首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suppressors of ICR-induced mutations that exhibit behavior similar to bacterial frameshift suppressors have been identified in the yeast Saccharomyces cerevisiae. The yeast suppressors have been divided into two groups. One of these groups (Group II: SUF1, SUF3, SUF4, SUF5 and SUF6) appears to include a set of informational suppressors in which the vehicle of suppression is glycyl-tRNA. Some of the genetic properties of Group II suppressors are described in this communication.——Corevertants of the Group II frameshift mutations his4–519 and leu2–3 have been characterized to determine the spectrum of reversion events induced by the frameshift mutagen ICR-170. Seventythree ICR-induced corevertants were analyzed. With the exception of one corevertant, which carried an allele of SUF1, all carried alleles of SUF3 or SUF5. SUF1, SUF3, SUF4 and SUF6 were represented among spontaneous and UV-induced corevertants. In the course of these experiments one of the suppressors was mapped. SUF5, the probable structural gene for tRNAGLY1, is located between ade2 and ade9 on chromosome XV.——SUF1, SUF4 and SUF6 have novel properties and comprise a distinct subset of suppressors. Although these suppressors show no genetic linkage to each other, they share several common features including lethality in haploid pairwise combinations, reduced tRNAGLY3 isoacceptor activity and increased efficiency of suppression in strains carrying the cytoplasmically inherited [PSI] element. In addition, strains carrying SUF1, SUF4 or SUF6 are phenotypically unstable and give rise to mitotic Suf+ segregants at high frequency. These segregants invariably contain a linked, second-site mutation that maps in or adjacent to the suppressor gene itself. Strains carrying any of these suppressors also give rise to mitotic segregants that exhibit enhanced efficiency of suppression; mutations responsible for this phenotype map at two loci, upf1 and upf2. These genes show no genetic linkage to any of the Group II suppressors.——Methods that permit positive selection for mutants with decreased or enhanced efficiency of suppression have been devised in order to examine large numbers of variants. The importance of these interacting mutants is underscored by their potential utility in studying suppressor function at the molecular level.  相似文献   

2.
Base insertion mutations in the anticodons of two different Escherichia coli tRNAs have been isolated that allow suppression of a series of +1 frameshift mutations. Insertion of a U between positions 34 and 35 of tRNAGln1 or addition of a G between positions 36 and 37 of tRNA(Lys) expand the anticodons of both tRNAs similarly to 3'-GUUU(-5') and allow decoding of complementary 5'-CAAA(-3') quadruplets. Analysis of the suppressed mRNA sequences suggests that suppression occurs by pairing of the expanded anticodons to all four bases of the complementary, quadruplet codon. The tRNA Gln mutants are identical to the sufG class of frameshift suppressors isolated both in Salmonella enterica serovar Typhimurium and E. coli by Kohno and Roth and previously thought to affect tRNA(Lys).  相似文献   

3.
4.
5.
Summary Twenty-one suppressor gene mutations which suppress the met-5.1 missense mutation of Coprinus were separated into six groups (A-F) on the basis of dominance or recessiveness, linkage to the met-5 locus, comlementation in heterozygous cells and growth behaviour. The actual number of suppressor loci could not be determined because crosses between suppressed mutants were inviable. The allele specificity of group A, C, D and F suppressors was confirmed by appropriate crosses. Group B and E suppressors were not tested because of close linkage to the met-5 locus. No evidence for functional suppression of met-5 mutations was obtained thus it is likely that all the suppressors cause translational corelation of met-5.1. Suppressors in four groups (C-F) have properties expected of tRNA structural gene mutations: the group C mutation is dominant, the other mutations are recessive but do not complement in heterozygous cells. The relative efficiencies of the tRNA species involved was assessed by comparing the degree to which the different sup + mutations depressed the growth rate on methionine supplemented medium. The dominant mutation depressed growth to the greatest extent and is, therefore, the most efficient suppressor. The least efficient suppressors did not depress growth at all. When growth was compared on minimal medium it was found that the more efficient the suppressor the less well it restored growth. The mutations in groups A and B depressed growth more than the tRNA mutations but affect some other component in translation because they are recessive and complement normally. It is suggested that they may act to alter tRNA modifying enzymes.  相似文献   

6.
Missense and nonsense suppressors can correct frameshift mutations   总被引:6,自引:0,他引:6  
Missense and nonsense suppressor tRNAs, selected for their ability to read a new triplet codon, were observed to suppress one or more frameshift mutations in trpA of Escherichia coli. Two of the suppressible frameshift mutants, trpA8 and trpA46AspPR3, were cloned, sequenced, and found to be of the +1 type, resulting from the insertion of four nucleotides and one nucleotide, respectively. Twenty-two suppressor tRNAs were examined, 20 derived from one of the 3 glycine isoacceptor species, one from lysT, and one from trpT. The sequences of all but four of the mutant tRNAs are known, and two of those four were converted to suppressor tRNAs that were subsequently sequenced. Consideration of the coding specificities and anticodon sequences of the suppressor tRNAs does not suggest a unitary mechanism of frameshift suppression. Rather, the results indicate that different suppressors may shift frame according to different mechanisms. Examination of the suppression windows of the suppressible frameshift mutations indicates that some of the suppressors may work at cognate codons, either in the 0 frame or in the +1 frame, and others may act at noncognate codons (in either frame) by some as-yet-unspecified mechanism. Whatever the mechanisms, it is clear that some +1 frameshifting can occur at non-monotonous sequences. A striking example of a frameshifting missense suppressor is a mutant lysine tRNA that differs from wild-type lysine tRNA by only a single base in the amino acid acceptor stem, a C to U70 transition that results in a G.U base pair. It is suggested that when this mutant lysine tRNA reads its cognate codon, AAA, the presence of the G.U base pair sometimes leads either to a conformational change in the tRNA or to an altered interaction with some component of the translation machinery involved in translocation, resulting in a shift of reading frame. In general, the results indicate that translocation is not simply a function of anticodon loop size, that different frameshifting mechanisms may operate with different tRNAs, and that conformational features, some far removed from the anticodon region, are involved in maintaining fidelity in translocation.  相似文献   

7.
Two classes of frameshift suppressors distributed at 22 different loci were identified in previous studies in the yeast Saccharomyces cerevisiae. These suppressors exhibited allele-specific suppression of +1 G:C insertion mutations in either glycine or proline codons, designated as group II and group III frameshift mutations, respectively. Genes corresponding to representative suppressors of each group have been shown to encode altered glycine or proline tRNAs containing four base anticodons.—This communication reports the existence of a third class of frameshift suppressor that exhibits a wider range in specificity of suppression. The suppressors map at three loci, suf12, suf13, and suf14, which are located on chromosomes IV, XV, and XIV, respectively. The phenotypes of these suppressors suggest that suppression may be mediated by genes other than those encoding the primary structure of glycine or proline tRNAs.  相似文献   

8.
Suppressors of ICR-induced mutations that exhibit behavior similar to bacterial frameshift suppressors have been identified in the yeast Saccharomyces cerevisiae. The yeast suppressors have been divided into two groups. Previous evidence indicated that suppressors of one group (Group II: SUF1, SUF3, SUF4, SUF5 and SUF6) represent mutations in the structural genes for glycyl-tRNA's. Suppressors of the other group (Group III: SUF2 and SUF7) were less well characterized. Although they suppressed some ICR-revertible mutations, they failed to suppress Group II frameshift mutations. This communication provides a more thorough characterization of the Group III suppressors and describes the isolation and properties of four new suppressors in that group (SUF8, SUF9, SUF10 and suf11).——In our original study, Group III suppressors were isolated as revertants of the Group III mutations his4–712 and his4–713. All suppressors obtained as ICR-induced revertants of these mutations mapped at the SUF2 locus near the centromere of chromosome III. Suppressors mapping at other loci were obtained in this study by analyzing spontaneous and UV-induced revertants of the Group III mutations. SUF2 and SUF10 suppress both Group III his4 mutations, whereas SUF7, SUF8, SUF9 and suf11 suppress his4–713, but not his4–712. All of the suppressors except suf11 are dominant in diploids homozygous for his4-713. The suppressors fail to suppress representative UAA, UAG and UGA nonsense mutations.——SUF9 is linked to the centromere of chromosome VI, and SUF10 is linked to the centromere of chromosome XIV. A triploid mapping procedure was used to determine the chromosome locations of SUF7 and SUF8. Subsequent standard crosses revealed linkage of SUF7 to cdc5 on chromosome XIII and linkage of SUF8 to cdc12 and pet3 on chromosome VIII.  相似文献   

9.
Yeast amber suppressors corresponding to tRNA3Leu genes   总被引:11,自引:0,他引:11  
Amber suppressors previously isolated from the yeast Saccharomyces cerevisiae and belonging to the same phenotypic class (Liebman et al., 1976) were assigned to nine different linkage groups named SUP52 through SUP60. One of these suppressors, SUP52, had been shown to cause the insertion of leucine and had been genetically mapped (Liebman et al., 1977). The following additional amber suppressors were mapped: SUP53 maps near the centromere of chromosome III closely linked to leu2; SUP54 maps on chromosome VII, 6 cM distal to trp5; SUP56 maps on chromosome I, 5.4 cM distal to ade1; SUP57 maps on chromosome VI, closely linked to met10; and SUP58 maps on the left arm of chromosome XI, loosely linked to met14. We show by protein analysis that like SUP52, the suppressors SUP53 through SUP56 are leucine-inserters. Furthermore, by hybridization with a cloned tRNA3Leu probe we demonstrate that at least SUP53, SUP54, SUP55 and SUP56 contain mutations in redundant tRNA3Leu genes because they each generate a new XbaI site in a DNA fragment encompassing a tRNA3Leu gene. These new XbaI sites are predicted by the known sequences of tRNA3Leu genes if the CAA anticodon mutates to the amber suppressing anticodon CTA. It is likely that each of the nine suppressors in this phenotypic class contain similar mutations in different tRNA3Leu genes since we find that there are approximately nine unlinked redundant copies of tRNA3Leu genes in haploid strains.  相似文献   

10.
Using a genetic selection for suppressors of a UGA nonsense mutation in trpA, we have isolated a G to A transition mutation at position 1491 in the decoding region of 16S rRNA. This suppressor displayed no codon specificity, suppressing UGA, UAG and UAA nonsense mutations and +1 and -1 frameshift mutations in lacZ. Subsequent examination of a series of mutations at G1491 and its base-pairing partner C1409 revealed various effects on nonsense suppression and frameshifting. Mutations that prevented Watson-Crick base pairing between these residues were observed to increase misreading and frameshifting. However, double mutations that retained pairing potential produced an antisuppressor or hyperaccurate phenotype. Previous studies of antibiotic resistance mutations and antibiotic and tRNA footprints have placed G1491 and C1409 near the site of codon-anticodon pairing. The results of this study demonstrate that the nature of the interaction of these two residues influences the fidelity of tRNA selection.  相似文献   

11.
The study of suppressors of tryptophan synthase A protein missense mutations in Escherichia coli has led to the establishment of two nonadjacent genetic loci (gly V and gly W) specifying identical nucleotide sequences for a single isoaccepting species of glycine transfer ribonucleic acid (tRNA GLY 3 GGU/C). In one case, suppression of the missense mutation trpA78 was due to a mutation in a structural gene (gly W) for tRNA Gly 3 GGU/C. This mutation resulted in a base change in the anticodon and modification of an A residue adjacent to the 3' side of the anticodon, leading to the production of a tRNA Gly 3 UGU/C species. The resulting glyW51 (SU UGU/C) allele was mapped by interrupted mating and was located at approximately 37 min on the Escherichia coli genetic map. Other suppressor mutations affecting the primary sequence of tRNA Gly GGU/C and giving rise to the Ins and SU+A58 phenotypes were positioned at 86 min (glyV). Several independently arising missense suppressor mutations resulting in the SU+A78 phenotypes were isolated and mapped at these two genetic loci (glyV and glyW). The ratio of appearance of suppressor mutations at glyV and glyW suggests that there are three of four tRNAGly3 GGU/C structural gene copies at the glyV locus to one copy at the glyW locus. Structural genes for tRNA ly isoacceptors are now known at four distinct locations on the Escherichia coli chromosome: glyT (77 MIN), TRNA Gly 2 GGA/G; gly U (55 min), tRNAGly-1 minus; and gly V (86 MIN) AND GLYW (37 min), tRNAGly 3 GGU/C.  相似文献   

12.
New Suppressors of Frameshift Mutations in SALMONELLA TYPHIMURIUM   总被引:2,自引:0,他引:2       下载免费PDF全文
Several new types of suppressor mutants have been isolated. These were identified among revertants of mutants originally generated by mutagens other than the acridine-derived ICR191. The new suppressors correct mutations other than those with runs of C or G which are recognized by the previously described suppressors. Several frameshift mutations are corrected by more than one suppressor type. Apparently, the DNA base sequence near these mutant sites includes sites of action for several distinct suppressor types.  相似文献   

13.
Frameshift mutations can be suppressed by a variety of differently acting external suppressors. The +1 frameshift mutation hisC3072, which has an extra G in a run of Gs, is corrected by the external suppressor mutation sufF44. We have shown that sufF44 and five additional allelic suppressor mutations are located in the gene argU coding for the minor tRNAArgmnm5UCU and alter the secondary and/or tertiary structure of this tRNA. The C61U, G53A, and C32U mutations influence the stability, whereas the C56U, C61U, G53A, and G39A mutations decrease the arginylation of tRNAArgmnm5UCU. The T-10C mutant has a base substitution in the -10 consensus sequence of the argU promoter that reduces threefold the synthesis of tRNAArgmnm5UCU . The lower amount of tRNAArgmnm5UCU or impaired arginylation, either independently or in conjunction, results in inefficient reading of the cognate AGA codon that, in turn, induces frameshifts. According to the sequence of the peptide produced from the suppressed -GGG-GAA-AGA- frameshift site, the frameshifting tRNA in the argU mutants is tRNAGlumnm5s2UUC, which decodes the GAA codon located upstream of the AGA arginine codon, and not the mutated tRNAArgmnm5UCU. We propose that an inefficient decoding of the AGA codon by a defective tRNAArgmnm5UCU stalls the ribosome at the A-site codon allowing the wild-type form of peptidyl-tRNAGlumnm5s2UUC to slip forward 1 nucleotide and thereby re-establish the ribosome in the 0-frame. Similar frame-shifting events could be the main cause of various phenotypes associated with environmental or genetically induced changes in the levels of aminoacylated tRNA.  相似文献   

14.
Members of the sufS class of -1 frameshift suppressors have alterations of the GGA/G-decoding tRNA(2Gly). Suppressor-promoted frameshifting at GGA was shown in this study to be directly mediated by the mutant tRNA(2Gly). We disproved the possibility that, in the presence of the compromised mutant tRNA(2Gly), either wild-type tRNA(1Gly), wild-type tRNA(3Gly), a GGA-reading mutant form of tRNA(3Gly), or any other agent suppresses the frameshift mutation trpE91.  相似文献   

15.
Mutant forms of elongation factor Tu encoded by tufA8 and tufB103 in Salmonella typhimurium cause suppression of some but not all frameshift mutations. All of the suppressed mutations in S. typhimurium have frameshift windows ending in the termination codon UGA. Because both tufA8 and tufB103 are moderately efficient UGA suppressors, we asked whether the efficiency of frameshifting is influenced by the level of misreading at UGA. We introduced plasmids synthesizing either one of the release factors into strains in which the tuf mutations suppress a test frameshift mutation. We found that overproduction of release factor 2 (which catalyzes release at UGA and UAA) reduced frameshifting promoted by the tuf mutations at all sites tested. However, at one of these sites, trpE91, overproduction of release factor 1 also reduced suppression. The spontaneous level of frameshift "leakiness" at three sites in trpE, each terminating in UGA, was reduced in strains carrying the release factor 2 plasmid. We conclude that both spontaneous and suppressor-enhanced reading-frame shifts are influenced by the activity of peptide chain release factors. However, the data suggest that the effect of release factor on frameshifting does not necessarily depend on the presence of the normal triplet termination signal.  相似文献   

16.
Suppressors of lysine codons may be misacylated lysine tRNAs   总被引:4,自引:2,他引:2  
We describe a novel class of missense suppressors that read the codons for lysine at two positions (211 and 234) in the trpA polypeptide of Escherichia coli. The suppressor mutations are highly linked to lysT, a gene for lysine tRNA. The results suggest that the suppressors are misacylated lysine tRNAs that carry glycine or alanine. The mutant codons are apparently suppressed better at position 211 than at position 234, indicating the existence of codon context effects in missense suppression.  相似文献   

17.
Summary The acu-1 locus in Coprinus is the structural gene for acetyl-CoA synthetase. Five suppressor gene mutations, which suppress the acu-1,34 missense allele, were induced by mutagen treatment. All five suppressors were shown to have properties expected for tRNA structural gene mutations: they are recessive, they show a gene dosage effect in any doubly heterozygous combination of two sup + mutations and they are allele specific in action.Crosses between suppressed mutants established that at least four suppressor loci were represented. Doubly suppressed mutants derived from these crosses were used to show that the gene dosage effect is maintained when two sup + mutations are in cis as well as trans combinations in the two nuclei of the basidiomycete dikaryon.Extracts of the unsuppressed acu-1.34 mutant contained less than 2% of wild type acetyl-CoA synthetase activity whereas extracts of four of the five suppressor strains showed activities ranging from 28 to 37% of wild type. Only a slight increase in activity was detected in the fifth suppressor strain but this was associated with a temperature sensitive sup + phenotype. All five sup + mutations restored the ability of the acu-1.34 mutant to induce isocitrate lyase, an enzyme which, under the conditions of growth used, can only be induced when acetyl-CoA synthetase activity is present. Thus all five suppressors act to restore normal acu-1 protein function.  相似文献   

18.
Over 100 revertants of five different amber mutants were analyzed by Southern blot hybridization using synthetic oligomers as probes to detect a single base change at the anticodon, CCA to CTA (amber), of tRNA(Trp) genes of Caenohrabditis elegans. Of the 12 members of the tRNA(Trp) gene family, a total of eight were converted to amber suppressor alleles. All eight encode identical tRNAs; three of these are new tRNA(Trp) suppressors, sup-21, sup-33 and sup-34. Previous results had suggested that individual suppressor tRNA genes were expressed differentially in a cell-type- or developmental stage-specific manner. To extend these observations to the new genes and to test the specificity of expression against additional genes, cross suppression tests of these eight amber suppressors were carried out against amber mutations in several different genes including genes likely to be expressed in the same cell-type: three nervous system-affecting genes, two muscle structure-affecting genes and two genes presumed to be expressed in hypodermis. Seven out of eight suppressors could be distinguished one from another by the spectrum of their suppression efficiencies. These results also provide further evidence of cell-type-specific patterns of expression in the nervous system, muscle and hypodermis. The suppression pattern of the suppressor against the two muscle-affecting genes, unc-15 and unc-52, suggested that either the suppressors are expressed in a developmental stage-specific manner or that the unc-52 products are expressed in cell-types other than muscle, possibly hypodermis.  相似文献   

19.
TrmD and Trm5 are, respectively, the bacterial and eukarya/archaea methyl transferases that catalyze transfer of the methyl group from S-adenosyl methionine (AdoMet) to the N1 position of G37 in tRNA to synthesize m1G37-tRNA. The m1G37 modification prevents tRNA frameshifts on the ribosome by assuring correct codon-anticodon pairings, and thus is essential for the fidelity of protein synthesis. Although TrmD and Trm5 are derived from unrelated AdoMet families and recognize the cofactor using distinct motifs, the question of whether they select G37 on tRNA by the same, or different, mechanism has not been answered. Here we address this question by kinetic analysis of tRNA truncation mutants that lack domains typically present in the canonical L shaped structure, and by evaluation of the site of modification on tRNA variants with an expanded or contracted anticodon loop. With both experimental approaches, we show that TrmD and Trm5 exhibit separate and distinct mode of tRNA recognition, suggesting that they evolved by independent and non-overlapping pathways from their unrelated AdoMet families. Our results also shed new light onto the significance of the m1G37 modification in the controversial quadruplet-pairing model of tRNA frameshift suppressors.  相似文献   

20.
In Salmonella typhimurium, the tRNA(m1G37)methyltransferase (the product of the trmD gene) catalyzes the formation of m1G37, which is present adjacent and 3' of the anticodon (position 37) in seven tRNA species, two of which are tRNA(Pro)CGG and tRN(Pro)GGG. These two tRNA species also exist as +1 frameshift suppressor sufA6 and sufB2, respectively, both having an extra G in the anticodon loop next to and 3' of m1G37. The wild-type form of the tRNA(m1G37)methyltransferase efficiently methylates these mutant tRNAs. We have characterized one class of mutant forms of the tRNA(m1G37)methyltransferase that does not methylate the sufA6 tRNA and thereby induce extensive frameshifting resulting in a nonviable cell. Accordingly, pseudorevertants of strains containing such a mutated trmD allele in conjunction with the sufA6 allele had reduced frameshifting activity caused by either a 9-nt duplication in the sufA6tRNA or a deletion of its structural gene, or by an increased level of m1G37 in the sufA6tRNA. However, the sufB2 tRNA as well as the wild-type counterparts of these two tRNAs are efficiently methylated by this class of structural altered tRNA(m1G37)methyltransferase. Two other mutations (trmD3, trmD10) were found to reduce the methylation of all potential tRNA substrates and therefore primarily affect the catalytic activity of the enzyme. We conclude that all mutations except two (trmD3 and trmD10) do not primarily affect the catalytic activity, but rather the substrate specificity of the tRNA, because, unlike the wild-type form of the enzyme, they recognize and methylate the wild-type but not an altered form of a tRNA. Moreover, we show that the TrmD peptide is present in catalytic excess in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号