首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repair of ultraviolet-induced pyrimidine dimers by photoreactivation is catalyzed by a single enzyme, DNA photolyase. However, the process of photoreactivation is difficult to detect reproducibly in cultured mammalian cells. We have used clones containing yeast and Escherichia coli DNA photolyase genes to determine whether their sequences are conserved and whether there is homology between either cloned sequence and chick or human genomic DNA and mRNA sequences. The cloned sequences failed to hybridize to each other even under nonstringent conditions, indicating little conservation of sequence between the yeast and E. coli genes. Furthermore, only weak hybridization under nonstringent conditions was found between the cloned photoreactivating genes and human or chick genomic DNA or mRNA. This indicates that there is negligible homology between the cloned probes and mammalian DNA, but we are unable to conclude whether this indicates sequence divergence for prokaryotic and eukaryotic photoreactivation genes or the absence of such genes from the mammalian genome.  相似文献   

2.
Secretion of the Pasteurella leukotoxin by Escherichia coli   总被引:12,自引:0,他引:12  
Nucleic acid sequence analysis has indicated that the leukotoxin determinant from Pasteurella haemolytica is related to the hemolysin determinant from E. coli. The cloning and expression in E. coli of the lktCA genes has been previously reported, but the existence of leukotoxin secretory genes equivalent to hlyBD has not been documented. In this report we demonstrate that a 4.0 kb segment of P. haemolytica genomic DNA distal to the lktA gene, when expressed in trans to the previous cloned lktCA genes, allow the synthesis and secretion of active leukotoxin from E. coli. Complementation analysis using the cloned hlyB and hlyD genes indicates that this secretory locus derived from P. haemolytica contains two genes which we designate, by analogy, lktB and lktD.  相似文献   

3.
Abstract Nucleic acid sequence analysis has indicated that the leukotoxin determinant from Pasteurella haemolytica is related to the hemolysin determinant from E. coli . The cloning and expression in E. coli of the lktCA genes has been previously reported, but the existence of leukotoxin secretory genes equivalent to hlyBD has not been documented. In this report we demonstrate that a 4.0 kb segment of P. haemolytica genomic DNA distal to the lktA gene, when expressed in trans to the previous cloned lktCA genes, allow the synthesis and secretion of active leukotoxin from E. coli . Complementation analysis using the cloned hlyB and hlyD genes indicates that this secretory locus derived from P. haemolytica contains two genes which we designate, by analogy, lktB and lktD .  相似文献   

4.
The Escherichia coli cca gene which encodes the enzyme tRNA nucleotidyltransferase has been cloned by taking advantage of its proximity to the previously cloned dnaG locus. A series of recombinant bacteriophages, spanning the chromosomal region between the dnaG and cca genes at 66 min on the E. coli linkage map, were isolated from a lambda Charon 28 partial Sau3A E. coli DNA library using recombinant plasmids containing regions between dnaG and cca as probes. Two of the recombinant phage isolates, lambda c1 and lambda c4, contained the cca gene. A BamHI fragment from lambda c1 was subcloned into pBR328, and cells containing this recombinant plasmid, pRH9, expressed tRNA nucleotidyltransferase activity at about 10-fold higher level than the wild type control. The cca gene was further localized to a 1.4-kilobase stretch of DNA by Bal31 deletion analysis. The nucleotide sequence of the cca gene was determined by the dideoxy method, and revealed an open reading frame extending for a total of 412 codons from an initiator GTG codon that would encode a protein of about 47,000 daltons. Southern analysis using genomic blots demonstrated that the cca gene is present as a single copy on the E. coli chromosome and that there is no homology on the DNA level between the E. coli cca gene, and the corresponding gene in the Bacillus subtilis, Saccharomyces cerevisiae, Petunia hybrida, or Homo sapiens genomes. Homology was found only with DNA from the closely related species, Salmonella typhimurium. These studies have also allowed exact placement of the cca gene on the E. coli genetic map, and have shown that it is transcribed in a clockwise direction.  相似文献   

5.
Abstract A Pasteurella haemolytica A1 gene involved in the biosynthesis of a moiety on the core of the lipopolysaccharide molecule has been cloned and characterized. Escherichia coli clones which carry this gene showed an alteration of its lipopolysaccharide migration profile on tricine SDS-PAGE and exhibited resistance to the core-specific phage U3. In addition, lipopolysaccharide extracted from the E. coli clones was recognized by an anti-corespecific antiserum, but not by antiserum specific for the O antigen of P. haemolytica A1 lipopolysaccharide. Nucleotide sequence analysis of the cloned DNA identified an open reading frame ( lpsA ) coding for a protein of 263 amino acids which showed significant homology with a Haemophilus influenzae type b lipooligosaccharide biosynthesis gene. PCR amplification of genomic DNA, using primers based on the P. haemolytica A1 lpsA sequence, yielded products from only the A biotypes of P. haemolytica .  相似文献   

6.
7.
Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli.  相似文献   

8.
A fragment of Mycobacterium tuberculosis DNA containing recA-like sequences was identified by hybridization with the Escherichia coli recA gene and cloned. Although no expression was detected from its own promoter in E. coli, expression from a vector promoter partially complemented E. coli recA mutants for recombination, DNA repair, and mutagenesis, but not for induction of phage lambda. This clone produced a protein which cross-reacts with antisera raised against the E. coli RecA protein and was approximately the same size. However, the nucleotide sequence of the cloned fragment revealed the presence of an open reading frame for a protein about twice the size of other RecA proteins and the cloned product detected by Western blotting (immunoblotting). The predicted M. tuberculosis RecA protein sequence was homologous with RecA sequences from other bacteria, but this homology was not dispersed; rather it was localized to the first 254 and the last 96 amino acids, with the intervening 440 amino acids being unrelated. Furthermore, the junctions of homology were in register with the uninterrupted sequence of the E. coli RecA protein. Identical restriction fragments were found in the genomic DNAs of M. tuberculosis H37Rv and H37Ra and of M. bovis BCG. It is concluded that the ancestral recA gene of these species diversified via an insertional mutation of at least 1,320 bp of DNA. Possible processing mechanisms for synthesizing a normal-size RecA protein from this elongated sequence are discussed.  相似文献   

9.
The effect of the toxic metabolite methylglyoxal on the DNA of Escherichia coli cells has been investigated. Exposure of E. coli cells to methylglyoxal reduces the transformability of plasmid DNA and results in the degradation of genomic DNA. The activity of the KefB and KefC potassium channels protects E. coli cells against methylglyoxal and limits the amount of DNA damage. In mutants lacking KefB and KefC, methylglyoxal-induced DNA damage was reduced by incubation with a weak acid that lowers the pHi to the same extent as through KefB and KefC activation. This provides evidence that acidification of the cytoplasm protects E. coli DNA against methylglyoxal. By the analysis of cells lacking UvrA, we demonstrate that this repair protein is required for the degradation of the DNA upon methylglyoxal exposure. However, protection by KefB and KefC occurred independently of UvrA. Although we present evidence that exposure of E. coli cells to methylglyoxal results in DNA degradation, our results suggest this event is not essential for methylglyoxal-induced death. The implications of these findings will be discussed.  相似文献   

10.
The respiratory defect of pet mutants of Saccharomyces cerevisiae assigned to complementation group G120 has been ascribed to their inability to acylate the mitochondrial phenylalanyl tRNA. A fragment of wild type yeast genomic DNA capable of complementing the genetic lesion of G120 mutants has been cloned by transformation with a yeast genomic recombinant library of a representative mutant from this complementation group. The gene designated as MSF1 has been subcloned on a 2.2-kilobase pair fragment and its nucleotide sequence determined. The predicted protein product of MSF1 has a molecular weight of 55,314 and has several domains of high primary sequence homology to the alpha subunit of the Escherichia coli phenylalanyl-tRNA synthetase. Based on the phenotype of G120 mutants and the homology to the bacterial protein, MSF1 is proposed to code for the alpha subunit of yeast mitochondrial phenylalanyl-tRNA synthetase. Disruption of the chromosomal copy of MSF1 in the respiratory-competent haploid strain W303-1B induces a phenotype similar to G120 mutants but does not affect cell viability, indicating that the cytoplasmic phenylalanyl-tRNA synthetase of yeast is encoded by a separate gene. Although the E. coli and yeast mitochondrial aminoacyl-tRNA synthetases are sufficiently similar in their primary sequences to suggest a common evolutionary origin, they have undergone significant changes as evidenced by the low homology in some regions of the polypeptide chains and the presence in the mitochondrial enzyme of two domains that are lacking in the bacterial phenylalanyl-tRNA synthetase.  相似文献   

11.
The Coxiella burnetii sucB gene encoding the dihydrolipoamide succinyltransferase (E2o) enzyme was cloned by immunological screening of a lambda EMBL3 genomic library prepared from strain Nine Mile DNA and sequenced. The homology of the cloned gene product to the counterpart in Escherichia coli was 54.3%, but the homology of the N-terminal region was only 42%. The gene was expressed in E. coli as an independent unit from its own promoter, producing an immunoreactive protein of about 50 kDa on SDS-PAGE which reacted with antisera from laboratory animals and sera from human patients with acute Q fever. The study results suggest that the C. burnetii E2o enzyme may serve as a potential target antigen for diagnostic assays for Q fever.  相似文献   

12.
T No?l  J Labarère 《Gene》1992,122(1):233-234
The URA1 gene encoding dihydroorotate dehydrogenase (DHOdehase) from the edible basidiomycete, Agrocybe aegerita, has been cloned by complementation of the Escherichia coli pyrD mutation. The nucleotide sequence of a 1531-bp genomic fragment carrying URA1 revealed two uninterrupted open reading frames (ORFs) separated by 61 bp. The larger ORF can encode a 328-amino acid (aa) DHOdehase that has 53% homology with the corresponding protein from E. coli. Comparison with other DHOdehase aa sequences showed essentially conservation of the cofactor-binding site of flavoproteins.  相似文献   

13.
14.
Cloning of a yolk protein gene family from Caenorhabditis elegans   总被引:12,自引:0,他引:12  
A novel family of large, imperfectly repeated DNA sequences has been found in Escherichia coli. Two members of this family, rhsA and rhsB, occur as direct repeats, flanking the pit glyS xyl segment of the chromosome. Unequal sister-chromatid crossing over between rhsA and rhsB accounts for the frequent tandem duplication of the glyS locus that has been observed by various workers. This unequal recombination is recA-dependent. The rhsA locus is operationally defined as the segment between xyl and mtl that is repeated at other chromosomal locations. Using this definition, rhsA extends minimally 5500 base-pairs; 3800 base-pairs of rhsA are sufficiently homologous to rhsB to form an S1 nuclease-resistant heteroduplex with it. The rhsA sequence also exhibits internal repetition. At least one additional rhs sequence occurs in the E. coli chromosome unlinked to either rhsA or rhsB. Southern analysis of restriction digests of genomic DNA from E. coli strains C and B/5 showed that both of these strains have rhs hybridizable patterns similar to strain K-12, but the rhs sequence is absent in Salmonella typhimurium. The function of the rhs sequences has not been discovered. In the course of this work we developed a technique, termed "transductional walking", by which chromosomal DNA adjacent to a previously cloned DNA segment can be cloned through genetic procedures.  相似文献   

15.
A 2 kb DNA fragment isolated from a cosmid library of Aquaspirillum magnetotacticum strain MS-1 complements the aromatic-metabolite requirements and iron-uptake deficiencies of Escherichia coli and Salmonella typhimurium strains that lack a functional aroD (biosynthetic dehydrodquinase) sequence. All recombinant cosmids selected for their aroD complementation property carry this sequence. No DNA sequence homology has, however, been detected by Southern hybridization between the cloned fragment and the aroD gene of E. coli or the qa2 (catabolic dehydroquinase) gene of Neurospora crassa.  相似文献   

16.
The argF gene encoding ornithine carbamoyl-transferase (OTCase; EC2.1.3.3) has been cloned from Corynebacterium glutamicum by transforming the Escherichia coli arginine auxotroph with the genomic DNA library. The cloned DNA also complements the E. coli argG mutant, suggesting a clustered organization of the genes in the genome. We have determined the DNA sequence of the minimal fragment complementing the E. coli argF mutant. The coding region of the cloned gene is 957 nucleotides long with a deduced molecular mass of about 35 kDa polypeptide. The enzyme activity and size of the expressed protein in the E. coli auxotroph carrying the argF gene revealed that the cloned gene indeed codes for OTCase. Analysis of the amino acid sequence of the predicted protein revealed a strong similarity to the corresponding protein of other bacteria.  相似文献   

17.
Abstract Using a genomic subtraction technique, we cloned a DNA sequence that is present in wild-type Escherichia coli strain CSH4 but is missing in a presumptive proline dehydrogenase deletion mutant RM2. Experimental evidence indicated that the cloned fragment codes for proline dehydrogenase (EC 1.5.99.8) since RM2 cells transformed with a plasmid containing this sequence was able to survive on minimal medium supplemented with proline as the sole nitrogen and carbon sources. The cloned DNA fragment has an open reading frame of 3942 bp and encodes a protein of 1313 amino acids with a calculated M r of 143 808. The deduced amino acid sequence of the E. colli proline dehydrogenase has an 84.9% homology to the previously reported Salmonella typhimurium putA gene but it is 111 amino acids longer at the C-terminal than the latter.  相似文献   

18.
19.
A recombinant plasmid containing a Serratia marcescens DNA repair gene has been analyzed biochemically and genetically in Escherichia coli mutants deficient for repair of alkylated DNA. The cloned gene suppressed sensitivity to methyl methanesulfonate of an E. coli strain deficient in 3-methyladenine DNA glycosylases I and II (i.e., E. coli tag alkA) and two different E. coli recA mutants. Attempts to suppress the methyl methanesulfonate sensitivity of the E. coli recA mutant by using the cloned E. coli tag and alkA genes were not successful. Southern blot analysis did not reveal any homology between the S. marcescens gene and various known E. coli DNA repair genes. Biochemical analysis with the S. marcescens gene showed that the encoded DNA repair protein liberated 3-methyladenine from alkylated DNA, indicating that the DNA repair molecular is an S. marcescens 3-methyladenine DNA glycosylase. The ability to suppress both types of E. coli DNA repair mutations, however, suggests that the S. marcescens gene is a unique bacterial DNA repair gene.  相似文献   

20.
The Escherichia coli K5 capsular polysaccharide [-4)-betaGlcA-(1, 4)-alphaGlcNAc-(1-] is a receptor for the capsule-specific bacteriophage K5A. Associated with the structure of bacteriophage K5A is a polysaccharide lyase which degrades the K5 capsule to expose the underlying bacterial cell surface. The bacteriophage K5A lyase gene (kflA) was cloned and sequenced. The kflA gene encodes a polypeptide with a predicted molecular mass of 66.9 kDa and which exhibits amino acid homology with ElmA, a K5 polysaccharide lyase encoded on the chromosome of E. coli SEBR 3282. There was only limited nucleotide homology between the kflA and elmA genes, suggesting that these two genes are distinct and either have been derived from separate progenitors or have diverged from a common progenitor for a considerable length of time. Southern blot analysis revealed that kflA was not present on the chromosome of the E. coli strains examined. In contrast, elmA was present in a subset of E. coli strains. Homology was observed between DNA flanking the kflA gene of bacteriophage K5A and DNA flanking a small open reading frame (ORF(L)) located 5' of the endosialidase gene of the E. coli K1 capsule-specific bacteriophage K1E. The DNA homology between these noncoding sequences indicated that bacteriophages K5A and K1E were related. The deduced polypeptide sequence of ORF(L) in bacteriophage K1E exhibited homology to the N terminus of KflA from bacteriophage K5A, suggesting that ORF(L) is a truncated remnant of KflA. The presence of this truncated kflA gene implies that bacteriophage K1E has evolved from bacteriophage K5A by acquisition of the endosialidase gene and subsequent loss of functional kflA. A (His)(6)-KflA fusion protein was overexpressed in E. coli and purified to homogeneity with a yield of 4.8 mg per liter of bacterial culture. The recombinant enzyme was active over a broad pH range and NaCl concentration and was capable of degrading K5 polysaccharide into a low-molecular-weight product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号