首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
2.
3.
We have compared the pattern of enzyme expression in cyclic AMP-induced monolayer cultures of Dictyostelium discoideum with that found during normal development. We find that both the temporal and quantitative pattern of enzyme expression are initially similar in the two situations, although the developmental sequence is more protracted and terminal cell differentiation is delayed in the monolayer situation. We describe differentiation conditions that permit the expression of only one terminal phenotype, which may be useful for further biochemical studies. Enzyme accumulation patterns under these conditions indicate that UDP gal transferase is not required for stalk cell differentiation (i.e., it is a prespore enzyme). We have shown that, when cell monolayers are incubated with cAMP, the presence of a weak acid at low extracellular pH favors stalk-cell differentiation, while a weak base at high extracellular pH favors spore differentiation. Finally, we show that variations in the monovalent cation content of the buffer, or the addition of an ion transport inhibitor (scillaren), or an ionophore (valinomycin) all affect the ratio of stalk cells to spores. Taken together, these results suggest that intracellular H+ and/or other cations may play an important role in regulating differentiation of specific cell types in D. discoideum.  相似文献   

4.
We have used two-dimensional gel electrophoresis to identify over 30 proteins which are specific to one or other of the two cell types of Dictyostelium discoideum, either at the slug stage or in mature fruiting bodies. Our results support the idea that there is a continuous developmental program that begins in prespore cells at the hemispherical mound stage (10-12 hr) and results in spore differentiation (24 hr). Prestalk differentiation, on the other hand, appeared largely unrelated to stalk differentiation, which was first detectable at the onset of culmination (18 hr). We have also used this approach to study the differentiation of stalk-only mutants and have found that the cells can switch from spore to stalk differentiation as late as 2 hr before the end of the wild-type developmental program.  相似文献   

5.
Abstract. We have compared the pattern of enzyme expression in cyclic AMP-induced monolayer cultures of Dictyostelium discoideum with that found during normal development. We find that both the temporal and quantitative pattern of enzyme expression are initially similar in the two situations, although the developmental sequence is more protracted and terminal cell differentiation is delayed in the monolayer situation. We describe differentiation conditions that permit the expression of only one terminal phenotype, which may be useful for further biochemical studies. Enzyme accumulation patterns under these conditions indicate that UDP gal transferase is not required for stalk cell differentiation (i.e., it is a prespore enzyme). We have shown that, when cell monolayers are incubated with CAMP, the presence of a weak acid at low extracellular pH favors stalk-cell differentiation, while a weak base at high extracellular pH favors spore differentiation. Finally, we show that variations in the monovalent cation content of the buffer, or the addition of an ion transport inhibitor (scillaren), or an ionophore (valinomycin) all affect the ratio of stalk cells to spores. Taken together, these results suggest that intracellular H+ and or other cations may play an important role in regulating differentiation of specific cell types in D. discoideum .  相似文献   

6.
Prestalk cell differentiation in Dictyostelium is induced by DIF and two DIF-induced genes, ecmA and ecmB, have revealed the existence of multiple prestalk and stalk cell sub-types. These different sub-types are defined by the pattern of expression of subfragments derived from the ecmA and ecmB promoters. These markers have been utilised in three ways; for fate mapping in vivo, to investigate the molecular mechanisms underlying DIF signalling and to explore the relative requirement for DIF and other signalling molecules for prestalk and stalk cell differentiation in vitro. The heterogeneity of the prestalk and stalk populations seems to be reflected in differences in the cell signalling pathways that they utilise.  相似文献   

7.
GSK3 is a multifunctional regulator of Dictyostelium development   总被引:1,自引:0,他引:1  
Glycogen synthase kinase 3 (GSK3) is a central regulator of metazoan development and the Dictyostelium GSK3 homologue, GskA, also controls cellular differentiation. The originally derived gskA-null mutant exhibits a severe pattern formation defect. It forms very large numbers of pre-basal disc cells at the expense of the prespore population. This defect arises early during multicellular development, making it impossible to examine later functions of GskA. We report the analysis of a gskA-null mutant, generated in a different parental strain, that proceeds through development to form mature fruiting bodies. In this strain, Ax2/gskA-, early development is accelerated and slug migration greatly curtailed. In a monolayer assay of stalk cell formation, the Ax2/gskA- strain is hypersensitive to the stalk cell-inducing action of DIF-1 but largely refractory to the repressive effect exerted by extracellular cAMP. During normal development, apically situated prestalk cells express the ecmB gene just as they commit themselves to stalk cell differentiation. In the Ax2/gskA- mutant, ecmB is expressed throughout the prestalk region of the slug, suggesting that GskA forms part of the repressive signalling pathway that prevents premature commitment to stalk cell differentiation. GskA may also play an inductive developmental role, because microarray analysis identifies a large gene family, the 2C family, that require gskA for optimal expression. These observations show that GskA functions throughout Dictyostelium development, to regulate several key aspects of cellular patterning.  相似文献   

8.
We placed a specific inhibitor of cyclic AMP-dependent protein kinase (PKA) under the control of a prestalk-specific promoter. Cells containing this construct form normally patterned slugs, but under environmental conditions that normally trigger immediate culmination, the slugs undergo prolonged migration. Slugs that eventually enter culmination do so normally but arrest as elongated, hairlike structures that contain neither stalk nor spore cells. Mutant cells do not migrate to the stalk entrance when codeveloped with wild-type cells and show greatly reduced inducibility by DIF, the stalk cell morphogen. These results suggest that the activity of PKA is necessary for the altered pattern of movement of prestalk cells at culmination and their differentiation into stalk cells. We propose a model whereby a protein repressor, under the control of PKA, inhibits precocious induction of stalk cell differentiation by DIF and so regulates the choice between slug migration and culmination.  相似文献   

9.
Cyclic AMP and DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)-1-hexanone) together induce stalk cell differentiation in vitro in Dictyostelium discoideum strain V12M2. The induction can proceed in two stages: in the first, cyclic AMP brings cells to a DIF-responsive state; in the second, DIF-1 alone can induce stalk cell formation. We report here that during the DIF-1-dependent stage, cyclic AMP is a potent inhibitor of stalk cell differentiation. Addition of cyclic AMP at this stage to V12M2 cells appreciably delays, but does not prevent, stalk cell formation. In contrast, stalk cell differentiation in the more common strain NC4 is completely suppressed by the continued presence of cyclic AMP. This fact explains earlier failures to induce stalk cells in vitro in NC4. We now consistently obtain efficient stalk cell induction in NC4 by removing cyclic AMP in the DIF-1-dependent stage. Cyclic AMP also inhibits the production of a stalk-specific protein (ST310) in both NC4 and a V12M2 derivative. Adenosine, a known antagonist of cyclic AMP action, does not relieve this inhibition by cyclic AMP and does not itself promote stalk cell formation. Finally, stalk cell differentiation of NC4 cells at low density appears to require factors in addition to cyclic AMP and DIF-1, but their nature is not yet known. The inhibition of stalk cell differentiation by cyclic AMP may be important in establishing the prestalk/prespore pattern during normal development, and in preventing the maturation of prestalk into stalk cells until culmination.  相似文献   

10.
Embryonic stem cells, totipotent cells of the early mouse embryo, were established as permanent cell lines of undifferentiated cells. ES cells provide an important cellular system in developmental biology for the manipulation of preselected genes in mice by using the gene targeting technology. Embryonic stem cells, when cultivated as embryo-like aggregates, so-called ‘embryoid bodies’, are able to differentiate in vitro into derivatives of all three primary germ layers, the endoderm, ectoderm and mesoderm. We established differentiation protocols for the in vitro development of undifferentiated embryonic stem cells into differentiated cardiomyocytes, skeletal muscle, neuronal, epithelial and vascular smooth muscle cells. During differentiation, tissue-specific genes, proteins, ion channels, receptors and action potentials were expressed in a developmentally controlled pattern. This pattern closely recapitulates the developmental pattern during embryogenesis in the living organism. In vitro, the controlled developmental pattern was found to be influenced by differentiation and growth factor molecules or by xenobiotics. Furthermore, the differentiation system has been used for genetic analyses by ‘gain of function’ and ‘loss of function’ approaches in vitro. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Shape changes, extended processes, and other surface elaborations are associated with cellular differentiation, and the cell membranes involved with these developmental changes often are reshaped without a major alteration in biochemical composition. Caulobacter crescentus produces a hexagonally-packed periodic surface layer that covers the entire cell and further, mimics some of the membrane-mediated changes of higher organisms by forming a membranous stalk during its distinctive life cycle. Growth of the surface layer was examined during the cell cycle by treating synchronously growing cells with surface layer antibody, continuing growth, and then labeling for electron microscopy with a protein A-colloidal gold conjugate. Three regions of distinctive surface array biogenesis were resolved. The periodic surface layer on the main cell body was enlarged by insertion of new material at numerous uniformly distributed points. In contrast, the surface layer on the stalk appeared as entirely new synthesis. In examining growth of the stalk in subsequent generations, we noted that growth of stalk surface persisted at the stalk-cell body junction. The region of cell division also showed a pattern of entirely new surface layer production at late stages in division, similar to the stalk. The immunocytological method also facilitated a careful examination of stalk initiation and growth. Although initiation was under precise temporal and spatial regulation, the rate of stalk elongation was variable from cell to cell and apparently no longer under cell cycle control. The similarity of surface layer biogenesis on the stalk and the site of cell division may be a significant reflection of other events occurring at the cell pole. A model suggested by this and other studies that can account for the temporal pattern of polar morphogenesis is discussed, as is the potential relationship between the geometrically ordered surface array and the formation or maintenance of the stalk.  相似文献   

12.
Developing Dictyostelium discoideum amoebae form a stalked fruiting body in which individual cells differentiate into either stalk cells or spores. The major known inducer of stalk cell differentiation is the chlorinated polyketide DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one); however a mutant blocked in the terminal step of DIF-1 biosynthesis still produces one of the prestalk cell subtypes - the pstA cells - as well as some mature stalk cells. We therefore searched for additional stalk cell-inducing factors in the medium supporting development of this mutant. These factors were purified by solvent extraction and HPLC and identified by mass spectroscopy and NMR. The mutant lacked detectable DIF-2 and DIF-3 (the pentanone and deschloro homologues of DIF-1) but four major stalk cell-inducing activities were detected, of which three were identified. Two compounds were predicted intermediates in DIF-1 biosynthesis: the desmethyl, and desmethyl-monochloro analogues of DIF-1 (dM-DIF-1 and Cl-THPH, respectively), supporting the previously proposed pathway of DIF-1 biosynthesis. The third compound was a novel factor and was identified as 4-methyl-5-pentylbenzene-1,3-diol (MPBD) with the structure confirmed by chemical synthesis. To investigate the potential roles of these compounds as signal molecules, their effects on morphological stalk and spore differentiation were examined in cell culture. All three induced morphological stalk cell differentiation. We found that synthetic MPBD also stimulated spore cell differentiation. Now that these factors are known to be produced and released during development, their biological roles can be pursued further.  相似文献   

13.
Developing Dictyostelium discoideum amoebae form a stalked fruiting body in which individual cells differentiate into either stalk cells or spores. The major known inducer of stalk cell differentiation is the chlorinated polyketide DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one); however a mutant blocked in the terminal step of DIF-1 biosynthesis still produces one of the prestalk cell subtypes – the pstA cells – as well as some mature stalk cells. We therefore searched for additional stalk cell-inducing factors in the medium supporting development of this mutant. These factors were purified by solvent extraction and HPLC and identified by mass spectroscopy and NMR. The mutant lacked detectable DIF-2 and DIF-3 (the pentanone and deschloro homologues of DIF-1) but four major stalk cell-inducing activities were detected, of which three were identified. Two compounds were predicted intermediates in DIF-1 biosynthesis: the desmethyl, and desmethyl-monochloro analogues of DIF-1 (dM-DIF-1 and Cl-THPH, respectively), supporting the previously proposed pathway of DIF-1 biosynthesis. The third compound was a novel factor and was identified as 4-methyl-5-pentylbenzene-1,3-diol (MPBD) with the structure confirmed by chemical synthesis. To investigate the potential roles of these compounds as signal molecules, their effects on morphological stalk and spore differentiation were examined in cell culture. All three induced morphological stalk cell differentiation. We found that synthetic MPBD also stimulated spore cell differentiation. Now that these factors are known to be produced and released during development, their biological roles can be pursued further.  相似文献   

14.
Wang B  Kuspa A 《Eukaryotic cell》2002,1(1):126-136
Dictyostelium amoebae accomplish a starvation-induced developmental process by aggregating into a mound and forming a single fruiting body with terminally differentiated spores and stalk cells. culB was identified as the gene disrupted in a developmental mutant with an aberrant prestalk cell differentiation phenotype. The culB gene product appears to be a homolog of the cullin family of proteins that are known to be involved in ubiquitin-mediated protein degradation. The culB mutants form supernumerary prestalk tips atop each developing mound that result in the formation of multiple small fruiting bodies. The prestalk-specific gene ecmA is expressed precociously in culB mutants, suggesting that prestalk cell differentiation occurs earlier than normal. In addition, when culB mutant cells are mixed with wild-type cells, they display a cell-autonomous propensity to form stalk cells. Thus, CulB appears to ensure that the proper number of prestalk cells differentiate at the appropriate time in development. Activation of cyclic AMP-dependent protein kinase (PKA) by disruption of the regulatory subunit gene (pkaR) or by overexpression of the catalytic subunit gene (pkaC) enhances the prestalk/stalk cell differentiation phenotype of the culB mutant. For example, culB pkaR cells form stalk cells without obvious multicellular morphogenesis and are more sensitive to the prestalk O (pstO) cell inducer DIF-1. The sensitized condition of PKA activation reveals that CulB may govern prestalk cell differentiation in Dictyostelium, in part by controlling the sensitivity of cells to DIF-1, possibly by regulating the levels of one or more proteins that are rate limiting for prestalk differentiation.  相似文献   

15.
We have studied the correlates of cell death during stalk cell differentiation in Dictyostelium discoideum. Our main findings are four. (i) There is a gradual increase in the number of cells with exposed phosphatidyl serine residues, an indicator of membrane asymmetry loss and increased permeability. Only presumptive stalk cells show this change in membrane asymmetry. Cells also show an increase in cell membrane permeability under conditions of calcium-induced stalk cell differentiation in cell monolayers. (ii) There is a gradual fall in mitochondrial membrane potential during development, again restricted to the presumptive stalk cells. (iii) The fraction of cells showing caspase-3 activity increases as development proceeds and then declines in the terminally differentiated fruiting body. (iv) There is no internucleosomal cleavage of DNA, or DNA fragmentation, in D. discoideum nor is there any calcium- and magnesium-dependent endonucleolytic activity in nuclear extracts from various developmental stages. However, nuclear condensation and peripheralization does occur in stalk cells. Thus, cell death in D. discoideum shows some, but not all, features of apoptotic cell death as recognized in other multicellular systems. These findings argue against the emergence of a single mechanism of 'programmed cell death (PCD)' before multicellularity arose during evolution.  相似文献   

16.
In Dictyostelium discoideum stalk cell formation is induced by cyclic AMP and differentiation-inducing factor (DIF) when cells are plated in in vitro monolayers (Kay et al., 1979, Differentiation 13: 7-14). The in vivo developmental stages at which cells became independent of these factors were determined. Independence was defined as the stage at which dispersed cells no longer required the factors for stalk cell formation in low density monolayers. Cyclic AMP independent cells were first detected at around 12 hr of development, a time that corresponds to the transition between the tipped aggregate and the first finger stages. In contrast cells did not become independent of DIF until late culmination. The prestalk cell-specific isozyme acid phosphatase II and a stalk cell-specific 41,000 Mr antigen (ST 41) were expressed during differentiation in low density monolayers in the presence of both cyclic AMP and DIF, but neither component was expressed in the presence of cyclic AMP alone. This result implies that DIF is essential for both prestalk and stalk cell formation. The two components were expressed within 2 hr of each other during differentiation in vitro, whereas during development in vivo acid phosphatase II was first detected at the first finger stage and ST 41 was first detected during late culmination, 8-12 hr later. These contrasting results suggest that the conversion of prestalk cells to stalk cells is unrestrained in monolayers, following directly after prestalk cell induction, but restrained in vivo until the culmination stage. This interpretation is consistent with the finding that cells become independent of DIF early during in vitro differentiation (A. Sobolewski, N. Neave, and G. Weeks, 1983, Differentiation 25, 93-100), but do not become independent of DIF until the culmination stage when differentiating in vivo.  相似文献   

17.
18.
An orderly pattern of cell death accompanies growth of retinal ganglion cell axons through the optic stalk of the chick embryo. In order to determine ifthe cell death process in this adage is preprogrammed at earlier stages or if other factors play a role, we cultured optic stalk primordia at a stage prior to retinal differentiation, either alone or in the presence of head or limb bud mesenchyme. When optic stalk was alone, many cells differentiated into neurons. However, when mesenchyme cells of either head or limb bud origin were combined with the stalk, the stalk cells either degenerated, were unrecognizable in the mesenchyme mass, or retained their epithelial arrangement and became pigmented. Mesenchyme and/or neural crest which normally migrate around the stalk at the same time that ganglion cell axons penetrate this structure may therefore be involved in some aspect of the cell death process. Since many optic stalk cells in vitro differentiate into neurons, these cells may represent the population of cells which in situ would normally die.  相似文献   

19.
Previous work has shown that multicellular morphogenesis of submerged Dictyostelium cells is inhibited when they bind to glucosides covalently linked to polyacrylamide gels. The amoebae aggregate normally, but then the aggregates repeatedly disperse and reaggregate, whereas control cells go on to form tight aggregates. We have investigated the role of the stalk cell differentiation inducing factors (DIFs) in this process. In the presence of cyclic AMP, amoebae submerged at high cell density accumulate DIF and differentiate into stalk cells. We find that stalk cell differentiation is inhibited by interaction of the cells with glucoside gels in these conditions, but can be restored by the addition of exogenous DIF-1. Since the responsiveness of cells to DIF-1 is not altered, it appears likely that the effect of the glucoside gel is to block DIF-1 production. Further, the addition of DIF-1 or DIF-2 stimulates the formation of tight aggregates by cells developing on glucoside gels in the absence of cyclic AMP, thus preventing the rounds of aggregation and disaggregation otherwise seen. This suggests a role for DIF in morphogenesis as well as in controlling cell differentiation. We propose a model in which immobilized glucosides activate a specific receptor ("food sensor") which drives the amoebae toward the vegetative state and inhibits DIF accumulation. DIF, on the other hand, induces tight aggregate formation and so locks the amoebae into the developmental program.  相似文献   

20.
Embryonic stem cell differentiation: The role of extracellular factors   总被引:15,自引:0,他引:15  
Embryonic stem (ES) cells have the capacity to self renew and to differentiate into cellular derivatives of the endodermal, ectodermal, and mesodermal lineages. Therefore, ES cells have been used to analyse the effects of exogenous factors on the developmental pattern during in vitro differentiation. By using an in vitro loss-of-function approach based on beta1 integrin-deficient ES cells, it was found that integrin-dependent mechanisms are involved in the regulation of Wnt-1 and BMP-4 expression. Antagonistic effects of the signalling molecules Wnt-1 and BMP-4, morphogens involved in early differentiation events, have been observed in vivo and in vitro: BMP-4 acts as a potent mesoderm inducer, whereas Wnt-1 plays a critical role in the determination of neuroectoderm. Here, we summarise data of ES cell-derived cardiac, myogenic, and neuronal differentiation of wild type and beta1 integrin-deficient ES cells. We present evidence that the interaction of cells with the extracellular matrix via integrins determines the expression of the signalling molecules BMP-4 and Wnt-1, resulting in the activation of the mesodermal and neuroectodermal lineage, respectively. The results support the idea that the influence of the extracellular 'niche' on the developmental fate of pluripotent stem cells is determined not only by soluble factors, but also by the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号