首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis that respiratory reflexes, such as cough, reflect the net and often opposing effects of activation of multiple afferent nerve subpopulations throughout the airways was evaluated. Laryngeal and tracheal mucosal challenge with either citric acid or mechanical probing reliably evoked coughing in anesthetized guinea pigs. No other stimulus reliably evoked coughing in these animals, regardless of route of administration and despite some profound effects on respiration. Selectively activating vagal C-fibers arising from the nodose ganglia with either adenosine or 2-methyl-5-HT evoked only tachypnea. Selectively activating vagal afferents arising from the jugular ganglia induced respiratory slowing and apnea. Nasal afferent nerve activation by capsaicin, citric acid, hypertonic saline, or histamine evoked only respiratory slowing. Histamine, which activates intrapulmonary rapidly adapting receptors but not airway or lung C-fibers or tracheal bronchial cough receptors induced bronchospasm and tachypnea, but no coughing. The results indicate that the reflexes initiated by stimuli thought to be selective for some afferent nerve subtypes will likely depend on the net and potentially opposing effects of multiple afferent nerve subpopulations throughout the airways. The data also provide further evidence that the afferent nerves regulating cough in anesthetized guinea pigs are distinct from either C-fibers or intrapulmonary rapidly adapting receptors.  相似文献   

2.
Kerchner GA  Li P  Zhuo M 《IUBMB life》1999,48(3):251-256
Severe tissue or nerve injury can result in a chronic and inappropriate sensation of pain, mediated in part by the sensitization of spinal dorsal horn neurons to input from primary afferent fibers. Synaptic transmission at primary afferent synapses is mainly glutamatergic. Although a functioning excitatory synapse contains both alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the postsynaptic membrane, recent evidence suggests that dorsal horn neurons contain some "silent" synapses, which exhibit purely NMDA receptor-mediated evoked postsynaptic currents and do not conduct signals at resting membrane potential. Serotonin, which is released onto dorsal horn neurons by descending fibers from the rostroventral medulla, potentiates sensory transmission by activating silent synapses on those neurons, i.e., by recruiting functional AMPA receptors to the postsynaptic membrane. This phenomenon may contribute to the hyperexcitability of dorsal horn neurons seen in chronic pain conditions.  相似文献   

3.
The purpose of this article is to summarize recent findings on the role of serotonin in pain processing in the peripheral nervous system. Serotonin (5-hydroxtryptamine [5-HT]) is present in central and peripheral serotonergic neurons, it is released from platelets and mast cells after tissue injury, and it exerts algesic and analgesic effects depending on the site of action and the receptor subtype. After nerve injury, the 5-HT content in the lesioned nerve increases. 5-HT receptors of the 5-HT3 and 5-HT2A subtype are present on C-fibers. 5-HT, acting in combination with other inflammatory mediators, may ectopically excite and sensitize afferent nerve fibers, thus contributing to peripheral sensitization and hyperalgesia in inflammation and nerve injury.  相似文献   

4.
Pulmonary vascular congestion or pulmonary embolism in humans produces shallow tachypnea, and indirect experimental evidence suggests that this characteristic breathing pattern may result from activation of vagal unmyelinated afferents from the lung. We have investigated, in decerebrate cats, reflex changes in breathing pattern and in the activation of the diaphragm, posterior cricoarytenoid, and thyroarytenoid muscles caused by activating C-fiber afferents in the vagus nerve. The right vagus nerve was sectioned distal to the origin of the recurrent laryngeal nerve, eliminating vagal afferent traffic although preserving motor innervation of the larynx on that side. The left cervical vagus was stimulated electrically, and efferent activation of the laryngeal muscles was avoided by cutting the left recurrent laryngeal nerve. Transmission to the brain of vagal afferent traffic resulting from this stimulation was controlled by graded cold block of the nerve cranial to the site of application of the stimulus. Activation of C-fibers, when A-fibers were blocked, significantly decreased respiratory period and amplitude of diaphragm inspiratory burst. In addition, this selective activation of vagal C-fibers augmented postinspiratory activity of the diaphragm and recruited phasic expiratory bursts in the thyroarytenoid. We conclude that, in unanesthetized decerebrate cats, afferent traffic of vagal C-fibers initiates a pontomedullary reflex that increases respiratory frequency, decreases tidal volume, and augments braking of expiratory airflow.  相似文献   

5.
Increased pain sensitivity (hyperalgesia) and persistent nociception following peripheral tissue injury depends both on an increase in the sensitivity of primary afferent nociceptors at the site of injury (peripheral sensitization), and on an increase in the excitability of neurons in the central nervous system (central sensitization). We will review evidence that central sensitization, and the persistent nociception it leads to, are dependent on an action of glutamate and aspartate at excitatory amino acid (EAA) receptors. Additional evidence will be presented implicating a role of various intracellular second messengers that are coupled to EAA receptors (nitric oxide, arachidonic acid, and protein kinase C) to central sensitization and persistent nociception following tissue injury. Finally, we will examine the evidence for a contribution of molecular events, including noxious stimulus-induced expression of immediate-early genes such as c-fos to persistent nociception.  相似文献   

6.
Peripheral chemoreceptor afferent information is sent to the nucleus tractus solitarii (nTS), integrated, and relayed to other brain regions to alter cardiorespiratory function. The nTS projects to the hypothalamic paraventricular nucleus (PVN), but activation and phenotype of these projections during chemoreflex stimulation is unknown. We hypothesized that activation of PVN-projecting nTS neurons occurs primarily at high intensities of hypoxia. We assessed ventilation and cardiovascular parameters in response to increasing severities of hypoxia. Retrograde tracers were used to label nTS PVN-projecting neurons and, in some rats, rostral ventrolateral medulla (RVLM)-projecting neurons. Immunohistochemistry was performed to identify nTS cells that were activated (Fos-immunoreactive, Fos-IR), catecholaminergic, and GABAergic following hypoxia. Conscious rats underwent 3 h normoxia (n = 4, 21% O(2)) or acute hypoxia (12, 10, or 8% O(2); n = 5 each). Hypoxia increased ventilation and the number of Fos-IR nTS cells (21%, 13 ± 2; 12%, 58 ± 4; 10%, 166 ± 22; 8%, 186 ± 6). Fos expression after 10% O(2) was similar whether arterial pressure was allowed to decrease (-13 ± 1 mmHg) or was held constant. The percentage of PVN-projecting cells activated was intensity dependent, but contrary to our hypothesis, PVN-projecting nTS cells exhibiting Fos-IR were found at all hypoxic intensities. Notably, at all intensities of hypoxia, ~75% of the activated PVN-projecting nTS neurons were catecholaminergic. Compared with RVLM-projecting cells, a greater percentage of PVN-projecting nTS cells was activated by 10% O(2). Data suggest that increasing hypoxic intensity activates nTS PVN-projecting cells, especially catecholaminergic, PVN-projecting neurons. The nTS to PVN catecholaminergic pathway may be critical even at lower levels of chemoreflex activation and more important to cardiorespiratory responses than previously considered.  相似文献   

7.
Glutamate is the predominant excitatory transmitter used by primary afferent synapses and intrinsic neurons in the spinal cord dorsal horn. Accordingly, ionotropic glutamate receptors mediate basal spinal transmission of sensory, including nociceptive, information that is relayed to supraspinal centers. However, it has become gradually more evident that these receptors are also crucially involved in short- and long-term plasticity of spinal nociceptive transmission, and that such plasticity have an important role in the pain hypersensitivity that may result from tissue or nerve injury. This review will cover recent findings on pre- and postsynaptic regulation of synaptic function by ionotropic glutamate receptors in the dorsal horn and how such mechanisms contribute to acute and chronic pain.  相似文献   

8.
No direct evidence has been found for expression of functional AMPA receptors by dorsal root ganglion neurons despite immunocytochemical evidence suggesting they are present. Here we report evidence for expression of functional AMPA receptors by a subpopulation of dorsal root ganglion neurons. The AMPA receptors are most prominently located near central terminals of primary afferent fibers. AMPA and kainate receptors were detected by recording receptor-mediated depolarization of the central terminals under selective pharmacological conditions. We demonstrate that activation of presynaptic AMPA receptors by exogenous agonists causes inhibition of glutamate release from the terminals, possibly via primary afferent depolarization (PAD). These results challenge the traditional view that GABA and GABA(A) receptors exclusively mediate PAD, and indicate that PAD is also mediated by glutamate acting on presynaptically localized AMPA and kainate receptors.  相似文献   

9.
郑坚  潘敬运 《生理学报》1991,43(4):330-337
The purpose of this study is to investigate the role of paraventricular nucleus of the hypothalamus (PVN) and alpha 1 adrenergic receptor of PVN in the pressor responses to stimulation of renal afferent nerve in alpha 1-chloralose-anesthetized cats with carotid sinoaortic denervation and vagotomy. The pressor response to stimulation of renal afferent nerve consisted of a primary and a second components. The primary component response was completely blocked while the second component was not blocked by autonomic blocking agents (hexomethonium and atropine). Bilateral lesions of PVN greatly attenuated the pressor response before and after autonomic blockade. Intracerebroventricular and PVN injection alpha 1, adrenergic antagonist (prazosin) significantly decreased in the pressor response to stimulation of renal afferent nerve. These results indicate that paraventricular nucleus of the hypothalamus and alpha 1 adrenergic receptors in central nervous system, especially in PVN, play an important role in the pressor responses to stimulation of renal afferent nerve.  相似文献   

10.
The review is presented, analysing the modern state of knowledge about the role of intracellularly stored calcium of nerve terminals in regulation of quantal mediator secretion in synapses. The data are considered, concerning the properties of two Ca(2+)-channels superfamilies, i.e. the ryanodine receptors (RyR) and IP3-receptors, which are incorporated into the membrane of endoplasmic reticulum fragments. The localization of cisternae, containing RyR and IP3-receptors in neurons and nerve terminals are described. The data, demonstrating the pattern of calcium signalization in neurons and terminals after their interaction with specific blockers or activators of RyRs or IP3-receptors are presented. The facts, demonstrating that calcium induced calcium release via RyRs or IP3-receptors takes part in controlling spontaneous secretion of different types of vesicles in synaptic terminals and supports the slow and fast types of regulated exocytosis of synaptic vesicles, in the course of single or repetitive activity of central or peripheral synapses are analysed.  相似文献   

11.
A variety of studies indicate that spinal nicotinic acetylcholine receptors modulate the behavioral and autonomic responses elicited by afferent stimuli. To examine the location of and role played by particular subtypes of nicotinic receptors in mediating cardiovascular and nociceptive responses, we treated neonatal and adult rats with capsaicin to destroy C-fibers in primary afferent terminals. Reduction of C-fiber terminals was ascertained by the loss of isolectin B4, CGRP and vanilloid receptors as monitored by immunofluorescence. Receptor autoradiography shows a reduction in number of epibatidine binding sites following capsaicin treatment. The reduction is particularly marked in the dorsal horn and primarily affects the class of high affinity epibatidine binding sites thought to modulate nociceptive responses. Accompanying the loss of terminals and nicotinic binding sites were significant reductions in the expression of α 3, α 4, α 5, β 2 and β 4 nicotinic receptor subunits in the superficial layers of the spinal cord as determined by antibody staining and confocal microscopy. The loss of nicotinic receptors that follows capsaicin treatment results in attenuation of the nociceptive responses to both spinal cytisine and epibatidine. Capsaicin treatment also diminishes the capacity of cytisine to desensitize nicotinic receptors mediating nociception, but it shows little effect on intrathecal nicotinic agonist elicited pressor and heart rate responses. Hence, our data suggest that α 3, α 4, α 5, β 2 and β 4 subunits of nicotinic receptors are localized in the spinal cord on primary afferent terminals that mediate nociceptive input. A variety of convergent data based on functional studies and subunit expression suggest that α 3 and α 4, in combination with β 2 and α 5 subunits, form the majority of functional nicotinic receptors on C-fiber primary afferent terminals. Conversely, spinal nicotinic receptors not located on C-fibers play a primary role in the spinal pathways evoking spinally coordinated autonomic cardiovascular responses.  相似文献   

12.
Brand A  Smith ES  Lewin GR  Park TJ 《PloS one》2010,5(12):e15162
Naked mole-rats are extremely unusual among mammals in that their cutaneous C-fibers lack the neuropeptide Substance P (SP). In other mammals, SP plays an important role in nociception: it is released from C-fibers onto spinal neurons where it facilitates NMDA receptor activity and causes sensitization that can last for minutes, hours or days. In the present study, we tested the effects of intrathecal application of: 1) SP, 2) an SP antagonist (GR-82334), and 3) an NMDA antagonist (APV) on heat-evoked foot withdrawal. In the naked mole-rat, at a high enough concentration, application of SP caused a large, immediate, and long-lasting sensitization of foot withdrawal latency that was transiently reversed by application of either antagonist. However, neither SP nor NMDA antagonists had an effect when administered alone to na?ve animals. In contrast, both antagonists induced an increase in basal withdrawal latency in mice. These results indicate that spinal neurons in naked mole-rats have functional SP and NMDA receptors, but that these receptors do not participate in heat-evoked foot withdrawal unless SP is experimentally introduced. We propose that the natural lack of SP in naked mole-rat C-fibers may have resulted during adaptation to living in a chronically high carbon dioxide, high ammonia environment that, in other mammals, would stimulate C-fibers and evoke nocifensive behavior.  相似文献   

13.
Femtomole doses of angiotensin (ANG) II microinjected into nucleus tractus solitarii (nTS) decrease blood pressure and heart rate, mimicking activation of the baroreflex, whereas higher doses depress this reflex. ANG II might generate cardioinhibitory responses by augmenting cardiovascular afferent synaptic transmission onto nTS neurons. Intracellular recordings were obtained from 99 dorsal medial nTS region neurons in rat medulla horizontal slices to investigate whether ANG II modulated short-latency excitatory postsynaptic potentials (EPSPs) evoked by solitary tract (TS) stimulation. ANG II (200 fmol) increased TS-evoked EPSP amplitudes 20-200% with minimal membrane depolarization in 12 neurons excited by ANG II and glutamate, but not substance P (group A). Blockade of non-N-methyl-d-aspartate receptors eliminated TS-evoked EPSPs and responses to ANG II. ANG II did not alter TS-evoked EPSPs in 14 other neurons depolarized substantially by ANG II and substance P (group B). ANG II appeared to selectively augment presynaptic sensory transmission in one class of nTS neurons but had only postsynaptic effects on another group of cells. Thus ANG II is likely to modulate cardiovascular function by more than one nTS neuronal pathway.  相似文献   

14.
The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway.  相似文献   

15.
Amir R  Devor M 《Biophysical journal》2003,84(4):2181-2191
The cell soma of primary sensory neurons is electrically excitable, and is invaded by action potentials as they pass from the peripheral nerve, past the dorsal root ganglion (DRG) and toward the spinal cord. However, there are virtually no synapses in the DRG, and no signal processing is known to occur there. Why, then, are DRG cell somata excitable? We have constructed and validated an explicit model of the primary sensory neuron and used it to explore the role of electrical excitability of the cell soma in afferent signaling. Reduction and even elimination of soma excitability proved to have no detectable effect on the reliability of spike conduction past the DRG and into the spinal cord. Through-conduction is affected, however, by major changes in neuronal geometry in the region of the t-junction. In contrast to through-conduction, excitability of the soma and initial segment is essential for the invasion of afferent spikes into the cell soma. This implies that soma invasion has a previously unrecognized role in the physiology of afferent neurons, perhaps in the realm of metabolic coupling of the biosynthesis of signaling molecules required at the axon ends to functional demand, or in cell-cell interaction within sensory ganglia. Spike invasion of the soma in central nervous system neurons may play similar roles.  相似文献   

16.
Neurotrophin family are traditionally recognized for their nerve growth promoting function and are recently identified as crucial factors in regulating neuronal activity in the central and peripheral nervous systems. The family members including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are reported to have distinct roles in the development and maintenance of sensory phenotypes in normal states and in the modulation of sensory activity in disease. This paper highlights receptor tyrosine kinase (Trk) -mediated signal transduction by which neurotrophins regulate neuronal activity in the visceral sensory reflex pathways with emphasis on the distinct roles of NGF and BDNF signaling in physiologic and pathophysiological processes. Viscero-visceral cross-organ sensitization exists widely in human diseases. The role of neurotrophins in mediating neural cross talk and interaction in primary afferent neurons in the dorsal root ganglia (DRG) and neurotrophin signal transduction in the context of cross-organ sensitization are also discussed.  相似文献   

17.
Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens) and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology.  相似文献   

18.
19.
Hypoxia-induced dopamine (DA) release from carotid body (CB) glomus cells and activation of postsynaptic D(2) receptors have been proposed to play an important role in the neurotransmission process between the glomus cells and afferent nerve endings. To better resolve the role of D(2) receptors, we examined afferent nerve activity, catecholamine content and release, and ventilation of genetically engineered mice lacking D(2) receptors (D(2)(-/-) mice). Single-unit afferent nerve activities of D(2)(-/-) mice in vitro were significantly reduced by 45% and 25% compared with wild-type (WT) mice during superfusion with saline equilibrated with mild hypoxia (Po(2) approximately 50 Torr) or severe hypoxia (Po(2) approximately 20 Torr), respectively. Catecholamine release in D(2)(-/-) mice was enhanced by 125% in mild hypoxia and 75% in severe hypoxia compared with WT mice, and the rate of rise was increased in D(2)(-/-) mice. We conclude that CB transduction of hypoxia is still present in D(2)(-/-) mice, but the response magnitude is reduced. However, the ventilatory response to acute hypoxia is maintained, perhaps because of an enhanced processing of chemoreceptor input by brain stem respiratory nuclei.  相似文献   

20.
Nitric oxide synthase (NOS) immunoreactivity occurs in two groups of neurons in the guinea pig small intestine: descending interneurons that are also immunoreactive for choline acetyltransferase (ChAT), and inhibitory motor neurons that lack ChAT immunoreactivity. Interneurons that are involved in local reflexes would be expected to have inputs from intrinsic primary afferent (sensory) neurons, most of which are calbindin-immunoreactive. We examined this possibility using triple staining for NOS, ChAT and calbindin immunoreactivity and investigated the relationships between calbindin-immunoreactive varicosities and the cell bodies of NOS-immunoreactive neurons, using high-resolution confocal microscopy and electron microscopy. By confocal microscopy, we found that the cell bodies of ChAT/NOS interneurons received 84 +/- 23 (mean +/- SD) direct appositions from calbindin-immunoreactive varicosities and that the cell bodies of NOS-inhibitory motor neurons received 82 +/- 20 appositions. Electron-microscopic examination of the relations of 265-calbindin-immunoreactive varicosities, at distances within the resolution of the confocal microscope (300 nm), to 30 NOS-immunoreactive nerve cells indicated that 84% formed close contacts or synapses and 16% were separated from neurons by thin glial cell processes. Thus, each NOS-immunoreactive nerve cell receives about 70 synaptic inputs or close contacts from the calbindin-immunoreactive varicosities of intrinsic primary afferent neurons. It is concluded that there are monosynaptic reflex connections in which intrinsic primary afferent neurons synapse directly with motor neurons and di- or poly-synaptic reflexes in which ChAT- and NOS-immunoreactive neurons are interneurons, interposed between intrinsic primary afferent neurons and NOS-inhibitory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号