首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrophoretic variant of human albumin has been characterized as a dimer involving both disulfide and noncovalent bonds. The variant protein was isolated by starch block electrophoresis and gel filtration and extensively investigated by gel electrophoresis and immunoelectrophoresis under a variety of conditions. No significant differences were found between normal albumin and the propositus's albumin in sulfhydryl reactivity or content or in the tryptic fingerprint.Contribution No. 140 from the Blood Research Laboratory, American National Red Cross.  相似文献   

2.
Mechanical properties of human tracheal cartilage.   总被引:3,自引:0,他引:3  
Biomechanical changes in airway cartilage could influence the mechanics of maximal expiratory flow and cough and the degree of shortening of activated airway smooth muscle. We examined the tensile stiffness of small samples of human tracheal cartilage rings in specimens obtained at autopsy from 10 individuals who ranged in age from 17 to 81 yr. The tensile properties of the cartilage were compared with its content of water (%water), glycosaminoglycans (chondroitin sulfate equivalents, mg/mg dry wt), and hydroxyproline content (mg hydroxyproline/mg dry weight). The average values for tensile stiffness ranged between 1 and 15 MPa and increased significantly with increasing age [tensile stiffness = 0.19 x (age in yr) + 2.02; r = 0.83, P less than 0.05]. The outermost layer of cartilage was the most stiff in all individuals, and the deeper layers were progressively less stiff. Water content and hydroxyproline content both decreased with increasing age. Thus tensile stiffness correlated inversely with water content and hydroxyproline content [tensile stiffness = -0.83 x (%water) + 16.4; r = 0.82, P less than .05 and tensile stiffness = -342 x (hydroxyproline content) + 25; r = 0.87, P less than 0.05]. Total tissue content of glycosaminoglycans did not change with age, although changes in glycosaminoglycan type and proteoglycan structure with increasing age have been described. We conclude that there are age-related changes in the biomechanical properties and biochemical composition of airway cartilage that could influence airway dynamics.  相似文献   

3.
Protein-polysaccharide complexes from adult human tracheal cartilage.   总被引:1,自引:1,他引:0  
  相似文献   

4.
Semi-circular tracheal cartilage is a critical determinant of maintaining architectural integrity of the respiratory airway. The current effort to understand the morphogenesis of tracheal cartilage is challenged by the lack of appropriate model systems. Here we report an in vitro tracheal cartilage system using embryonic tracheal–lung explants to recapitulate in vivo tracheal cartilage developmental processes. With modifications of a current lung culture protocol, we report a consistent in vitro technique of culturing tracheal cartilage from primitive mouse embryonic foregut for the first time. This tracheal culture system not only induces the formation of tracheal cartilage from the mouse embryonic foregut but also allows for the proper patterning of the developed tracheal cartilage. Furthermore, we show that this culture technique can be applied to culturing other types of cartilage in vertebrae, limbs, and ribs. We believe that this novel application of our in vitro culture system will facilitate the manipulation of cartilage development under various conditions and thus enabling us to advance our current limited knowledge on cartilage biology and development.  相似文献   

5.
6.
7.
In a recent communication, we showed that human very low density lipoprotein (VLDL) apolipoprotein E (Apo E) from different individuals appears upon two-dimensional gel electrophoretic analysis in either one of two complex patterns. These have been designated class alpha and class beta. Mixing of VLDL from different subjects revealed that not all alpha or beta apo E patterns were the same. In this manner, we identified three subclasses of class alpha (alpha II, alpha III, and alpha IV) and three subclasses of class beta (beta II, beta III, and beta IV). We report here the results of family studies that reveal that the subclasses (alpha II, alph III, and alpha IV and beta II, beta III, and beta IV) of apo E are determined at a single genetic locus with three common alleles, epsilon II, epsilon III, and epsilon IV. The class beta phenotypes (beta II, beta III, and beta IV) represent homozygosity for two identical apo E alleles (epsilon). In contrast, class alpha phenotypes (alpha II, alpha III, and alpha IV) represent heterozygosity for two different apo E alleles. The apo E subclasses and their corresponding genotypes are as follows: beta II = epsilon II/epsilon II; beta III = epsilon III; beta IV = epsilon IV/epsilon IV; alpha II = epsilon II/epsilon III; alpha III = epsilon III/epsilon IV; and alpha IV = epsilon II/epsilon IV. To estimate the frequencies of the apo E alleles in the general population, apo E subclasses were then investigated in 61 unrelated volunteers and the results were: beta II = 1 (2%), beta III = 30 (49%), alpha II = 9 (15%, alpha III = 13 (31%), and alpha IV = 2 (3%). Utilizing the frequencies of these phenotypes, the gene frequencies were calculated to be epsilon II = 11%, epsilon III = 72%, and epsilon IV = 17%. In addition, apo E subclasses were studied in a clinic for individuals with plasma lipid disorders and the apo E subclass beta IV was found to be associated with type III hyperlipoproteinemia. There was no association of any apo E subclass with type II, type IV, or type VI hyperlipoproteinemia or plasma HDL cholesterol levels. This study explains the genetic basis for the common variation in a human plasma protein, apo E. Since the apo E subclass beta IV is associated with type III hyperlipoproteinemia, a disease characterized by xanthomatosis and premature atherosclerosis, understanding the genetic basis of the apo E subclasses should provide insight into the genetics of type III hyperlipoproteinemia.  相似文献   

8.
9.
10.
Genetic determinants of lung structure and function have been demonstrated by differential phenotypes among inbred mice strains. For example, previous studies have reported phenotypic variation in baseline ventilatory measurements of standard inbred murine strains as well as segregant and nonsegregant offspring of C3H/HeJ (C3) and C57BL/6J (B6) progenitors. One purpose of the present study is to test the hypothesis that a genetic basis for differential baseline breathing pattern is due to variation in lung mechanical properties. Quasi-static pressure-volume curves were performed on standard and recombinant inbred strains to explore the interactive role of lung mechanics in determination of functional baseline ventilatory outcomes. At airway pressures between 0 and 30 cmH2O, lung volumes are significantly (P < 0.01) greater in C3 mice relative to the B6 and A/J strains. In addition, the B6C3F1/J offspring demonstrate lung mechanical properties significantly (P < 0.01) different from the C3 progenitor but not distinguishable from the B6 progenitor. With the use of recombinant inbred strains derived from C3 and B6 progenitors, cosegregation analysis between inspiratory timing and measurements of lung volume and compliance indicate that strain differences in baseline breathing pattern and pressure-volume relationships are not genetically associated. Although strain differences in lung volume and compliance between C3 and B6 mice are inheritable, this study supports a dissociation between differential inspiratory time at baseline, a trait linked to a putative genomic region on mouse chromosome 3, and differential lung mechanics among C3 and B6 progenitors and their progeny.  相似文献   

11.
Studies on cathepsin B in human articular cartilage.   总被引:2,自引:0,他引:2       下载免费PDF全文
The thiol proteinase cathepsin B (EC 3.4.22.1), previously called cathepsin B1, was assayed in human articular cartilage by its hydrolysis of the synthetic substrate alpha-N-benzoyl-DL-arginine 2-naphthylamide. The enzyme was activated by cysteine and EDTA and completely inhibited by iodoacetamide and HgCl2. It was also partially inhibited by whole human serum. Human osteoarthrotic cartilage had increased activity when compared with normal cartilage. Cathepsin B activity of normal cartilage was age-related, being high in juveniles and declining to low values in adult and elderly individuals. Cathepsin D and cathepsin B both exhibited a zonal variation through the cartilage depth; the surface cells appeared to contain more activity than those close to the subchondral bone.  相似文献   

12.
Lysozyme (mucopeptide-N-acetylmuramylhydrolase, EC 3.2.1.17) is present in mammalian cartilage. Lysozyme was isolated and purified from bovine and canine cartilage and from dog serum using various chromatographic steps and affinity chromatography on carboxymethylated chitin. Amino acid analysis of bovine cartilage lysozyme showed that it is similar to other mammalian lysozymes. Anti-canine lysozyme antibodies cross-react with calf lysozyme, but not with hen egg white or embryonic chick cartilage lysozyme. In the epiphyseal plate of the dog, 90-μm sections were analyzed for lysozyme and its was found that in the hypertrophic zone its concentration is approximately six times higher than it is in the resting zone. Using immunocytochemical techniques at the electromicroscopic level, lysozyme in the epiphyseal plate of the dog was localized extracellularly, mainly in the immediate vicinity of the chondrocytes, the territorial matrix.  相似文献   

13.
14.
Iron that is not specifically chaperoned through its essential functional pathways is damaging to biological systems, in major part by catalyzing the production of reactive oxygen species. Iron serves in several essential roles in the mitochondrion, as an essential cofactor for certain enzymes of electron transport, and through its involvement in the assembly of iron-sulfur clusters and iron-porphyrin (heme) complexes, both processes occurring in the mitochondrion. Therefore, there are mechanisms that deliver iron specifically to mitochondria, although these are not well understood. Under normal circumstances the mitochondrion has levels of stored iron that are higher than other organelles, though lower than in cytosol, while in some disorders of iron metabolism, mitochondrial iron levels exceed those in the cytosol. Under these circumstances of excess iron, protective mechanisms are overwhelmed and mitochondrial damage ensues. This may take the form of acute oxidative stress with structural damage and functional impairment, but also may result in long-term damage to the mitochondrial genome. This review discusses the evidence that mitochondria do indeed accumulate iron in several genetic disorders, and are a direct target for iron toxicity when it is present in excess. We then consider two classes of genetic disorders involving iron and the mitochondrion. The first include defects in genes directly regulating mitochondrial iron metabolism that lead to Friedreich's ataxia and the various sideroblastic anemias, with excessive mitochondrial iron accumulation. Under the second class, we discuss various primary hemochromatoses that lead to direct mitochondrial damage, with reference to mutations in genes encoding HFE, hepcidin, hemojuvelin, transferrin receptor-2, ferroportin, transferrin, and ceruloplasmin.  相似文献   

15.
O Mayo 《Human heredity》1975,25(2):127-134
The effect on sibship size distribution of the birth of a child with a genetical defect is considered for several different conditions. Family size continues to be over-dispersed in such cases, rather than showing any sign of reduced variation, though theoretical expectations about the correlation between numbers of normal and affected children are not well-supported by the data.  相似文献   

16.
Copper, like iron, is an essential transition metal ion in which its redox reactivity, whilst essential for the activity of mitochondrial enzymes, can also be a source of harmful reactive oxygen species if not chelated to biomolecules. Therefore, both metals are sequestered by protein chaperones and moved across membranes by protein transporters with the excess held in storage proteins for future use. In the case of copper, the storage proteins in the mitochondria are a distinct ceruloplasmin and metallothionein (MT). If the cell accumulates too much copper or copper is needed by other cells, then copper can be chaperoned to the trans-Golgi secretory compartment where it is transported into the Golgi by ATP-dependent pumps ATP7A/B. In liver, the copper is then incorporated into ceruloplasmin in vesicles that travel to the plasma membrane and release ceruloplasmin into the plasma. This paper reviews the genetic basis for diseases associated with copper deficit or excess, particularly those attributed to defective ATP7A/B transporters, with special emphasis on pathologies related to a loss of mitochondrial function.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号