首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Betaine-homocysteine S-methyltransferase (BHMT) is the only enzyme known to catabolize betaine. In addition to being a substrate for BHMT, betaine also functions as an osmoprotectant that accumulates in the kidney medulla under conditions of high extracellular osmolarity. The mechanisms that regulate the partitioning of betaine between its use as a methyl donor and its accumulation as an osmoprotectant are not completely understood. The aim of this study was to determine whether BHMT expression is regulated by salt intake. This report shows that guinea pigs express BHMT in the liver, kidney, and pancreas and that the steady-state levels of BHMT mRNA in kidney and liver decrease 68% and 93% in guinea pigs consuming tap water containing high levels of salt compared with animals provided untreated tap water. The animals consuming the salt water also had approximately 50% less BHMT activity in the liver and kidney, and steady-state protein levels decreased approximately 30% in both organs. Pancreatic BHMT activity and protein levels were unaffected by the high salt treatment. The complex mechanisms involved in the downregulation of hepatic and renal BHMT expression in guinea pigs drinking salt water remain to be clarified, but the physiological significance of this downregulation may be to expedite the transport and accumulation of betaine into the kidney medulla under conditions of high extracellular osmolarity.  相似文献   

2.
Betaine-homocysteine S-methyltransferase (BHMT) has been shown to be expressed at high levels in the livers of all vertebrate species tested. It has also been shown to be abundant in primate and pig kidney but notably very low in rat kidney and essentially absent from the other major organs of monogastric animals. We recently showed by enzyme activity and Western analysis that pig kidney BHMT was only expressed in the cortex and was absent from the medulla. Using immunohistochemical detection, we report here that in human, pig, and rat kidney, BHMT is expressed in the proximal tubules of the cortex. Immunohistochemical staining for BHMT in human, pig, and rat liver indicate high expression in hepatocytes. The staining patterns are consistent with cytosolic expression in both organs.  相似文献   

3.
In mammals, betaine of the mitochondrial matrix is used in the cytosol by betaine-homocysteine S-methyltransferase for methionine synthesis. The resulting dimethylglycine is shuttled back into the mitochondrial matrix for further degradation. Nanospray tandem mass spectrometry and N-terminal amino acid sequencing of microtubule-associated proteins from rat liver tubulin revealed that betaine-homocysteine S-methyltransferase is microtubule associated. This was confirmed by confocal laser scanning microscopy of HepG2 cells labeled with betaine-homocysteine S-methyltransferase- and alpha-tubulin-specific monoclonal antibodies. The association of betaine-homocysteine S-methyltransferase with the cytoskeleton may functionally integrate the mitochondrial and cytoplasmic compartments of choline degradation.  相似文献   

4.
A P Breksa  T A Garrow 《Biochemistry》1999,38(42):13991-13998
Betaine-homocysteine S-methyltransferase (BHMT; EC 2.1.1.5) catalyzes the transfer of an N-methyl group from betaine to homocysteine to produce dimethylglycine and methionine, respectively. The enzyme is found in the pathway of choline oxidation and is abundantly expressed in liver and kidney. We have recently shown that human BHMT is a zinc metalloenzyme [Millian, N. S., and Garrow, T. A. (1998) Arch. Biochem. Biophys. 356, 93-98]. To facilitate the rapid purification of human BHMT for further physical and mechanistic studies, including characterizing its metal binding properties, we have overexpressed the enzyme in E. coli as a fusion construct which facilitated its subsequent purification by a self-cleavable affinity tag system (IMPACT T7). Using this expression and purification system in conjunction with site-directed mutagenesis, we have identified Cys217, Cys299, and Cys300 as zinc ligands. Mutating any of these Cys residues to Ala results in the complete loss of activity and a significant reduction in the ability of the protein to bind zinc. Comparing the regions of BHMT amino acid sequence surrounding these Cys residues with similar amino acid sequences retrievable from protein databases, we have identified the following motif: G[ILV]NCX(20,100)[ALV]X(2)[ILV]GGCCX(3)PX(2)I, which we propose to be a signature for a family of zinc-dependent methyltransferases that utilize thiols or selenols as methyl acceptors. Some of the members of this family include the vitamin B(12)-dependent methionine synthases, E. coli S-methylmethionine-S-homocysteine methyltransferase, and A. bisulcatus S-methylmethionine-selenocysteine methyltransferase.  相似文献   

5.
The thiol S-methyltransferase from rat liver has been solubilized and prepared in homogeneous form. The enzyme exists in a monomer of Mr 28,000 although enzyme activity is highly unstable with a half-life of 4 days under the best conditions of storage. The reaction requires S-adenosylmethionine as methyl donor but, as is the case with many enzymes active in detoxification, a large variety of lipophilic compounds can serve as acceptors. Acceptor activity is limited to thiols. The naturally occurring hydrophilic thiols, glutathione and cysteine, act neither as substrates nor as inhibitors. The course of the reaction is biphasic with an initial rapid formation of product that is followed by a slower linear rate. The suggestion is offered that this behavior reflects the slow dissociation of an enzyme-product complex composed of enzyme and S-adenosyl-homocysteine.  相似文献   

6.
Betaine-homocysteine S-methyltransferase (BHMT) uses betaine to catalyze the conversion of homocysteine (Hcy) to methionine. There are common genetic polymorphisms in the BHMT gene in humans that can alter its enzymatic activity. We generated the first Bhmt(-/-) mouse to model the functional effects of mutations that result in reduced BHMT activity. Deletion of Bhmt resulted in a 6-fold increase (p < 0.01) in hepatic and an 8-fold increase (p < 0.01) in plasma total Hcy concentrations. Deletion of Bhmt resulted in a 43% reduction in hepatic S-adenosylmethionine (AdoMet) (p < 0.01) and a 3-fold increase in hepatic S-adenosylhomocysteine (AdoHcy) (p < 0.01) concentrations, resulting in a 75% reduction in methylation potential (AdoMet:AdoHcy) (p < 0.01). Bhmt(-/-) mice accumulated betaine in most tissues, including a 21-fold increase in the liver concentration compared with wild type (WT) (p < 0.01). These mice had lower concentrations of choline, phosphocholine, glycerophosphocholine, phosphatidylcholine, and sphingomyelin in several tissues. At 5 weeks of age, Bhmt(-/-) mice had 36% lower total hepatic phospholipid concentrations and a 6-fold increase in hepatic triacyglycerol concentrations compared with WT (p < 0.01), which was due to a decrease in the secretion of very low density lipoproteins. At 1 year of age, 64% of Bhmt(-/-) mice had visible hepatic tumors. Histopathological analysis revealed that Bhmt(-/-) mice developed hepatocellular carcinoma or carcinoma precursors. These results indicate that BHMT has an important role in Hcy, choline, and one-carbon homeostasis. A lack of Bhmt also affects susceptibility to fatty liver and hepatocellular carcinoma. We suggest that functional polymorphisms in BHMT that significantly reduce activity may have similar effects in humans.  相似文献   

7.
8.
Effects of insulin on messenger RNA activities in rat liver   总被引:7,自引:0,他引:7  
Liver poly(A) RNA, isolated from adrenalectomized rats after insulin treatment, was translated in a nuclease-treated lysate of rabbit reticulocytes and quantitated for both total activity and the capacity to synthesize the insulin-inducible enzyme tyrosine aminotransferase. Analysis of the translated products from poly(A) RNA isolated 1 h after insulin treatment showed a 2.7-fold increase in activity of tyrosine aminotransferase mRNA. During the same interval, the capacity of poly(A) RNA to direct the synthesis of total protein in lysates also changed, showing a 30 to 40% increase in translational activity/unit of RNA. Increased translatability was apparent in all fractions of poly(A) RNA separated by centrifugation on sucrose gradients. Insulin thus appears to mediate a generalized change in mRNAs leading to increased capacity for translation; induction of tyrosine aminotransferase may reflect sensitivity to effect of the hormone.  相似文献   

9.
Effects of insulin and maternal diabetes on fetal lipogenesis in the rat   总被引:2,自引:0,他引:2  
D Pillay  E Bailey 《Enzyme》1983,29(2):126-130
Offspring of diabetic mothers have been investigated with regard to fetal hepatic and brown adipose tissue lipogenesis in the rat. Results, which cannot be explained by existing theory, are obtained from offspring of subdiabetic mothers and manifest diabetic mothers. In re-evaluating the effect of exogenous insulin on perinatal lipogenesis, we find important differences in hormone sensitivity between liver and brown adipose tissue.  相似文献   

10.
11.
It has been recognized that rat liver microsomal Delta6 desaturation activity is defective in experimental diabetes, a fact that may be reverted by means of insulin treatment. In the present study, we used streptozotocin-induced diabetic rats in order to determine the regulatory role of insulin on the expression of hepatic Delta6 desaturase gene. The abundance of hepatic Delta6 desaturase mRNA in the diabetic rats is sevenfold lower than in the control. Insulin administration to diabetic rats induces Delta6 desaturase mRNA eightfold within 24 h. The effect of insulin on the Delta6 desaturase mRNA was inhibited 70% with dibutyryl-cAMP and theophylline administration and 90% by cycloheximide administration. Therefore, our data demonstrate that the activity of hepatic Delta6 desaturase in response to insulin is, at least in part, regulated by pretranslational events that require the synthesis of an unknown protein(s).  相似文献   

12.
13.
Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent enzyme that catalyzes the transfer of a methyl group from glycine betaine (Bet) to homocysteine (Hcy) to form dimethylglycine (DMG) and methionine (Met). Previous studies in other laboratories have indicated that catalysis proceeds through the formation of a ternary complex, with a transition state mimicked by the inhibitor S-(delta-carboxybutyl)-l-homocysteine (CBHcy). Using changes in intrinsic tryptophan fluorescence to determine the affinity of human BHMT for substrates, products, or CBHcy, we now demonstrate that the enzyme-substrate complex reaches its transition state through an ordered bi-bi mechanism in which Hcy is the first substrate to bind and Met is the last product released. Hcy, Met, and CBHcy bind to the enzyme to form binary complexes with K(d) values of 7.9, 6.9, and 0.28 microM, respectively. Binary complexes with Bet and DMG cannot be detected with fluorescence as a probe, but Bet and DMG bind tightly to BHMT-Hcy to form ternary complexes with K(d) values of 1.1 and 0.73 microM, respectively. Mutation of each of the seven tryptophan residues in human BHMT provides evidence that the enzyme undergoes two distinct conformational changes that are reflected in the fluorescence of the enzyme. The first is induced when Hcy binds, and the second, when Bet binds. As predicted by the crystal structure of BHMT, the amino acids Trp44 and Tyr160 are involved in binding Bet, and Glu159 in binding Hcy. Replacing these residues by site-directed mutagenesis significantly reduces the catalytic efficiency (V(max)/K(m)) of the enzyme. Replacing Tyr77 with Phe abolishes enzyme activity.  相似文献   

14.
15.
16.
We determined whether insulin therapy changes liver fat content (LFAT) or hepatic insulin sensitivity in type 2 diabetes. Fourteen patients with type 2 diabetes (age 51+/-2 yr, body mass index 33.1+/-1.4 kg/m2) treated with metformin alone received additional basal insulin for 7 mo. Liver fat (proton magnetic resonance spectroscopy), fat distribution (MRI), fat-free and fat mass, and whole body and hepatic insulin sensitivity (6-h euglycemic hyperinsulinemic clamp combined with infusion of [3-(3)H]glucose) were measured. The insulin dose averaged 75+/-10 IU/day (0.69+/-0.08 IU/kg, range 24-132 IU/day). Glycosylated hemoglobin A1c (Hb A1c) decreased from 8.9+/-0.3 to 7.4+/-0.2% (P<0.001). Whole body insulin sensitivity increased from 2.21+/-0.38 to 3.08+/-0.40 mg/kg fat-free mass (FFM).min (P<0.05). This improvement could be attributed to enhanced suppression of hepatic glucose production (HGP) by insulin (HGP 1.04+/-0.28 vs. 0.21+/-0.19 mg/kg FFM.min, P<0.01). The percent suppression of HGP by insulin increased from 72+/-8 to 105+/-11% (P<0.01). LFAT decreased from 17+/-3 to 14+/-3% (P<0.05). The change in LFAT was significantly correlated with that in hepatic insulin sensitivity (r=0.56, P<0.05). Body weight increased by 3.0+/-1.1 kg (P<0.05). Of this, 83% was due to an increase in fat-free mass (P<0.01). Fat distribution and serum adiponectin concentrations remained unchanged while serum free fatty acids decreased significantly. Conclusions: insulin therapy improves hepatic insulin sensitivity and slightly but significantly reduces liver fat content, independent of serum adiponectin.  相似文献   

17.
18.
Studies on the biochemical and molecular mechanisms underlying obesity have shown that the expression of some proteins was decreased with obesity in rat adipose tissue. One of these proteins is carbonic anhydrase III (CA III) which constitutes 24% of the cytosolic protein content and its function is unclear. A freshly isolated rat adipose cell culture model was used to examine the effect of leptin and insulin on CA III expression. It was found that leptin decreased CA III expression while insulin increased it which suggests that the decrease in CA III expression observed in obesity in rat adipose tissue may be related to hyperleptinemia.  相似文献   

19.
The impact of experimentally induced diabetes on the expression of rat liver phenylalanine hydroxylase has been investigated. A significant elevation in maximal enzymic activity was observed in diabetes. This was associated with significant increases in the amount of enzyme, the phenylalanine hydroxylase-specific translational activity of hepatic RNA and the abundance of phenylalanine hydroxylase-specific mRNA. These changes in phenylalanine hydroxylase expression were not observed when diabetes was controlled by daily injections of insulin. These results are discussed in relation to the hormonal control of phenylalanine hydroxylase gene expression.  相似文献   

20.
Oztürk Y  Aydin S 《Life sciences》2006,78(10):1084-1090
In the present study, effects of streptozotocin-induced diabetes and insulin treatment on the reactivity of rat vas deferens to KCl and calmidazolium, a calmodulin antagonist, were evaluated and calmodulin levels in vas deferens tissue from diabetic and insulin-treated rats were determined. Diabetes was induced in rats by a single injection of streptozotocin. Five weeks after the induction of diabetes, one group of diabetic rats was injected with insulin for 3 weeks. After 8 weeks, vas deferens tissues on one side of diabetic and insulin-treated diabetic rats and their controls were mounted in organ bath to measure isometric tension, while the tissues on the other side of rats were homogenized to determine calmodulin levels by radioimmunoassay. Concentration-response curves to KCl were obtained in vas deferens tissues in the absence and presence of calmidazolium. The effects of KCl and calmidazolium on vas deferens isolated from 8-weeks diabetic rats were decreased. Calmodulin levels were also found to be decreased in vas deferens from diabetic rats. Decreased calmodulin levels in diabetic rat vas deferens were not corrected by insulin treatment. Only a partial correction following insulin treatment was observed in contractile effect of KCl on diabetic rat vas deferens, whereas insulin treatment increases the affinity of calmodulin in this muscle. Experimental diabetes causes an impairment in calcium/calmodulin-dependent contractile process of vas deferens, which is correctable partially following insulin therapy. The changes in the function of rat vas deferens due to streptozotocin diabetes seem to be related to impaired sexual functions in human diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号