All cytokines added to saliva were detected in significantly lower concentrations than when added to buffer alone. Protease inhibitors added to saliva did not prevent the reduction in detection of biomarkers. Variation in time of incubation, repeated cycles of freezing and thawing, or exposure to dimethylsulfoxide did not appreciably affect the measurement of cytokines in saliva. These results suggest that detection of biomarkers by conventional immunoassays may underestimate the actual quantity of molecules in saliva.  相似文献   

6.
Expression of carboxypeptidase E (CPE), a prohormone processing enzyme in different cancer types, was analyzed from data in the GEO profile database () and experimentally in pheochromocytomas. Analysis of microarray data demonstrated that significantly elevated levels of CPE mRNA was found in many metastatic non-endocrine cancers: cervical, colon rectal, renal cancers, Ewing sarcomas (bone cancer), and various types of astrocytomas and oligodendrogliomas, whereas expression of CPE mRNA was virtually absent in their respective counterpart normal tissues. Moreover, there was higher CPE mRNA expression in cells from the metastatic tumor compared to those from the primary tumor in colorectal cancer. Elevated CPE mRNA expression was found in neuroendocrine tumors in lung and pituitary adenomas, although the significance is unclear since endocrine and neuroendocrine cells normally express CPE. However, studies of neuroendocrine tumors, pheochromocytomas, revealed expression of not only wild-type CPE, but a variant which was correlated with tumor behavior. Extremely high CPE mRNA copy numbers of the variant were found in very large or invasive tumors, both of which usually indicate poor prognosis. Thus, collectively the data suggest that CPE may play a role in promoting tumor growth and invasion. CPE could potentially serve as a diagnostic and prognostic biomarker for metastasis in different cancer types.  相似文献   

7.
8.
9.
Biomarkers have been used by pathologists to aid the diagnosis of tumors for almost three decades. Their use has resulted in the re-evaluation and reclassification of several types of tumors. Currently, biomarkers are required to differentiate certain specific tumors with similar histologic patterns. Additional uses of biomarkers in the characterization of neoplastic processes are discussed including their use in prognosis, detecting early neoplastic processes, identifying tumor recurrence, measuring the effectiveness of various therapies (surrogate end point biomarkers), and identifying targets for novel therapies including immunotherapy and gene therapy. We propose that these newer uses of biomarkers will be just as important to pathology in the future as the uses of biomarkers in diagnosis have been over the past two decades.  相似文献   

10.
BACKGROUND: There is currently great interest in development of cell-based carriers for delivery of viral vectors to metastatic tumors. To date, several cell carriers have been tested based largely upon their predicted tumor-localizing properties. However, cell types may exist which can be mobilized from the circulation by a tumor which have not yet been identified. Here we use an unbiased screen of bone marrow (BM) cells to identify cells which localize to tumors and which might serve as effective candidate cell carriers without any prior prediction or selection. METHODS: Unsorted BM cells from green fluorescent protein (GFP)-transgenic donor mice were adoptively transferred into C57Bl/6 mice bearing pre-established subcutaneous B16 melanoma tumors. Forty-eight hours and eight days later, tumors, organs and blood were analyzed for GFP-expressing cells by flow cytometry. The phenotype of GFP cells in organs was determined by co-staining with specific cell surface markers. RESULTS: CD45(+) hematopoietic cells were readily detected in tumor, spleen, bone marrow, blood and lung at both time points. Within these CD45(+) cell populations, preferential accumulation in the tumor was observed of cells expressing Sca-1, c-kit, NK1.1, Thy1.2, CD14, Mac-3 and/or CD11c. Lymphodepletion increased homing to spleen and bone marrow, but not to tumors. CONCLUSIONS: We have used an in vivo screen to identify populations of BM-derived donor cells which accumulate within tumors. These studies will direct rational selection of specific cell types which can be tested in standardized assays of cell carrier efficiency for the treatment of metastatic tumors.  相似文献   

11.
12.
Mammary tumors are the second most common neoplasia in dogs. Due to the high similarity of canine mammary tumors (CMT) to human breast cancers (HBC), human biomarkers of HBC are also detectable in cases of CMT. The evaluation of biomarkers enables clinical diagnoses, treatment options and prognosis for bitches suffering from this disease. The aim of this article is to give a short summary of the biomarkers of CMT based on current literature. Very promising biomarkers are miRNAs, cancer stem cells, and circulating tumor cells, as well as mutations of the breast cancer 1 gene (BRCA1) and breast cancer 2 gene (BRCA2). Until now, the most studied and reliable biomarkers of CMT have remained antigen Ki-67 (Ki-67), endothelial growth factor receptor, human epidermal growth factor receptor 2 (HER-2), estrogen receptor, progesterone receptor and cyclooxygenase 1 (COX-2), which can be detected in both serum and tissue samples using different molecular methods. However, carcinoembryonic antigen and cancer antigen 15-3 (CA 15-3), while poorly studied, seem to be good biomarkers, especially for the early detection and prognosis of CMT. We will also mention the following: proliferative cell nuclear antigen, tumor protein p53 (p53), E-cadherin, vascular endothelial growth factor, microRNAs, cancer stem cells and circulating tumor cells, which can also be useful biomarkers. Although many studies have been conducted so far, the estimation of biomarkers in cases of CMT is still not a common practice, and more detailed research should be done.  相似文献   

13.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer worldwide. Strong prognostic indicators that predict development of distant metastases are the presence and number of lymph node metastases in the neck, and extranodal spread. Recently, it was shown in several studies that also the presence of disseminated tumor cells (DTC) in the bone marrow predicts development of distant metastases. We have investigated whether protein signatures could be detected in primary HNSCC that distinguish tumors that disseminate into the bone marrow from those that do not. Therefore, DTC-positive and -negative primary HNSCC tumors were analyzed by 2D-DIGE. A signature consisting of 51 differential protein spots was identified upon stratification for bone marrow status, which allowed a correct classification of DTC-positive and DTC-negative HNSCC tumors in 95% of cases, using hierarchical clustering. The most prominent feature within this signature was the down-regulation of CK19 in DTC-positive tumors. Our data show that tumor cell dissemination to the bone marrow, the onset of hematogenic metastasis, can be deduced from the protein profile in the primary tumor. The highly significant down-regulation of CK19 supports a model of epithelial-mesenchymal transition for tumors that show a high proclivity for hematogenic dissemination.  相似文献   

14.
Enhancing pre-existing anti-tumor immunity leads to therapeutic benefit for some patients, but why some tumors are more immunogenic than others remains unresolved. We took a unique systems approach to relate patient survival to immune gene expression in >3,500 tumor RNAseq profiles from a dozen tumor types. We found significant links between immune gene expression and patient survival in 8/12 tumor types, with tumors partitioned by gene expression comprising distinct molecular subtypes. T/NK cell genes were most clearly survival-related for melanoma, head and neck, and bladder tumors, whereas myeloid cell genes were most clearly survival-related with kidney and breast tumors. T/NK or myeloid cell gene expression was linked to poor prognosis in bladder and kidney tumors, respectively, suggesting tumor-specific immunosuppressive checkpoints. Our results suggest new biomarkers for existing cancer immunotherapies and identify targets for new immunotherapies.  相似文献   

15.
恶性肿瘤是严重威胁人类健康和社会发展的疾病。传统的肿瘤治疗方法如手术、放疗、化疗和靶向治疗等不能完全满足临床治疗的需求,新兴的免疫治疗成为了肿瘤治疗领域的研究热点。免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)作为一种肿瘤免疫治疗方法,已获批用于治疗多种肿瘤,如肺癌、肝癌、胃癌和结直肠癌等。然而,ICIs在临床使用过程中,只有少数患者会出现持久反应,一些患者还会出现耐药和不良反应。因此,预测生物标志物的鉴定和开发对提高ICIs的治疗效果至关重要。肿瘤ICIs预测生物标志物主要包括肿瘤生物标志物、肿瘤微环境生物标志物、循环相关生物标志物、宿主环境生物标志物以及组合生物标志物等,对患者筛查、个体化治疗和预后评估具有重要意义。本文就肿瘤ICIs治疗预测生物标志物的前沿进展作一综述。  相似文献   

16.
Wubin Ding 《Epigenetics》2019,14(1):67-80
DNA methylation status is closely associated with diverse diseases, and is generally more stable than gene expression, thus abnormal DNA methylation could be important biomarkers for tumor diagnosis, treatment and prognosis. However, the signatures regarding DNA methylation changes for pan-cancer diagnosis and prognosis are less explored. Here we systematically analyzed the genome-wide DNA methylation patterns in diverse TCGA cancers with machine learning. We identified seven CpG sites that could effectively discriminate tumor samples from adjacent normal tissue samples for 12 main cancers of TCGA (1216 samples, AUC > 0.99). Those seven potential diagnostic biomarkers were further validated in the other 9 different TCGA cancers and 4 independent datasets (AUC > 0.92). Three out of the seven CpG sites were correlated with cell division, DNA replication and cell cycle. We also identified 12 CpG sites that can effectively distinguish 26 different cancers (7605 samples), and the result was repeatable in independent datasets as well as two disparate tumors with metastases (micro-average AUC > 0.89). Furthermore, a series of potential signatures that could significantly predict the prognosis of tumor patients for 7 different cancer were identified via survival analysis (p-value < 1e-4). Collectively, DNA methylation patterns vary greatly between tumor and adjacent normal tissues, as well as among different types of cancers. Our identified signatures may aid the decision of clinical diagnosis and prognosis for pan-cancer and the potential cancer-specific biomarkers could be used to predict the primary site of metastatic breast and prostate cancers.  相似文献   

17.
Identification of biomarkers for early breast cancer detection in blood is a challenging task, since breast cancer is a heterogeneous disease with a wide range of tumor subtypes. This is envisioned to result in differences in serum protein levels. The p53(R270H/+) WAPCre mouse model is unique in that these mice spontaneously develop both ER- and ER+ tumors, in proportions comparable to humans. Therefore, these mice provide a well-suited model system to identify human relevant biomarkers for early breast cancer detection that are additionally specific for different tumor subtypes. Mammary gland tumors were obtained from p53(R270H/+) WAPCre mice and cellular origin, ER, and HER2 status were characterized. We compared gene expression profiles for tumors with different characteristics versus control tissue, and determined genes differentially expressed across tumor subtypes. By using literature data (Gene Ontology, UniProt, and Human Plasma Proteome), we further identified protein candidate biomarkers for blood-based detection of breast cancer. Functional overrepresentation analysis (using Gene Ontology, MSigDB, BioGPS, Cancer GeneSigDB, and proteomics literature data) showed enrichment for several processes relevant for human breast cancer. Finally, Human Protein Atlas data were used to obtain a prioritized list of 16 potential biomarkers that should facilitate further studies on blood-based breast cancer detection in humans.  相似文献   

18.
Background: CD133 has been used to identify normal and cancer stem cells from several different tissues. Nowadays some researchers have reported that CD133 expression was not restricted to cancer stem cells (CSCs) of colorectal cancer and brain tumors, and CD133-negative subsets could also initiate tumors. We therefore performed a meta-analysis to assess the value of CD133 as a biomarker of CSCs for colorectal cancer and brain tumors. Methods: A Medline search was performed to identify relevant studies for the analysis. The meta-analysis was done using RevMan 5.0 software. Outcome measures were colony formation rate and xenotransplanted tumor formation rate. Results: Fifteen identified studies were available for analysis. For in vitro tests, there were no significant differences in the colony formation rates between CD133-positive and CD133-negative cells for colorectal cancer and brain tumors. For in vivo tests, the xenotransplanted tumor formation rate showed a significant difference between CD133-positive cells and CD133-negative cells in colorectal cancer only, corresponding to a risk difference of 0.40 (95%CI: 0.07, 0.73). Samples (cell lines versus tissues), applied biomarkers (combined versus single), and injection site were included as factors in sensitivity analyses, but the results were very inconsistent. Conclusions: CD133 may not be suitable as a universe biomarker in identifying CSCs of colorectal cancer and brain tumors. Additional studies are necessary to further delineate its role.  相似文献   

19.
20.
Receptor activator of NFκB ligand (RANKL), RANK, and osteoprotegerin (OPG) represent the key regulators of bone metabolism both in normal and pathological conditions, including bone metastases. To our knowledge, no previous studies investigated and compared RANK expression in primary tumors and in bone metastases from the same patient. We retrospectively examined RANK expression by immunohistochemistry in 74 bone metastases tissues from solid tumors, mostly breast, colorectal, renal, lung, and prostate cancer. For 40 cases, tissue from the corresponding primary tumor was also analyzed. Sixty‐six (89%) of the 74 bone metastases were RANK‐positive and, among these, 40 (59.5%) showed more than 50% of positive tumor cells. The median percentage of RANK‐positive cells was 60% in primary tumors and metastases, without any statistically significant difference between the two groups (P = 0.194). The same percentage was obtained by considering only cases with availability of samples both from primary and metastasis. Our study shows that RANK is expressed by solid tumors, with high concordance between bone metastasis and corresponding primary tumor. These data highlight the central role of RANK/RANKL/OPG pathway as potential therapeutic target not only in bone metastasis management, but also in the adjuvant setting. J. Cell. Physiol. 226: 780–784, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号