首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthetic antiglucocorticoid RU 38486 interacts with cardiac cytoplasmic glucocorticoid receptors and competes for in vitro binding with the potent agonist triamcinolone acetonide. In addition to binding to receptors with high affinity, RU 38486 also facilitates the in vitro conformational change in the receptor which is a consequence of the physiologically relevant activation step during which the receptor is converted from a non DNA- to a DNA-binding form. This ability of RU 38486 to promote receptor activation is reflected by both the appropriate shift in the elution profile of [3H]RU 38486-receptor complexes from DEAE-cellulose as well as by an increased binding of these complexes to DNA-cellulose. Although less effective than triamcinolone acetonide, RU 38486 promotes in vitro receptor activation under a variety of experimental conditions, including incubation of labeled cardiac cytosols at 25°C for 30 min or at 15°C for 30 min in the presence of 5 mM pyridoxal 5′-phosphate. Once thermally activated, the cardiac [3H]triamcinolone acetonide and [3H]RU 38486-receptor complexes bind to nonspecific DNA-cellulose with the same relative affinities, as evidenced by the fact that 50% of both activated complexes are eluted at approx. 215–250 mM NaCl. Thus, this pure antiglucocorticoid does promote, at least to some extent, many of the crucial in vitro events including high-affinity binding, activation, and DNA binding which have been shown to be required to elicit a physiological response in vivo.  相似文献   

2.
The data reported here demonstrate that the synthetic steroid RU 38486 functions as an optimal antagonist in the glucocorticoid-sensitive human leukemic cell line CEM-C7. This steroid blocks the ability of the potent agonist triamcinolone acetonide (TA) to induce glutamine synthetase activity and to ultimately cause cell lysis, but when given alone does not exhibit partial agonist activity. Both [3H]RU 38486 and [3H]TA bind with high affinity and specificity to cytosolic glucocorticoid receptors in this cell line. However, under a variety of in vitro conditions (elevated temperature and presence of exogenous ATP), [3H]TA promotes receptor activation more effectively than [3H]RU 38486. This difference in the extent of activation was verified by two independent techniques: DEAE-cellulose chromatography and DNA-cellulose binding. [3H]RU 38486 and [3H]TA dissociate at the same rate from the unactivated receptors but at 25 degrees C (not 0 degree C) [3H]RU 38486 dissociates slightly more rapidly from the activated receptors. The defective receptors in the glucocorticoid-resistant subclone 3R7 appear to be "activation labile" (rapid dissociation of ligand from activated form) using either tritiated steroid. Once activated in vivo, the CEM-C7 [3H]TA- and [3H]RU 38486-receptor complexes undergo similar nuclear translocation and those activated complexes generated in vitro appear to bind to nonspecific DNA-cellulose with the same relative affinities. Thus the precise mechanism(s) by which RU 38486 exerts its potent antiglucocorticoid effect in this human cell line cannot be easily explained in terms of a defect in one of the crucial steps (specific high affinity binding, activation, translocation, DNA binding) required to elicit a physiological response. However, the data presented here do suggest that when comparing an antagonist and agonist which both bind to receptors with the same relative high affinity, the agonist may be more effective in facilitating the conformational change associated with in vitro activation.  相似文献   

3.
In order to explain the potent antiglucocorticoid activity of RU 38486 and the absence of agonist effect in spite of its very strong interaction with the cytoplasmic glucocorticoid receptor (GR), we investigated the compound's ability to promote GR “activation” and nuclear translocation. We have compared the dissociation-rates of the “non-activated” (molybdate stabilized) and of the “activated” (25°C pre-heated) GR complexes formed either with [3H]RU 38486 or with different tritiated glucocorticoid agonists. While agonists dissociated more slowly from the “activated” than from the “non-activated” complex, RU 38486 dissociated much faster from the “activated” than from the “native” receptor. This difference of activation was confirmed in a DNA-cellulose binding assay. The affinity of the “activated” RU 38486-GR complex for DNA was much lower than that of the dexamethasone-GR complex. Finally, the in vitro nuclear uptake of [3H]RU 38486 was compared with that of [3H]dexamethasone after incubation with thymus minces at 25 or 37°C. A very weak or nearly undetectable level of specific uptake of [3H]RU 38486 was observed in purified nuclei, whatever the concentration or the time of incubation used. These observations suggest that while glucocorticoid agonists form with the non-activated receptor a complex able to be activated into a more stable form (lower k−1), RU 38486 interacts strongly with the non-activated receptor (impeding the binding of DM) but the complex is “transformed” by heat to a less stable form (higher k−1), unable to translocate properly into the nucleus in order to trigger a glucocorticoid response.  相似文献   

4.
Cortexolone functions as an antiglucocorticoid in the human leukemic cell line CEM-C7, since it blocks the growth inhibition and cell lysis mediated by the potent agonist triamcinolone acetonide (TA). At high concentrations (10(-5) M) cortexolone alone is inactive. The ability of cortexolone to block the TA-mediated biological effects is reflected in its ability (1000-fold molar excess) to effectively block the binding of [3H]TA to the cytoplasmic unactivated form of the receptors eluted from DEAE-cellulose at approx. 180 mM potassium phosphate (KP). Likewise a 1000-fold molar excess of TA inhibits the specific binding of [3H]cortexolone to the unactivated receptors and to a peak which elutes at low salt concentration (35 mM KP) but does not appear to represent activated [3H]cortexolone-receptor complexes. Thermal activation/transformation (25 degrees C for 30 min +/- 10 mM ATP) of the [3H]TA-receptor complexes significantly enhances the subsequent DNA-cellulose binding capacity of these complexes and also results in their elution from DEAE-cellulose at the low salt (50 mM KP) activated position. In contrast, exposure of the cytoplasmic [3H]cortexolone-receptor complexes to identical in vitro activating (transforming) conditions fails to enhance subsequent DNA-cellulose binding capacity or to result in the appropriate shift in DEAE-cellulose elution profile. This inability of [3H]cortexolone to facilitate activation/transformation of receptors was also verified using cytosol prepared from the glucocorticoid-resistant 'activation-labile' mutant, 3R7. Taken collectively the data suggest that cortexolone, unlike an agonist such as TA, fails to promote in vitro activation/transformation, a conformational change which also occurs in vivo under physiological conditions and is a prerequisite for nuclear binding.  相似文献   

5.
The physicochemical properties of complexes formed between the glucocorticoid antagonist, RU38486, and the glucocorticoid receptor in rat thymus cytosol were investigated and compared with those of complexes formed with the potent agonist, triamcinolone acetonide. The equilibrium dissociation constant for the interaction of [3H]RU38486 with the molybdate-stabilized glucocorticoid receptor was lower than that for [1,2,4-3H]triamcinolone acetonide at 0 degree C but higher at 25 degrees C, suggesting that hydrophobic interactions play a major role in the binding of RU38486. Differences in equilibrium constants were reflected in corresponding differences in dissociation rate constants; association rate constants for the two steroids were similar. The rate of dissociation of [3H]RU38486 from the glucocorticoid receptor was higher in the absence of molybdate than in its presence both at 0 degree C and at 25 degrees C, suggesting that molybdate modifies the physical state of the antagonist-receptor complex, but other physical properties were similar both in the presence and in the absence of molybdate. The rate of inactivation of the unoccupied glucocorticoid receptor at 25 degrees C in the absence of molybdate was lower in phosphate buffer than in Tris-HCl buffer but the rate of dissociation of [3H]RU38486 was the same in both buffers. The binding of RU38486 afforded little, if any, protection against inactivation in either buffer; [3H]RU38486 dissociated irreversibly from the inactivated receptor at the same rate as from the non-inactivated complex but molybdate had no effect on the dissociation kinetics of the inactivated complex. It is concluded that RU38486 interacts with the ground state of the glucocorticoid receptor in a manner which neither promotes receptor transformation nor prevents receptor inactivation.  相似文献   

6.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The possible reversibility of pH induced activation of the glucocorticoid-receptor complex was studied. Generally, this was accomplished by activating rat liver cytosol at pH 8.5 (15 degrees C, 30 min), and then returning it to pH 6.5 for a second incubation (15 degrees C, 30 min). Activation was quantitated by measuring the binding of [3H]triamcinolone acetonide [( 3H]TA)-receptor complexes to DNA-cellulose. When cytosol was incubated at pH 6.5, only 4.1% of the [3H]TA-receptor complexes bound to DNA-cellulose. However, 39.2% of the complexes bound when the cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 47.0% of the steroid-receptor complexes bound. Thus, according to the DNA-cellulose binding assay, pH induced activation was irreversible. In order to visualize both activated and unactivated [3H]TA-receptor complexes during this process, diethylaminoethyl (DEAE)-cellulose chromatography was performed. When cytosol was incubated at pH 6.5, only 19.6% of the [3H]TA-receptor complexes were eluted in the activated form from DEAE-cellulose. However, 67.5% of the complexes were eluted in the activated form when cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 74.9% of the steroid-receptor complexes were eluted in the activated form. Thus, DEAE-cellulose chromatography also showed that pH induced activation was irreversible. This is the first known report that the combination of DNA-cellulose binding and DEAE-cellulose chromatography have been used to study pH induced activation of the glucocorticoid-receptor complex. By these criteria, we conclude that in vitro pH induced activation is irreversible.  相似文献   

8.
The activation by salt or ATP of [3H]estradiol- and [3H]H1285-receptor complexes from rabbit uterus and their binding capacity to DNA-cellulose, phosphocellulose and ATP-Sepharose has been studied. The estrogen-receptor was prepared in 1 mM molybdate which stabilized the receptor; but both salt- and ATP-transformation of estrogen receptors occurred. The binding of molybdate-stabilized cytosol [3H]estradiol-receptor complexes to the various resins revealed that salt-activation by 0.3 M KCl caused the greatest binding (5-6-fold) to DNA-cellulose as compared to other resins. However, 5 mM ATP-dependent activation of receptor-complexes resulted in preferential binding to ATP-Sepharose. Activated cytosol [3H]H1285-receptor complexes bound all the resins to a lesser degree when compared to [3H]estradiol-receptor complexes. Partially purified receptor complexes also showed different resin-binding patterns for salt- and ATP-mediated activation. These findings suggest that salt-activation is different than ATP-activation. Further, the differential magnitude of [3H]estradiol- and [3H]H1285-receptor activation suggests that estrogen-receptor complexes are "fully" activated as compared to "partially" activated antiestrogen-receptor complexes.  相似文献   

9.
Rat-liver glucocorticoid receptor was incubated with either [3H]triamcinolone acetonide or [3H]RU 486, a well known antiglucocorticoid. Once formed, the steroid-receptor complexes were analyzed by isoelectric focusing in agarose gel slabs. A careful slicing of the receptor tracks revealed the presence of three distinct radioactive peaks focused at the following pI values: 5.3 +/- 0.2 (n = 17) and 4.4 +/- 0.1 (n = 17). All these peaks correspond with receptor isoforms as suggested by control experiments. The receptor state was analyzed after focusing by a chromatographic assay on DNA-cellulose, DEAE-trisacryl and hydroxyapatite minicolumns. The peak of pI 4.4 apparently corresponded to the non-transformed receptor and was greatly stabilized in the presence of RU 486, whereas the peaks of pI 4.8 and 5.3 were probably made of transformed receptor and meroreceptor. These results were confirmed by autoradiographic studies after isoelectric focusing of receptor molecules covalently labelled with [3H]dexamethasone mesylate. Thus, the rat-liver glucocorticoid receptor appeared to be a rather acidic protein which became less acidic after transformation by heat, displaying a pI shift which was strongly reduced in case of steroid-receptor complexes formed with the antiglucocorticoid RU 486.  相似文献   

10.
The kinetics of steroid binding to rat liver glucocorticoid receptor (GR) and receptor denaturation were dependent upon the nature of the molecule occupying GR. Both the agonist [triamcinolone acetonide (TA)] and the antagonist (Ru38486) however competed for the same saturable binding site. Despite opposing physiological action, both steroid analogues permitted receptor activation as evident by binding to DNA-cellulose and 9S to 4S shift on sucrose gradient sedimentation. It therefore seems necessary to reevaluate a current notion that antagonist action of RU38486 in rat liver is a result of impaired receptor activation.  相似文献   

11.
We employed RU 38486, a potent and selective antiglucocorticoid, to study a possible role for endogenous glucocorticoids in atrophy of the levator ani muscle secondary to castration of male rats. RU 38486 was shown to block [3H]triamcinolone acetonide binding to cytosol from levator ani muscle. Daily oral administration of RU 38486 to castrated rats partially prevented atrophy of the levator ani muscle, as well as a decrease in RNA concentration. In a control group receiving RU 38486 alone, the levator ani underwent significant (20%) hypertrophy. Administration of exogenous dexamethasone also caused pronounced atrophy of the levator ani muscle. This atrophy was prevented, to a significant degree, by simultaneous oral administration of RU 38486. It is concluded that endogenous glucocorticoids, the actions of which are blocked by RU 38486, may be involved in regulation of the mass of the levator ani muscle in intact rats.  相似文献   

12.
The relationship between glucocorticoid receptor subunit dissociation and activation was investigated by DEAE-cellulose and DNA-cellulose chromatography of monomeric and multimeric [3H]triamcinolone acetonide ([3H]TA)-labeled IM-9 cell glucocorticoid receptors. Multimeric (7-8 nm) and monomeric (5-6 nm) complexes were isolated by Sephacryl S-300 chromatography. Multimeric complexes did not bind to DNA-cellulose and eluted from DEAE-cellulose at a salt concentration (0.2 M KCl) characteristic of unactivated steroid-receptor complexes. Monomeric [3H]TA-receptor complexes eluted from DEAE-cellulose at a salt concentration (20 mM KCl) characteristic of activated steroid-receptor complexes. However, only half of these complexes bound to DNA-cellulose. This proportion could not be increased by heat treatment, addition of bovine serum albumin, or incubation with RNase A. Incubation of monomeric complexes with heat inactivated cytosol resulted in a 2-fold increase in DNA-cellulose binding. Unlike receptor dissociation, this increase was not inhibited by the presence of sodium molybdate. Fractionation of heat inactivated cytosol by Sephadex G-25 chromatography demonstrated that the activity responsible for the increased DNA binding of monomeric [3H]TA-receptor complexes was macromolecular. These results are consistent with a two-step model for glucocorticoid receptor activation, in which subunit dissociation is a necessary but insufficient condition for complete activation. They also indicate that conversion of the steroid-receptor complex to the low-salt eluting form is a reflection of receptor dissociation but not necessarily acquisition of DNA-binding activity.  相似文献   

13.
Thermal "activation" or "transformation" of rat hepatic [6,7-3H]triamcinolone acetonide (TA)-receptor complexes purified in the unactivated state to near homogeneity (Grandics, P., Miller, A., Schmidt, T. J., Mittman, D., and Litwack, G. (1984) J. Biol. Chem. 259, 3173-3180) has been further investigated. The data generated in reconstitution experiments demonstrate that warming (25 degrees C for 30 min) of the purified unactivated complexes promotes their activation as judged by an increase in DNA-cellulose binding, but to a lower extent than that observed after warming of glucocorticoid-receptor complexes in crude cytosols. However, maximal DNA-cellulose binding capacity can be detected in reconstituted systems (also heated at 25 degrees C for 30 min) consisting of purified unactivated [3H]TA-receptor complexes and a cytoplasmic "stimulator(s)." This cytoplasmic factor(s), which does not copurify with the receptor, is heat-stable (90 degrees C for 30 min), excluded from Sephadex G-25, and trypsin-sensitive and stimulates DNA-cellulose binding in a dose-dependent manner. The ability of Na2MoO4 to block thermal activation of the highly purified receptor complexes suggests that this transition metal anion interacts directly with the receptor protein itself. The fact that the cytoplasmic stimulator(s) enhances DNA-cellulose binding of the [3H]TA-receptor complexes without increasing the proportion of those complexes eluted in the activated (low salt) position from DEAE-cellulose is consistent with a proposed two-step model of in vitro activation. During the Na2MoO4-sensitive Step 1, elevated temperature (25 degrees C for 30 min) may directly alter the conformation of the purified receptor complexes (i.e. subunit dissociation or disaggregation), resulting in the appropriate shift in the elution profile of the [3H]TA-receptor complexes on DEAE-cellulose but only in a minimal (approximately 2-3-fold) increase in the binding of these complexes to DNA-cellulose. During the Na2MoO4-insensitive and temperature-independent Step 2, a heat-stable cytoplasmic protein(s) may interact with these thermally activated [3H]TA-receptor complexes and enhance their ability to bind to DNA-cellulose without further increasing the percentage of those complexes which elute from DEAE-cellulose in the activated position. In crude cytosols these two steps would presumably occur simultaneously, and addition of Na2MoO4 prior to warming would block Step 1 and hence Step 2 would not occur.  相似文献   

14.
RU486 is a recently described antiprogesterone. In order to be able to understand its mechanism of action it is necessary to analyze its effect on a discrete gene product. We show here that the induction of uteroglobin mRNA by progesterone in the rabbit endometrium may be a suitable model for such studies since RU486 totally inhibits this effect without itself exerting any agonistic activity. Moreover, RU486, which does not bind to the estrogen receptor and is devoid of general antiestrogenic activity, partially inhibits the induction by estradiol of uteroglobin mRNA. Studies of the interaction between [3H]RU486 and the progesterone receptor have been undertaken with the aim of understanding the antagonistic effect of this compound. The binding to DNA-cellulose of heat-activated [3H]RU486-receptor complexes was slightly decreased (37%) when compared with that of the agonist [3H]R5020-receptor complexes (47%). Detailed analysis of this difference showed that it was due to both a decreased activation of complexes and to a diminished affinity of activated complexes towards DNA. The change in activation was shown by the fact that at high concentrations of DNA, where all activated complexes are bound, agonist-receptor complexes were bound to DNA in higher proportion than antagonist-receptor complexes. Moreover a difference was also observed when studying the binding of agonist-receptor and antagonist-receptor complexes to charged resins (phosphocellulose, DEAE-cellulose) which are known to discriminate between activated and non-activated complexes. Decreased affinity to DNA of antagonist-receptor complexes was shown by studying their binding at various concentrations of DNA, either in crude cytosol or after isolating a homogenous population of activated-receptor complexes by DNA-cellulose chromatography and by comparing the salt extraction from DNA-cellulose of agonist-receptor and antagonist-receptor complexes. Both effects (decreased activation and diminished affinity towards DNA) were relatively moderate and could account only for a small decrease in the agonistic activity of RU486. Thus, the fact that this compound is a complete antagonist without any agonistic activity can only be explained by a defect in some further step of hormone action as, for instance in the specific interaction with the regulatory regions of the uteroglobin gene. No immunological difference could be detected between [3H]R5020-receptor and [3H]RU486-receptor complexes, both interacted with the five monoclonal antibodies raised against purified R5020-receptor complexes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The cytosolic glucocorticoid receptor of 21st gestational day rat epiphyseal chondrocytes has been evaluated. The receptor, a single class of glucocorticoid binding component approached saturation, utilizing [3H]triamcinolone acetonide ([3H]TA) as the radiolabeled ligand, at approximately 1.8-2.0 x 10(-8) M. The dissociation constant (Kd) reflected high-affinity binding, equaling 4.0 +/- 1.43 x 10(-9) M (n = 7) for [3H]TA. The concentration of receptor estimated from Scatchard analysis was approximately 250 fmol/mg cytosolic protein and when calculated on a sites/cell basis equalled 5800 sites/cell. The relative binding affinities of steroid for receptor were found to be triamcinolone acetonide greater than corticosterone greater than hydrocortisone greater than progesterone greater than medroxyprogesterone acetate much greater than 17 alpha-hydroxyprogesterone much greater than testosterone greater than 17 beta-estradiol. Cytosolic preparations activated in vitro by warming (25 degrees C for 20 min) were shown to exhibit an increased affinity for DNA-cellulose. 46% of the total specifically bound activated ligand-receptor complex was bound to DNA-cellulose. Cytosol maintained at 0-4 degrees C in the presence of 10 mM molybdate or activated in vitro in the presence of molybdate, bound to DNA-cellulose at 8 and 10% respectively. DEAE-Sephadex elution profiles of the nonactivated receptor were indicative of a single binding moiety which eluted from the columns at 0.4 M KCl. Elution profiles of activated receptor were suggestive of an activation induced receptor lability. The 0.4 M KCl peak was diminished, while a concomitant increase in the 0.2 M KCl peak was only modestly discernible. Evaluation of endogenous proteolytic activity in chondrocyte cytosol using [methyl-14C]casein as substrate show a temperature-dependent proteolytic activity with a pH optimum of 5.9-6.65. The proteolytic activity was susceptible to heat inactivation and was inhibitable, by 20 mM EDTA. The sedimentation coefficient of the nonactivated receptor was 9.3s (n = 6) on sucrose density gradients and exhibited steroid specificity and a resistance to activation induced molecular alterations when incubated in the presence of 10 mM molybdate. Receptor activation in vitro, in the absence of molybdate induced an increased receptor susceptibility to proteolytic attack and/or enhanced ligand receptor dissociation as evidenced by a diminution of the 9.3s binding form without a concomitant increase in 5s or 3s receptor fragments.  相似文献   

16.
Dexamethasone inhibitory action on the release of adrenocorticotrophin has been studied using in vitro anterior pituitary preparations. This inhibition is reversed when the animal is given the antiglucocorticoid compound RU38486 simultaneously with dexamethasone. RU38486 acts at the receptor level and in the cytosolic binding study, it competes with [3H]dexamethasone for the binding sites in pituitary. Such competition is even more pronounced in hypothalamus and hippocampus, indicating that RU38486 also exert its antagonistic action at these sites.  相似文献   

17.
Steroid receptor antagonists are important biochemical probes for understanding the mode of steroid hormone action. We have studied the interaction between rat liver glucocorticoid receptor and a newly synthesized antisteroid ZK98299 (13-antigestagen; [11-beta-(4-dimethylaminophenyl)-17a-hydroxy-17 beta-(3- hydroxypropyl)-13 alpha-methyl-4,9-gonadien-3-one]). Glucocorticoid receptor from freshly prepared hepatic cytosol bound [3H]ZK98299 with affinity approximately equal to that of [3H]triamcinolone acetonide. The binding of both steroids reached a maximum at 4 h at 0 degrees C. Both ligands were able to compete for the steroid binding site but progesterone, estradiol and dihydrotestosterone (DHT) failed to compete for the [3H]ZK98299 and [3H]triamcinolone acetonide binding. While [3H]ZK98299 binding to glucocorticoid receptor could occur in the presence of iodoacetamide and N-ethylmaleimide (NEM), [3H]triamcinolone acetonide binding capacity was completely abolished following such treatments. The [3H]ZK98299-receptor complexes sedimented as 9 S and 4 S molecules under control (4 degrees C) and receptor transforming (23 degrees C) conditions, and exhibited a faster rate of dissociation at 23 degrees C when compared with [3H]triamcinolone acetonide-receptor complexes. These results indicate that ZK98299 interacts with hepatic glucocorticoid receptor. The differential effects of iodoacetamide and NEM on the interaction of glucocorticoid receptor with ZK98299 and triamcinolone acetonide, and the faster rate of dissociation of [3H]ZK98299-receptor complexes suggest that treatment with these agents (NEM and iodoacetamide) results in distinct conformational changes in glucocorticoid receptor structure with respect to triamcinolone acetonide and ZK98299 binding. Alternatively, ZK98299 may be interacting with a site which is distinct from one which accepts triamcinolone acetonide.  相似文献   

18.
Neoplastic epithelial duct cell line from human salivary gland (HSG cell) contained cytosol glucocorticoid receptor. Scatchard analysis of cytosol indicated that the dissociation constant (Kd) was 5.6-6.5 nmol/l and the number of binding sites was 83-92 fmol/mg protein. A competitive assay showed that the binding sites for [3H]triamcinolone acetonide were specific to glucocorticoid. Glycerol density gradient centrifugation displayed that the [3H]triamcinolone acetonide receptor complexes sedimented in the 8.5 S region under low salt conditions and in the 4.2 S region under high salt condition (0.4 M KCl). The same high salt conditions induced an increased binding of [3H]triamcinolone acetonide complexes for DNA-cellulose.  相似文献   

19.
The activity of RU38486 has been studied in Burkitt's lymphoma cells which are Epstein-Barr virus (EBV) positive. The early antigens (EA) of the virus are induced by dexamethasone (DXM) in Daudi but not in Raji cells, whereas a growth factor (transforming growth factor-beta, TGF-beta) induces the EA in both cell lines. RU38486 blocks the EA induction obtained by DXM or by TGF-beta in either cell line. In order to understand the interaction of RU38486, we considered its binding to specific receptors. We first investigated the binding of the antagonist in whole cells at 22 degrees C. A number of specific binding sites higher for RU38486 than for DXM was found, suggesting that RU38486 may bind to the glucocorticoid receptor and also to other cellular structures which we called the antiglucocorticoid binding sites ("AGBS"). To support this hypothesis, competition experiments have been conducted between RU38486 and other steroid hormones (progesterone and testosterone) since it is known that RU38486 is also able to interact with their cognate receptors. Binding studies of RU38486 in vitro at 4 degrees C in the presence of cytosolic extracts from Daudi and Raji cells led to conclusions similar to those drawn from the whole cell experiments: more complexes were formed with RU38486 than with DXM. Finally, the steroid-receptor complexes were incubated with DNA-cellulose. Since the binding measured for RU38486 was higher than for DXM, we suspect that sites different from the classical glucocorticoid receptor sites are also able to interact with DNA. The blockage exerted by RU38486 on the EA induced by glucocorticoids or by non-steroidal molecules and the lack of responsiveness to glucocorticoids in Raji cells are discussed in the light of the present findings.  相似文献   

20.
Glucocorticoid-receptor complex from rat liver cytosol, activated by warming at 23°C or fractionation with (NH4)2SO4, was adsorbed over DNA-cellulose. This DNA-cellulose-bound [3H]triamcinolone acetonide-receptor complex was extracted in a dose-dependent manner by incubation with different concentrations of sodium tungstate. A 50% recovery of receptor was achieved with 5 mM sodium tungstate. Almost the entire glucocorticoid-receptor complex bound to DNA-cellulose could be extracted with 20 mM sodium tungstate. The [3H]triamcinolone acetonide released from DNA-cellulose following tungstate and molybdate treatment was found to be associated with a macromolecule, as seen by analysis on a Sephadex G-75 column. The glucocorticoid-receptor complex extracted by both the compounds sedimented as a 4 S entity of 5–20% sucrose gradients under low- and high-salt conditions. Addition of tungstate or molybdate to the preparations containing activated receptor had no effect on the sedimentation rate of receptor. However, addition of tungstate to non-activated receptor preparation caused aggregates of larger size. The tungstate-extracted glucocorticoid-receptor complex failed to rebind to DNA-cellulose even after extensive dialysis, whereas receptor in molybdate-extract retained its DNA-cellulose binding capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号