首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salinity and drought tolerance of mannitol-accumulating transgenic tobacco   总被引:8,自引:1,他引:7  
Tobacco plants (Nicotiana tabacum L.) were transformed with a mannitol-1-phosphate dehydrogenase gene resulting in mannitol accumulation. Experiments were conducted to determine whether mannitol provides salt and/or drought stress protection through osmotic adjustment. Non-stressed transgenic plants were 20–25% smaller than non-stressed, non-transformed (wild-type) plants in both salinity and drought experiments. However, salt stress reduced dry weight in wild-type plants by 44%, but did not reduce the dry weight of transgenic plants. Transgenic plants adjusted osmotically by 0.57 MPa, whereas wild-type plants did not adjust osmotically in response to salt stress. Calculations of solute contribution to osmotic adjustment showed that mannitol contributed only 0-003-0-004 MPa to the 0.2 MPa difference in full turgor osmotic potential (πo) between salt-stressed transgenic and wild-type plants. Assuming a cytoplasmic location for mannitol and that the cytoplasm constituted 5% of the total water volume, mannitol accounted for only 30–40% of the change in πo of the cytoplasm. Inositol, a naturally occurring polyol in tobacco, accumulated in response to salt stress in both transgenic and wild-type plants, and was 3-fold more abundant than mannitol in transgenic plants. Drought stress reduced the leaf relative water content, leaf expansion, and dry weight of transgenic and wild-type plants. However, πo was not significantly reduced by drought stress in transgenic or wild-type plants, despite an increase in non-structural carbohydrates and mannitol in droughted plants. We conclude that (1) mannitol was a relatively minor osmolyte in transgenic tobacco, but may have indirectly enhanced osmotic adjustment and salt tolerance; (2) inositol cannot substitute for mannitol in this role; (3) slower growth of the transgenic plants, and not the presence of mannitol per se, may have been the cause of greater salt tolerance, and (4) mannitol accumulation was enhanced by drought stress but did not affect πo or drought tolerance.  相似文献   

2.
Branched-chain sugars and sugar alcohols are unusual, but perhaps widespread, plant constituents whose associated biochemistry and function are poorly understood. Herein we show that one such sugar alcohol, hamamelitol (2-C-hydroxymethyl-D-ribitol), does occur in leaves of many different species often in very high amounts. Hamamelitol levels were quantitated by an isotope dilution assay we developed with a detection limit of about 15 nmol per g fresh weight, and its identity was verified using electrospray ionization mass spectrometry. The taxonomic distribution of hamamelitol was disjunct: hamamelitol was present in species of distantly related orders such as Laurales, Fabales, and Primulales, but was not necessarily present in different genera of the same family. Species with high leaf levels of carboxyarabinitol (2-C-hydroxymethyl-D-ribonic acid) generally have low hamamelitol levels. Leaves of Hedera helix L. contain the most hamamelitol of any species examined, with levels comparable to those of sucrose. The youngest leaves of H. helix accumulated the most hamamelitol, about 11 mol per g fresh weight. Growth of H. helix with periodic sub-freezing temperatures did not induce further accumulation of leaf hamamelitol. Hamamelitol levels were also high in leaf petioles of H. helix, which indicates that this sugar alcohol may be translocatable. Further, the mass spectrometry analysis indicates that a non-covalent dimer of hamamelitol may be more prevalent in vivo than is the monomeric form.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - CAD collisionally activated dissociation - ESI electrospray ionization - FW fresh weight This work was supported by US Department of Agriculture-National Research Institute grant 93-37306-9240 to J.R.S. and B.d.M. Mass spectra were obtained with an instrument purchased under NSF grant DIR-9102839. We appreciate general technical support from Kitty Spreeman, and useful discussions with Professor David Schooley. We thank Dr. Lewis Carey for carrying out the NMR analysis, Dr. Houle Wang for general help with the mass spectrome try, and Dr. Guo Lin for doing the chemical structure drawing.  相似文献   

3.
Leaf net CO2 uptake and leaf photosynthetic capacity were investigated in micropropagated 41B grapevine rootstock (Vitis vinifera‘Chasselas’×Vitis berlandieri, Mill. De Gr.) plants grown in the presence of four sucrose concentrations (6.25, 12.5, 25.0 or 37.5 g l?1). Sucrose concentration in the medium during growth in vitro did not affect the leaf photosynthetic performance of plants neither before nor after transplantation. The maximum photosynthetic rate, measured as CO2-dependent O2 evolution, was 7.3 µmol m?2 s?1 before transplanting and 15.4 µmol m?2 s?1 one month after transplantation. The maximum quantum yield of O2 evolution (on the basis of incident light) was about 0.07 for all sucrose treatments both before and after transplantation. Dry biomass before transplanting was highest in plants grown with 25.0 or 37.5 g l?1 sucrose in the medium. One month after transplantation the highest dry biomass was also observed for the same treatments. Survival of plants was 100% for all treatments. Leaf conductance to water vapour was always higher in plants before than after transplantation. Both before and after transplanting it increased with increasing light intensity and decreased slightly with increasing CO2 molar ratio in in vitro plants. Stomata of plants before transplantation were unresponsive to vapour pressure deficit. In vitro plants experience an acute water stress when they are maintained with the whole root system in water and exposed to ambient controlled conditions in a growth chamber. However, there was no wilting of the leaves when similar plants with roots cut off were left in the same conditions. Hydraulic conductivity was low at both root and shoot-root connection levels. It is likely that water supply could be limiting during transplantation because of the low root and root-stem connection conductivity. Water uptake by roots rather than water loss from the shoots would be of primary importance for the maintenance of water balance during acclimatisation.  相似文献   

4.
Barley grown in dry soil developed greater adult plant resistance (APR) to powdery mildew (Erysiphe graminis DC. f. sp. hordei Mérat) than barley grown in wet soil. Conidial germination and appressorium formation were less, and fungal development between formation of appressoria and elongating secondary hyphae on upper leaves was inhibited, when adult plants were grown in dry soil. Mildew colonies expanded more slowly on leaves of adult plants than on leaves of seedlings, especially if adult plants had grown in dry soil. APR was reduced if plants, previously grown in dry soil, were well watered more than 32 h before inoculation. Conidia originating from plants grown in dry soil had a lower solute potential and greater ability to infect plants grown in dry but not wet soil than conidia originating from plants grown in wet soil. APR could not be attributed simply to increased cell wall or cuticle thickness, nor to lowered leaf solute potentials, as has sometimes been suggested for powdery mildew diseases. Increasing plant age and water stress induced increases in cell wall and cuticle thickness, but these changes did not always coincide with changes in disease resistance. Increasing plant age and water stress also lowered leaf solute potentials but fungal solute potentials were lower than leaf solute potentials and, more importantly, were lower than leaf water potentials. Thus, fungal growth was not limited by the availability of water from the host during penetration and hyphal establishment. It is suggested that resistance levels may be determined not by the thickness of epidermal structures, nor by lowering of solute potential per se, but by specific substances harmful to the fungus which accumulate in either cell wall, cuticle or sap, and whose concentration is dependent on the age and water stress of leaves.  相似文献   

5.
Relationship of leaf anatomy with photosynthetic acclimation of Valeriana jatamansi was studied under full irradiance [FI, 1 600 mol(PPFD) m–2 s–1] and net-shade [NS, 650 mol(PPFD) m–2 s–1]. FI plants had thicker leaves with higher respiration rate (R D), nitrogen content per unit leaf area, chlorophyll a/b ratio, high leaf mass per leaf area unit (LMA), and surface area of mesophyll cell (S mes) and chloroplasts (S c) facing intercellular space than NS plants. The difference between leaf thickness of FI and NS leaves was about 28 % but difference in photon-saturated rate of photosynthesis per unit leaf area (P Nmax) was 50 %. This indicates that P Nmax can increase to a larger extent than the leaf thickness with increasing irradiance in V. jatamansi. Anatomical studies showed that the mesophyll cells of FI plants had no open spaces along the mesophyll cell walls (higher S c), but in NS plants wide open spaces along the mesophyll cell wall (lower S c) were found. Positive correlation between S c and P Nmax explained the higher P Nmax in FI plants. Increase in mesophyll thickness increased the availability of space along the mesophyll cell wall for chloroplasts (increased S c) and hence P Nmax was higher in FI plants. Thus this Himalayan species can acclimate to full sunlight by altering leaf anatomy and therefore may be cultivated in open fields.  相似文献   

6.
Seasonal leaf water relations characteristics were studied in fully irrigated spring barley (Hordeum distichum L. cv. Gunnar) fertilized at low (50 kg K ha−1) or high (200 kg K ha−1) levels of potassium applied as KCl. The investigation was undertaken from about 14 days before anthesis until the milk ripe stage in leaves of different position and age. Additionally, the effects of severe water stress on leaf water relations were studied in the middle of the grain filling period in spring barley (cv. Alis). The leaf water relations characteristics were determined by the pressure volume (PV) technique. Water relations of fully irrigated plants were compared in leaf No 7 with the water relations of slowly droughted plants (cv. Alis). Leaf osmotic potential at full turgor (ψ π 100 ) decreased 0.1 to 0.3 MPa in droughted leaves indicating a limited osmotic adjustment due to solute accumulation. The leaf osmotic potential at zero turgor (ψ π 0 ) was about −2.2 MPa in fully irrigated plants and −2.6 MPa in droughted plants. The relative water content at zero turgor (R0) decreased 0.1 unit in severely droughted leaves. The ratio of turgid leaf weight to dry weight (TW/DW) tended to be increased by drought. The tissue modulus of elasticity (ε) decreased in droughted plants and together with osmotic adjustment mediated turgor maintenance during drought. A similar response to drought was found in low and high K plants except that the R0 and ε values tended to be higher in the high K plants. Conclusively, during drought limited osmotic adjustment and increase in elasticity of the leaf tissue mediated turgor maintenance. These effects were only slightly modified by high potassium application. The seasonal analysis in fully irrigated plants (cv. Gunnar) showed that within about 14 days from leaf emergence ψ π 100 decreased from about −0.9 to −1.6 MPa in leaf No 7 (counting the first leaf to emerge as number one) and from about −1.1 to −1.9 MPa in leaf No 8 (the flag leaf) due to solute accumulation. A similar decrease took place in ψ π 0 except that the level of ψ π 0 was displaced to a lower level of about 0.2 to 0.3 MPa. Both ψ π 100 and ψ π 0 tended to be 0.05 to 0.10 MPa lower in high K than in low K plants. R0 was about 0.8 to 0.9 and was independent of leaf position and age, but tended to be highest in high K plants. The TW/DW ratio decreased from about 5.5 in leaf No 6 to 4.5 in leaf No 7 and 3.8 in leaf No 8. The TW/DW ratio was 4 to 10% higher in high K than in low K plants indicating larger leaf cell size in the former. The apoplastic water content (Va) at full turgor constituted about 15% in leaf No 7. ε was maximum at full turgor and varied from about 11 to 34 MPa. ε tended to be higher in high K plants. Conclusively, in fully watered plants an ontogenetically determined accumulation of solutes (probably organic as discussed) occurred in the leaves independent of K application. The main effect of high K application on water relations was an increase in leaf water content and a slight decrease in leaf ψπ. The effect of K status on growth and drought resistance is discussed.  相似文献   

7.
Robert Turgeon 《Planta》1984,161(2):120-128
Mature leaves import limited amounts of nutrient when darkened for prolonged periods. We tested the hypothesis that import is restricted by the apoplast-phloem loading mechanism, ie., as sucrose exits the phloem of minor veins it is retrieved by the same tissue, thus depriving the mesophyll of nutrient. When single, attached, mature leaves of tobacco (Nicotiana tabacum L.) plants were darkened, starch disappeared from the mesophyll cells, indicating that the supply of solute to the mesophyll was limited. Starch was synthesized in mesophyll cells of darkened tissue when sucrose was applied to the apoplast at 0.1–0.3 mM concentration. Efflux from minor veins was studied by incubating leaf discs on [14C]sucrose to load the minor veins and then measuring subsequent 14C release. Efflux was rapid for the first hour and continued at a gradually decreasing rate for over 13 h. Net efflux increased when loading was inhibited by p-chloromercuribenzene-sulfonic acid, anoxia, isotope-trapping, or reduction of the pH gradient. Neither light nor potassium had a significant effect on the rate of labeled sucrose release. The site of labeled sucrose release was investigated by measuring efflux from discs in which sucrose had previously been loaded preferentially by either the minor veins or mesophyll cells. Efflux occurred primarily from minor veins.Abbreviations Mes 2(N-morpholino)ethanesulfonic acid - Mops 3(N-morpholino)propanesulfonic acid - PCMBS p-chloromercuribenzenesulfonic acid - SE-CC sieve element-companion cell complex  相似文献   

8.
Summary Aspects of osmoregulation were studied in leaves of irrigated and nonirrigated plants of Atriplex hymenelytra (Torr.) Wats. (Chenopodiaceae) from their natural habitat in Death Valley, California. Using a set of several data concentrations of inorganic electrolytes (Na+, K+, Cl-) and of oxalate in the mesophyll of this salt secreting species were calculated. The osmotic potential resulting from these solutes (under consideration of an empirically estimated osmotic coefficient) is in good agreement with field measurements of the overall osmotic potential in the leaf mesophyll as determined by pressure-volume curves. This indicates that these 4 electrolytes are the main osmotically active solutes. Oxalate is present in comparably high concentrations and is used to achieve ion balance.Organic solutes analyzed include soluble carbohydrates (mono-, di- and oligosaccharides), amino- and organic acids as well as glycinebetaine. Of these, organic- and amino acids (including proline) contribute only little to osmoregulation. Soluble carbohydrates and especially glycinebetaine exhibit concentrations high enough for generating considerable osmotic potentials, at least if these compounds are regarded to be restricted to the cytoplasm acting as compatible solutes.  相似文献   

9.
The spectral transmittance of isolated 'intact' upper and lower epidermes as well as the extractable UV-B-absorbing capacity of epidermes and mesophyll were studied in the leaves of exposed and deeply shaded, field-grown plants of Urginea maritima (L.) Baker. Epidermal transmittance in the visible part of the spectrum was high (>80%) in all cases. Transmittance in the UV-B (280-320 nm) was comparatively high (c. 14%) in both the upper and lower epidermes of shaded plants, but more than an order of magnitude lower in exposed plants, with the lowest values observed on the upper leaf epidermis. UV-B transmittance was negatively correlated with the methanol extractable UV-B-absorbing capacity of the epidermes, but was independent of epidermal thickness. The UV-B-absorbing capacity of the mesophyll, when expressed on an area basis, was not affected by exposure. However, it was significantly higher in shaded plants, when expressed on a dry mass basis. The results indicate that although the concentrations of the UV-B-absorbing components of the whole leaf or its epidermis fluctuate according to the site-dependent radiation stress, the opposite is evident for the mesophyll. Therefore, high irradiance in U. maritima, apart from inducing an increase in UV-B-absorbing compounds on a whole leaf basis, also caused a change in the distribution of these compounds between epidermis and mesophyll.  相似文献   

10.
Ultrastructural alterations in mesophyll cells as well as variations in bulk leaf endogenous ABA and IAA concentrations were studied in water-stressed field-grown plants of Fatsia japonica. Under water deficit cellular membranes were modified and an increase in vesicles was observed. The main damage to the chloroplasts included thylakoid swelling and disruption of the chloroplast envelope. Concomitant variations in abscisic acid and indole-3-acetic acid were observed. Despite the expected increased in endogenous ABA concentration in relation to water stress, after the highest concentration of ABA, observed at predawn in severely stressed plants (29-1), there was a sharp decline from 2768 pmol g fw–1 to 145 pmol g fw–1; thus in severely stressed plants ABA levels were not related to changes in bulk leaf ABA contents. Water stress did not influence the concentrations of indole-3-acetic acid, although the increase in the endogenous abscisic acid concentration could be related with the ultrastructural changes.Abbreviations ABA abscisic acid - IAA indole-3-acetic acid - leaf water potential  相似文献   

11.
Electron probe X-ray microanalysis was used to analyse the effects of sub-zero temperatures on K+ distribution in compartments within non-acclimated and cold acclimated rye (Secale cereale L. cv Voima) leaf cells and to evaluate membrane leakage of ions caused by freezing-injury. The specimens were rapidly frozen from growing temperatures and from two different sub-zero temperatures (LT50 and LT100) to which the leaves had already been slowly cooled. Measurements were made in the cytoplasm, vacuole and cell walls in freeze-substituted mesophyll cells. At ambient temperatures, the mean K+ concentration in the cytoplasm (100 mol m?3) differed significantly from that of the vacuole (49 mol m?3) in the non-acclimated (NA) cells, while in cold acclimated (A) cells, the concentrations were similar (109 vs 93 mol m?3, respectively). At LT50 temperatures, the K+ concentration in NA-cells decreased significantly in the cytoplasm (59 mol m?3) but increased in the cell walls. In the A-cells, on the other hand, the mean K+ concentration increased significantly (about three-fold) in all major compartments. At LT100 temperatures, K+ concentrations in the cytoplasm and cell walls decreased when compared with corresponding LT50 values in the A-cells but increased in the NA-cells. The increased potassium concentration in the cytoplasm of A-cells at LT50 temperature is compatible with the observed cell shrinkage and an absence of plasma membrane damage. The decreased potassium concentration in the cytoplasm of NA-cells at LT50 temperature is compatible with the slight cell shrinkage and suggests that the plasma membrane in these cells shows increased permeability due to freeze injury.  相似文献   

12.
The incorporation of 14C into sucrose and hexose phosphates during steady-state photosynthesis was examined in intact leaves of Zea mays L. plants. The compartmentation of sucrose synthesis between the bundle sheath and mesophyll cells was determined by the rapid fractionation of the mesophyll and comparison of the labelled sucrose in this compartment with that in a complete leaf after homogenisation. From these experiments it was concluded that the majority of sucrose synthesis occurred in the mesophyll cell type (almost 100% when the time-course of sucrose synthesis was extrapolated to the time of 14C-pulsing). The distribution of enzymes involved in sucrose synthesis between the two cell types indicated that sucrose-phosphate synthetase was predominantly located in the mesophyll, as was cytosolic (neutral) fructose-1,6-bisphosphatase activity. Stromal (alkaline) fructose-1,6-bisphosphatase activity was found almost exclusively in the bundle-sheath cells. No starch was found in the mesophyll tissue. These data indicate that in Zea mays starch and sucrose synthesis are spatially, separated with sucrose synthesis occurring in the mesophyll compartment and starch synthesis in the bundle sheath.  相似文献   

13.
Warren CR  Bleby T  Adams MA 《Oecologia》2007,154(1):1-10
Two of the ways in which plants cope with water deficits are stomatal closure and “osmotic adjustment”. We sought to assess the contributions of these processes to maintenance of leaf hydration in field-grown, 7-year-old Eucalyptus marginata. Plants were exposed to their normal summer drought (controls) or supplied with additional water (irrigated). Irrigation increased photosynthesis by 30% in E. marginata. These increases in photosynthesis were related to an 80% increase in g s. However, there was no difference in substomatal CO2 concentrations between treatments, or in chloroplast CO2 concentrations, as indicated by carbon isotope composition of leaf soluble sugars. This suggests that impaired mesophyll metabolism may partially explain slower rates of photosynthesis in plants exposed to their normal summer drought. There was no difference in concentrations of solutes or osmotic potential between non-irrigated and irrigated individuals, perhaps because relative water content was the same in non-irrigated and irrigated plants due to stomatal sensitivity to water deficits. Irrespective of the absence of osmotic adjustment, analysis of leaf solutes gave a clear indication of the major groups of compounds responsible for maintaining cell osmotic potential. Soluble sugars were three times as abundant as amino acids. Proline, a putatively osmotically active amino acid, contributed less than 1% of total solutes. These patterns of solutes in E. marginata are consistent with a growing body of literature arguing a greater role for carbohydrates and cyclitols and lesser role for amino acids in maintaining osmotic potential. Our data suggest the primary mechanism by which E. marginata coped with drought was partial stomatal closure; however, we cannot discount the possibility of osmotic adjustment under more severe water deficits.  相似文献   

14.
The role of cytokinins in the development of mesophyll structure was studied in developing pumpkin Cucurbita pepo L. leaves. Leaves were treated with cytokinins at different stages of growth: when they reached 25 or 50% of their final size (S max), immediately after leaf growth ceased, and during senescence. At the early stages of leaf development, treatment with exogenous benzyladenine accelerated division of mesophyll cells. At the later stages of development, BA treatment activated expansion of growing cells and those, which have just accomplished their growth. The exogenous cytokinin did not affect the senescent leaf cells. The content of endogenous cytokinins changed during mesophyll development. The juvenile leaves (25% of S max) were characterized by low level of these phytohormones. In the expanding leaves (50% of S max), the content of phytohormones increased and decreased when leaf growth ceased. In the senescent leaves, the cytokinin content decreased markedly. It was concluded that the response of mesophyll cells to cytokinin depended on the cell growth phase at the moment of hormone action. Furthermore, in the young leaves, lower cytokinin concentrations were required for division of mesophyll cells in vivo than for cell expansion at the final stage of leaf development.  相似文献   

15.
The effects of a range of salinity (0, 100, 200 and 400 mM NaCl) on growth, ion accumulation, photosynthesis and anatomical changes of leaves were studied in the mangrove, Bruguiera parviflora of the family Rhizophoraceae under hydroponically cultured conditions. The growth rates measured in terms of plant height, fresh and dry weight and leaf area were maximal in culture treated with 100 mM NaCl and decreased at higher concentrations. A significant increase of Na+ content of leaves from 46.01 mmol m-2 in the absence of NaCl to 140.55 mmol m-2 in plants treated with 400 mM NaCl was recorded. The corresponding Cl- contents were 26.92 mmol m-2 and 97.89 mmol m-2. There was no significant alteration of the endogenous level of K+ and Fe2+ in leaves. A drop of Ca2+ and Mg2+ content of leaves upon salt accumulation suggests increasing membrane stability and decreased chlorophyll content respectively. Total chlorophyll content decreased from 83.44 g cm-2 in untreated plants to 46.56 g cm-2 in plants treated with 400 mM NaCl, suggesting that NaCl has a limiting effect on photochemistry that ultimately affects photosynthesis by inhibiting chlorophyll synthesis (ca. 50% loss in chlorophyll). Light-saturated rates of photosynthesis decreased by 22% in plants treated with 400 mM NaCl compared with untreated plants. Both mesophyll and stomatal conductance by CO2 diffusion decreased linearly in leaves with increasing salt concentration. Stomatal and mesophyll conductance decreased by 49% and 52% respectively after 45 days in 400 mM NaCl compared with conductance in the absence of NaCl. Scanning electron microscope study revealed a decreased stomatal pore area (63%) in plants treated with 400 mM NaCl compared with untreated plants, which might be responsible for decreased stomatal conductance. Epidermal and mesophyll thickness and intercellular spaces decreased significantly in leaves after treatment with 400 mM NaCl compared with untreated leaves. These changes in mesophyll anatomy might have accounted for the decreased mesophyll conductance. We conclude that high salinity reduces photosynthesis in leaves of B. parviflora, primarily by reducing diffusion of CO2 to the chloroplast, both by stomatal closure and by changes in mesophyll structure, which decreased the conductance to CO2 within the leaf, as well as by affecting the photochemistry of the leaves.  相似文献   

16.
Rengifo  E.  Urich  R.  Herrera  A. 《Photosynthetica》2002,40(3):397-403
In order to address the question of how elevated CO2 concentration (EC) will affect the water relations and leaf anatomy of tropical species, plants of Jatropha gossypifolia L. and Alternanthera crucis (Moq.) Bondingh were grown in five EC open top chambers (677 mol mol–1) and five ambient CO2 concentration (AC) open top chambers (454 mol mol–1) with seasonal drought. No effect of EC was found on morning xylem water potential, leaf osmotic potential, and pressure potential of plants of J. gossypifolia. In A. crucis EC caused a significant increase in morning xylem water potential of watered plants, a decrease in osmotic potential, and an increase of 24–79 % in pressure potential of moderately droughted plants. This ameliorated the effects of drought. Stomatal characteristics of both leaf surfaces of J. gossypifolia and A. crucis showed time-dependent, but not [CO2]-dependent changes. In J. gossypifolia the thickness of whole leaf, palisade parenchyma, and spongy parenchyma, and the proportion of whole leaf thickness contributed by these parenchymata decreased significantly in response to EC. In A. crucis EC caused an increase in thickness of whole leaf, bundle sheath, and mesophyll, while the proportion of leaf cross-section comprised by the parenchymata remained unchanged. These effects disappeared with time under treatment, suggesting that acclimation of the leaf anatomy to the chambers and to EC took place in the successive flushes of leaves produced during the experiment.  相似文献   

17.
Abstract Pitcairnia integrifolia is endemic to northern Trinidad and the Paria peninsula of Venezuela and is the only member of the bromeliad-subfamily Pitcairnioideae in Trinidad. It is terrestrial with roots fully functional in water and solute uptake, grows on exposed steep rocky cliffs and can occur just above the spill zone of sea waves under continuous sea spray. Thus, it can be subject both to water stress, particularly during the dry season, and to salt stress. Gas exchange of P. integrifolia leaves was measured on a clear day in Trinidad. Uptake of CO2 and leaf conductance to diffusion of water vapour had two peaks during the light period, a larger one in the early morning and a smaller one in the late afternoon, which were separated by an extended midday depression of gas exchange. CO2 partial pressure in the leaf air-spaces increased during the midday depression. Leaf temperatures reached a maximum of 51.6°C and leaf-air water-vapour-concentration differences were also very high during the midday depression, when quantum fluxes were up to 2 mmol m?2 s?1 and higher. The midday depression is considered as a functional adaptation to temporary water stress. Although P. integrifolia is subject to sea-spray, an internal osmotic pressure of only 0.91 MPa indicated that NaCl is not accumulated. Leaf epidermis cells are thick-walled and have a prominent cuticle. The abaxial leaf surface with the trichomes is not wettable, and the trichomes apparently do not function in water and solute uptake. They cover the stomata densely and may create a favourable microenvironment around them. They also have a high reflectance. This does not prevent overheating of the leaves, but does reduce the photosynthetically active radiation penetrating to the mesophyll. The trichomes may thus contribute to the prevention of photoinhibition at high incident quantum flux.  相似文献   

18.
The aim of this study was to investigate whether the root system of Mesembryanthemum crystallinum (L.) plays a role in triggering the induction of crassulacean acid metabolism (CAM) during water stress. Depriving well-irrigated plants of water, by allowing the soil surrounding the roots to dry, caused increased daily losses in leaf relative water content (RVVC) and mesophyll cell turgor pressure. The RWC of the roots also declined. Subsequently plants exhibited physiological characteristics of CAM photosynthesis (i.e. diurnal fluctuations in leaf titratable acidity and nocturnal net CO2 fixation). When the root system of plants was divided equally between two soil compartments and one half deprived of water, plants exhibited physiological characteristics of CAM without prior changes in leaf RWC content or mesophyll cell turgor pressure. Only the RWC of the water-stressed portion of the roots was reduced. These data suggest that in water-stressed plants daily changes in leaf water relations greater than those observed in well-irrigated plants, are not essential to trigger CAM expression. It is probable that a reduction in soil water availability can be perceived by the roots of M. crystallinum and that this information is conveyed to the leaves triggering the transition from C3 to CAM photosynthesis.  相似文献   

19.
Bunce  J.A.  Sicher  R.C. 《Photosynthetica》2001,39(1):95-101
Midday measurements of single leaf gas exchange rates of upper canopy leaves of soybeans grown in the field at 350 (AC) and 700 (EC) µmol(CO2) mol–1 in open topped chambers sometimes indicated up to 50 % higher net photosynthetic rates (P N) measured at EC in plants grown at AC compared to EC. On other days mean P N were nearly identical in the two growth [CO2] treatments. There was no seasonal pattern to the variable photosynthetic responses of soybean to growth [CO2]. Even on days with significantly lower P N in the plants grown at EC, there was no reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase, chlorophyll, or soluble protein contents per unit of leaf area. Over three years, gas exchange evidence of acclimation occurred on days when either soil was dry or the water vapor pressure deficit was high (n = 12 d) and did not occur on days after rain or on days with low water vapor pressure deficit (n = 9 d). On days when photosynthetic acclimation was evident, midday leaf water potentials were consistently 0.2 to 0.3 MPa lower for the plants grown at EC than at AC. This suggested that greater susceptibility to water stress in plants grown at EC cause the apparent photosynthetic acclimation. In other experiments, plants were grown in well-watered pots in field chambers and removed to the laboratory early in the morning for gas exchange measurements. In these experiments, the amount of photosynthetic acclimation evident in the gas exchange measurements increased with the maximum water vapor pressure deficit on the day prior to the measurements, indicating a lag in the recovery of photosynthesis from water stress. The apparent increase in susceptibility to water stress in soybean plants grown at EC is opposite to that observed in some other species, where photosynthetic acclimation was evident under wet but not dry conditions, and may be related to the observation that hydraulic conductance is reduced in soybeans when grown at EC. The day-to-day variation in photosynthetic acclimation observed here may account for some of the conflicting results in the literature concerning the existence of acclimation to EC in field-grown plants.  相似文献   

20.
In a previous study, important acclimation to water stress was observed in the Ramellet tomato cultivar (TR) from the Balearic Islands, related to an increase in the water‐use efficiency through modifications in both stomatal (gs) and mesophyll conductances (gm). In the present work, the comparison of physiological and morphological traits between TR accessions grown with and without water stress confirmed that variability in the photosynthetic capacity was mostly explained by differences in the diffusion of CO2 through stomata and leaf mesophyll. Maximization of gm under both treatments was mainly achieved through adjustments in the mesophyll thickness and porosity and the surface area of chloroplasts exposed to intercellular airspace (Sc). In addition, the lower gm/Sc ratio for a given porosity in drought‐acclimated plants suggests that the decrease in gm was due to an increased cell wall thickness. Stomatal conductance was also affected by drought‐associated changes in the morphological properties of stomata, in an accession and treatment‐dependent manner. The results confirm the presence of advantageous physiological traits in the response to drought stress in Mediterranean accessions of tomato, and relate them to particular changes in the leaf anatomical properties, suggesting specific adaptive processes operating at the leaf anatomical level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号