首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The effects of brefeldin A on intracellular transport and posttranslational modification of complement C3 (C3) were studied in primary culture of rat hepatocytes. In the control culture C3 was synthesized as a precursor (pro-C3), which was processed to the mature form with alpha- and beta-subunits before its discharge into the medium. In the presence of brefeldin A the secretion of C3 was strongly blocked, resulting in accumulation of pro-C3. However, after a prolonged interval the mature form of C3 was finally secreted. The results indicate that brefeldin A impedes translocation of pro-C3 to the Golgi complex where pro-C3 is converted to the mature form, but not its proteolytic processing, in contrast to the effects of monensin and weakly basic amines.  相似文献   

2.
In the present study we have demonstrated that the murine IL-1 alpha precursor lacks a cleavable signal sequence and does not undergo cotranslational translocation across microsomal membranes in vitro. Culture supernatants of the murine macrophage cell line, P388D, or from normal peritoneal macrophages collected within 0.5 to 3 h after stimulation contained the 33,000 m.w. precursor as the predominant form of IL-1 alpha. Over an 18-h period, the level of low m.w. IL-1 alpha increased as the secreted precursor was processed by extracellular and/or cell surface-associated proteolytic enzymes. The calcium ionophores A23187 and ionomycin were found to dramatically enhance the release and processing of murine and human IL-1. The rapid release of IL-1 in response to a change in the intracellular level of calcium does not appear to be caused by release of a membrane-bound form of the protein, nor is there evidence that IL-1 is packaged and released from cytoskeletal associated secretory granules. In marked contrast, calcium ionophores do not induce secretion of IL-1 from a nonmacrophage cell line that synthesizes but does not normally secrete IL-1. Our results suggest that activated macrophages possess a novel processing independent, possibly calcium-dependent, mechanism that allows for the release of the precursor forms of IL-1 alpha and IL-1 beta.  相似文献   

3.
Primary cultures of rat hepatocytes produce extracellular and intracellular species of hemopexin. We examined the presence of high-mannose oligosaccharides and neuraminic acid residues in these species by comparing their electrophoretic mobility on SDS-PAGE before and after digestion by endoglycosidase H and neuraminidase. The predominant intracellular form was not susceptible to digestion by neuraminidase but was sensitive to endoglycosidase treatment, which digested it to a species with a molecular weight comparable to that of the sole hemopexin species produced by tunicamycin-treated hepatocytes and that produced by in vitro translation. By contrast, both the minor intracellular and the extracellular species of hemopexin were neuraminidase-, yet not endoglycosidase H-sensitive, and may be identical. It can be concluded that the intracellular precursor contains high-mannose type oligosaccharides which are processed to complex type oligosaccharides shortly before secretion of hemopexin.  相似文献   

4.
The yeast Saccharomyces cerevisiae has been shown to contain a major 125-kDa membrane glycoprotein which is anchored in the lipid bilayer by a glycophosphatidylinositol anchor. This protein was purified to near homogeneity and was used to raise a rabbit antibody. Biosynthesis of the 125-kDa protein was studied by immunoprecipitation of 35SO4-labeled material from wild-type cells or a secretion mutant (sec18) in which the vesicular traffic from the endoplasmic reticulum (ER) to the Golgi is blocked. The 125-kDa protein is first made in the ER as a 105-kDa precursor which already contains a glycophosphatidylinositol anchor and which is slowly transformed into the 125-kDa form upon chase (t1/2 approximately 10-15 min). The 105-kDa precursor can be reduced to an 83-kDa form by the enzymatic removal of N-glycans. The removal of N-glycans from the mature 125-kDa protein yields a 95-kDa species. Thus, removal of the N-glycans does not reduce the ER and mature forms to the same molecular mass, indicating that not only elongation of N-glycans but also another post-translational modification takes place during maturation. Selective tagging of surface proteins by treatment of 35SO4-labeled cells with trinitrobenzene sulfonic acid at 0 C followed by immunoprecipitation of the tagged proteins shows that the 125-kDa protein, but not the 105-kDa precursor, becomes transported to the cell surface. This tagging of cells after various lengths of chase also shows that the surface appearance of the protein is biphasic with about one half of the mature 125-kDa protein remaining intracellular for over 2 h. Glycosylation and/or glycophosphatidylinositol anchor addition is important for the stability of the 125-kDa protein since the protein remains undetectable in sec53, a temperature-sensitive mutant which does not make GDP-mannose at 37 C and does not add glycophosphatidylinositol anchors at 37 degrees C.  相似文献   

5.
Circulating apolipoprotein J (apoJ) is a 70 kDa glycoprotein comprised of disulfide-linked alpha and beta subunits derived from a single precursor. Post-translational modifications that occur prior to apoJ secretion were assessed, with specific focus on carbohydrate type, the timing of proteolytic cleavage, and the importance of glycosylation on the cleavage and secretion processes. ApoJ was initially resolved as a single chain, intracellular precursor of 58 kDa which contained N-linked oligosaccharide but no O-linked oligosaccharide. The precursor was converted to an intracellular 70 kDa glycoprotein, which became the major intracellular form of apoJ prior to secretion. Maturation of the 58 kDa precursor involved conversion of high-mannose carbohydrate to complex-type carbohydrate containing sialic acid, as well as intracellular cleavage to yield alpha and beta subunits. This cleavage event occurred at a late stage of carbohydrate modification, most likely in the trans-Golgi or a post-Golgi compartment. The maturation and secretion of apoJ occurred rapidly, with a half-time of 30-35 min. Tunicamycin treatment of cells resulted in an unglycosylated doublet comprised of one single chain and one cleaved form of apoJ. The unglycosylated apoJ species were secreted rapidly with a half-time of 20 min. Both cleavage and secretion were independent of glycosylation.  相似文献   

6.
Transforming growth factor-beta 1 (TGF-beta 1) is synthesized as a latent high molecular weight complex in a human erythroleukemia cell line, HEL, treated with phorbol 12-myristate 13-acetate. The complex is comprised of three components: mature TGF-beta 1, the TGF-beta 1 latency-associated peptide (beta 1-LAP), and the latent TGF-beta 1-binding protein (LTBP). LTBP plays an important role in the assembly and secretion of the latent TGF-beta 1 complex; if the TGF-beta 1 precursor fails to bind to LTBP, much of it remains inside the cells and may contain anomalous disulfide bond(s) between beta 1-LAP and the mature TGF-beta 1 molecule (Miyazono, K., Olofsson, A., Colosetti, P., and Heldin, C.-H. (1991) EMBO J. 10, 1091-1101). In the present work, we have investigated the subcellular localization and properties of the TGF-beta 1 precursor retained intracellularly. When the HEL cells were metabolically labeled and chased for up to 72 h, a considerable part of the TGF-beta 1 precursor was still observed intracellularly in an unprocessed form. The secreted form of the TGF-beta 1 precursor was resistant to endoglycosidase H, whereas the intracellular form of the TGF-beta 1 precursor was sensitive to endoglycosidase H, regardless of the presence or absence of swainsonine, an inhibitor of mannosidase II. Indirect immunofluorescence microscopy revealed that the TGF-beta 1 precursor co-localized with mannosidase II, a marker for the Golgi complex, but not with protein disulfide isomerase, a marker for the endoplasmic reticulum. The intracellular TGF-beta 1 precursor was prepared from phorbol 12-myristate 13-acetate-treated HEL cells and tested for TGF-beta 1 bioactivity. Half-maximal inhibition of the DNA synthesis in mink lung epithelial cells, Mv1Lu, was observed at 80 pM of the acid-treated TGF-beta 1 precursor, whereas nontreated material showed minimal growth inhibitory activity. Taken together, these results indicate that the TGF-beta 1 precursor is retained inside the cells in the Golgi complex, mainly in a latent, immature form.  相似文献   

7.
The alkaline extracellular protease (AEP) of the yeast Yarrowia lipolytica is synthesized as a preproprotein. The precursor undergoes a complex maturation during its intracellular transit, successively involving signal peptide cleavage, dipeptidyl aminopeptidase processing, and cleavage at a dibasic site which results in the extracellular release of the active enzyme. It was previously shown that various deletions within the proregion affect the intracellular transit of the protease. Prodeleted precursors are translocated and have their signal sequences removed, but they accumulate in the secretion apparatus. We show here that the secretion of partially active proteins is restored when the prodomain is supplied in trans as an independent peptide. The secretion rescue and maturation processing that are reconstituted by the free propeptide do not reach wild type efficiency. The results of pulse-chase experiments indicate that a rate-limiting step occurs during the intracellular transit of the rescued precursors, before Kex2p proteolytic cleavage. This delayed maturation seems to be responsible for an overall slower release of the rescued polypeptides. Propeptide and AEP were secreted in equimolar amounts by both wild type and trans-complemented strains, but none could be detected in the supernatant when expressed alone. These experiments suggest that the prodomain of AEP initially acts as a crucial folding aid for the early secretory transit of the translocated precursor. They further suggest that the prodomain is also required for a second structural change of the AEP precursor during its activation.  相似文献   

8.
The biosynthesis and turnover of lipoprotein lipase (LPL) have been investigated in adipose 3T3-F442A cells labeled with [35S]methionine. Pulse-chase experiments, endo-beta-N-acetylglucosaminidase H treatment, and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis have indicated that LPL is synthesized in the endoplasmic reticulum as a glycoprotein of Mr = 55,500 bearing two N-oligosaccharide side chains of the high mannose-type. This precursor form of LPL is transported within 10 min to the Golgi apparatus, and this event is accompanied by the formation of a mature species of Mr = 58,000. Treatment of the Mr = 58,000 species with glycopeptidase F yielded a Mr = 51,000 protein similar to that observed after treatment of the Mr = 55,500 precursor form or after inhibition of N-glycosylation in tunicamycin-treated cells. The precursor form of LPL of Mr = 55,500 does not accumulate in the cells since, after a labeling period of 2 h, only the Mr = 58,000 species is detected. It is shown that only 20% of the newly synthesized molecules of Mr = 58,000 are constitutively secreted, whereas 80% are degraded, most likely in lysosomes, as indicated by the inhibitory effect of leupeptin upon the degradation process. Under heparin stimulation, quantitative secretion of the mature form of LPL takes place whereas the intracellular degradation is arrested. Heparin is able to mobilize intracellular LPL without changing the rate of LPL export from the endoplasmic reticulum to the cell surface. Sucrose gradient centrifugation of the material from intracellular cisternae shows that the Mr = 55,500 precursor form is present as a monomer (s = 4.1 S), whereas the Mr = 58,000 mature form is present as a homodimer (s = 6.8 S) to which LPL activity is associated. The results are interpreted as LPL being transiently stored under a dimeric form before its degradation. A sorting process of LPL in the Golgi apparatus, followed by its entry either mainly in a regulated pathway or in a constitutive pathway, is proposed.  相似文献   

9.
ABSTRACT. The proteolytic processing and secretion of a lysosomal enzyme, acid α-glucosidase, was studied by pulse-chase labeling with [35S]methionine in Tetrahymena thermophila CU-399 cells treated with ammonium chloride. This cell secreted a large amount of acid α-glucosidase into the cultured medium during starvation. the secretion was found to be repressed by addition of ammonium chloride (NH4Cl). Acid α-glucosidase was produced as a precursor form (108 kDa) and then processed to a mature polypeptide (105 kDa) within 60 min. This mature enzyme was secreted into the media within 2-3 h after chase, whereas the precursor form was not secreted by either control cells or NH4Cl-treated cells. NH4Cl did not affect the processing of the precursor acid α-glucosidase. Processing profile of this enzyme was apparently indistinguishable from that of the mutant MS-1 defective in lysosomal enzyme secretion. Furthermore, the purified extracellular (CU-399) and intracellular (MS-1) acid a-glucosidases were the same in molecular mass (105 kDa) and enzymatic properties. They contained no mannose 6-phosphate residues in N-linked oligosaccharides. These results suggested that unlike mammalian cells, Tetrahymena acid α-glucosidase may be transferred to lysosomes by a mannose 6-phosphate receptor-independent mechanism, and also that low pH was not essential for the proteolytic processing of precursor polypeptide.  相似文献   

10.
It has been suggested that the successive proteolytic events leading to the production of the amyloid-beta protein from its precursor may take place at different intracellular locations. Using cultured human leptomeningeal smooth muscle cells and brain pericytes, we modulated the intracellular localization of the amyloid-beta precursor protein (APP) to study possible effects on its processing. By using immunofluorescence and immunoelectron microscopy we demonstrated that, under normal conditions, the APP is found in small intracellular vesicles, some of which were characterized as lysosomes. Both the cytokine interferon-gamma and the lysosomotropic drug chloroquine, but not the cytokines interleukin (IL)-1, IL-6, or tumor necrosis factor-alpha (TNF-alpha), induced an accumulation of APP in newly formed multivesicular body-like organelles. The secretion of the amyloid-beta precursor protein was slightly reduced by interferon-gamma or chloroquine. Double-labeling and tracer molecule uptake experiments showed that the multivesicular body-like organelles were part of the endocytic pathway. Our findings suggest that the multivesicular body-like organelles function as an intermediate organelle in the intracellular trafficking of the APP. Accumulation of the APP in this organelle is reflected by its reduced secretion from the cell.  相似文献   

11.
1. Calcium-dependent exocytosis of catecholamines from intact and digitonin-permeabilized bovine adrenal chromaffin cells was investigated. 2. 45Ca2+ uptake and secretion induced by nicotinic stimulation or depolarization in intact cells were closely correlated. The results provide strong support for Ca2+ entry being the trigger for exocytosis. 3. Experiments in which the H+ electrochemical gradient across the intracellular secretory granule (chromaffin granule) membrane was altered indicated that the gradient does not play an important role in exocytosis. 4. Ca2+ entry into the cells is associated with activation of phospholiphase C and a rapid translocation of protein kinase C to membranes. 5. The plasma membrane of chromaffin cells was rendered permeable to Ca2+, ATP, and proteins by the detergent digitonin without disruption of the intracellular secretory granules. In this system in which the intracellular milieu can be controlled, micromolar Ca2+ directly stimulated catecholamine secretion. 6. Treatment of the cells with phorbol esters and diglyceride, which activate protein kinase C, enhanced phosphorylation and subsequent Ca2+-dependent secretion in digitonin-treated cells. 7. Phorbol ester-induced secretion could be specifically inhibited by trypsin. The experiments indicate that protein kinase C modulates but is not necessary for Ca2+-dependent secretion.  相似文献   

12.
The secretion of protein directly into the extracellular medium by Bacillus amyloliquefaciens, a gram-positive bacterium, was shown to be dependent on proton motive force. When the electrochemical membrane potential gradient of protons was dissipated either by uncouplers or by valinomycin in combination with K+, a precursor form of alpha-amylase accumulated on the cellular membrane. The proton motive force could be dissipated without altering the intracellular level of ATP, indicating that the observed inhibition of export was not the result of decreased ATP concentration.  相似文献   

13.
5'-(N-Ethyl)carboxamidoadenosine (NECA), an analog of adenosine, transiently stimulated a rat tumor mast cell (RBL-2H3 cells) to cause a release of inositol phosphates and an increase in levels of Ca2+ in the cytosol. It failed, however, to stimulate a sustained uptake of 45Ca2+ or secretion. The effects of other agents that act on P1- or P2-purinergic receptors suggested that NECA and other adenosine agonists acted via a novel subtype of adenosine membrane receptor. Although the order of potency of agonists was characteristic of A2-adenosine receptors, there was no indication of the involvement of adenylate cyclase, and antagonists such as isobutylmethylxanthine, 8-phenyltheophylline, and 8-p-sulfophenyltheophylline inhibited the responses to either NECA or antigen. The fact that stimulation of inositol phospholipid hydrolysis by NECA in washed, permeabilized RBL-2H3 cells was blocked by pertussis toxin as well as by cholera toxin suggested instead that the NECA-sensitive receptor activated phospholipase C via a G-protein. In contrast to NECA, antigen stimulation resulted in a pertussis toxin-resistant, sustained hydrolysis of inositol phospholipids, increases in free intracellular Ca2+, accelerated influx of 45Ca2+, and secretion from RBL-2H3 cells. In combination with NECA, all responses to antigen were markedly enhanced, and the enhancement was selectively blocked by pertussis toxin. The ability of antigen, but not NECA, to provoke secretion may be dependent primarily on the sustained activation of a cholera toxin-sensitive Ca2+ influx pathway that serves to amplify stimulatory signals for secretion. These studies also suggested that phospholipase C could be activated through different G-proteins via different receptors within the same cell.  相似文献   

14.
We have shown previously that stimulation of cloned murine T lymphocytes via the TCR inhibits their responsiveness to rIL-2. Signaling via the TCR is believed to result in a variety of biochemical events that include a rise in intracellular free calcium and activation (translocation) of protein kinase C. These two signals also can be generated by calcium ionophores, such as ionomycin, and by activators of protein kinase C, such as PMA. We report here that treatment of cloned murine T lymphocytes with PMA, ionomycin, or the combination led to a dose-dependent inhibition of IL-2-dependent proliferation but did not inhibit lymphokine secretion. Concentrations of PMA and ionomycin that maximally inhibited proliferation stimulated maximal lymphokine secretion and increased mitochondrial activity as assessed by measurement of cleavage of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium-bromide. Furthermore, PMA, ionomycin, the combination, or immobilized anti-CD3 mAb added after 12 to 16 h of culture with IL-2 could inhibit proliferation. These results demonstrate that PMA and ionomycin mimic stimulation of the TCR by high concentrations of immobilized anti-TCR mAb in that proliferation is inhibited and lymphokine secretion is induced. In addition, PMA or ionomycin could independently inhibit proliferation of some cells. These findings suggest that alternative mechanisms exist to regulate proliferation. Either increased levels of intracellular calcium or the physiologic events corresponding to those induced by PMA can inhibit IL-2-dependent replication of T lymphocytes.  相似文献   

15.
Secretion-coupled protein degradation: studies on mammary casein   总被引:1,自引:0,他引:1  
Mammary explants from midpregnant rabbits were cultured for 18 h at 37 degrees C with insulin, prolactin and cortisol. Subsequently, explants were labelled for 2 h with inorganic [32P]phosphate, L-[5-3H]proline or L-[4,5-3H]leucine, washed and chased for up to 3 h. The radiolabelling profile of [32P]casein or [3H]casein during the chase period, obtained by isoelectric focussing or immunoprecipitation indicates extensive destruction of neosynthesized casein. The extent of casein destruction in mammary explants in culture (measured after radiolabelling with L-[5-3H]proline), is inversely related to casein secretion. Least casein degradation is observed in explants after 48 h in culture when casein secretion is maximal (observed histochemically). Subsequently, when the extracellular alveolar lumen is filled with secretion products (72 h), rapid intracellular casein destruction is again observed. When the chase was carried out in the presence of drugs which inhibit degradation and/or secretion, the results indicate that secretion-coupled casein degradation is dependent on an intact functional microfilamentous-microtubular network, casein is not degraded by an autophagosome requiring process, degradation is inhibited by leupeptin, amino-acid analogue containing casein does not undergo secretion-coupled degradation and inhibition of N-glycosylation of intracellular vesicular membrane proteins prevents secretion-coupled degradation. Secretion-coupled protein destruction is discussed in relation to the post-translational regulation of the net production of secretory proteins in eukaryotic cells.  相似文献   

16.
In cells transformed by either v-sis or c-sis, the majority of the newly synthesized platelet-derived growth factor (PDGF) receptors fail to reach the cell surface and are rapidly degraded. This rapid turnover (t1/2 less than 30 min) appears to result from interaction of the sis gene product with the PDGF receptor in the endoplasmic reticulum and/or Golgi apparatus during their intracellular routing from the endoplasmic reticulum to the plasma membrane or extracellular compartment. Several lines of evidence support this hypothesis. 1) Both the 160-kDa precursor and the intracellular 180-kDa mature form of the PDGF receptor possessed ligand binding activity for PDGF; 2) both the 160-kDa precursor and the 180-kDa mature form of the receptor in sis-transformed cells were found to be activated (phosphorylated); 3) protamine, a competitive inhibitor for PDGF or v-sis gene product binding to the cell-surface receptor, did not affect the rapid turnover of the PDGF receptor in sis-transformed cells; 4) suramin, an inhibitor for PDGF or v-sis gene product binding to the PDGF receptor, not only reversed the rapid turnover of the PDGF receptor in sis-transformed cells, but also increased the secretion of sis gene products; and 5) rapid turnover of the PDGF receptor was only observed in sis-transformed cells but not in cells transformed by other oncogenes. We suggest that the persistence of a mitogenic signal from cellular organelles, arising from the intracellular interaction of sis gene products with newly synthesized PDGF receptors, is the mechanism for autocrine transformation by sis.  相似文献   

17.
1. The use of ;marker' enzymes for investigating the contamination by endoplasmic reticulum of mitochondrial and synaptosomal (nerve-ending) fractions isolated from guinea-pig brain was examined. NADPH-cytochrome c reductase appeared to be satisfactory. With the synaptosomal preparation there was a non-occluded enzymic activity believed to arise from contaminating microsomes and an occluded form released by detergent, which probably was derived from some type of intraterminal smooth endoplasmic reticulum. 2. Isolated brain mitochondria, both intact and osmotically shocked, could not synthesize more labelled phosphatidylcholine from CDP-[Me-(14)C]choline or phosphoryl[Me-(14)C]choline than could be accounted for by microsomal contamination. They could synthesize only phosphatidic acid and diphosphatidylglycerol from a [(32)P]P(i) precursor and not nitrogen-containing phosphoglycerides or phosphatidylinositol. 3. The synaptosomal outer membrane and the intraterminal mitochondria could not synthesize phosphatidylcholine from CDP-[Me-(14)C]choline but the synaptic vesicles and probably the intraterminal ;endoplasmic reticulum' appeared to be capable of catalysing the incorporation of label from this substrate into their phospholipids. 4. Microsomal fractions and synaptosomes from guinea-pig brain could incorporate [Me-(14)C]choline into their phospholipids by a non-energy-requiring exchange process, which was catalysed by Ca(2+). Fractionation of the synaptosomes after such an exchange had taken place revealed that the label was predominantly in the intraterminal mitochondria and not associated with membranes containing NADPH-cytochrome c reductase. 5. On the intraperitoneal injection of [(32)P]P(i) into guinea pigs, incorporation of radioactivity into phosphatidylinositol and phosphatidic acid was much faster than into the nitrogen-containing phosphoglycerides. Mitochondria and microsomal fractions showed a roughly equivalent incorporation into individual phospholipids, and that into synaptosomes was appreciably less, whereas the phospholipids of myelin showed little (32)P incorporation up to 10h.  相似文献   

18.
Ascorbic acid stimulates secretion of type I collagen because of its role in 4-hydroxyproline synthesis, but there is some controversy as to whether secretion of type IV collagen is similarly affected. This question was examined in differentiated F9 cells, which produce only type IV collagen, by labeling proteins with [14C]proline and measuring collagen synthesis and secretion. Hydroxylation of proline residues in collagen was inhibited to a greater extent in cells treated with the iron chelator α,α′-dipyridyl (97.7%) than in cells incubated without ascorbate (63.1%), but both conditions completely inhibited the rate of collagen secretion after 2–4 h, respectively. Neither treatment affected laminin secretion. Collagen synthesis was not stimulated by ascorbate even after treatment for 2 days. On SDS polyacrylamide gels, collagen produced by α,α′-dipyridyl-treated cells consisted mainly of a single band that migrated faster than either fully (+ ascorbate) or partially (− ascorbate) hydroxylated α1(IV) or α2(IV) chains. It did not contain interchain disulfide bonds or asn-linked glycosyl groups, and was completely digested by pepsin at 15°C. These results suggested that it was a degraded product lacking the 7 S domain and that it could not form a triple helical structure. In contrast, the partially hydroxylated molecule contained interchain disulfide bonds and it was cleaved by pepsin to collagenous fragments similar in size to those obtained from the fully hydroxylated molecule, but at a faster rate. Kinetic experiments and monensin treatment suggested that completely unhydroxylated type IV collagen was degraded intracellularly in the endoplasmic reticulum or cis Golgi. These studies indicate that partial hydroxylation of type IV collagen confers sufficient helical structure to allow interchain disulfide bond formation and resistance to pepsin and intracellular degradation, but not sufficient for optimal secretion. J Cell. Biochem. 67:338–352, 1997. Published 1997 Wiley-Liss, Inc.  相似文献   

19.
The biosynthesis of alpha-N-acetylglucosaminidase in normal and Sanfilippo B fibroblasts was studied by labeling cells with [35S]methionine and isolation of the enzyme by immunoprecipitation. The immunoprecipitated polypeptides were separated by polyacrylamide gel electrophoresis and visualized by fluorography. alpha-N-acetylglucosaminidase is synthesized as a precursor of an apparent mol. wt. of 87,000. Intracellular processing of the precursor yields two polypeptides of apparent mol. wts. of 73,000 and 76,000 via several intermediates. It is accomplished within 3 days after synthesis. Less than 30% of the newly synthesized precursor is secreted. In the presence of 10 mM NH4Cl, secretion is enhanced to more than 80%. In our study, no alpha-N-acetylglucosaminidase polypeptides could be detected in fibroblasts from patients affected with either the severe or mild form of Sanfilippo disease, type B.  相似文献   

20.
Human neutrophils released the granule constituents myeloperoxidase and lysozyme, but not the cytoplasmic enzyme lactic dehydrogenase, when pretreated with cytochalasin B and stimulated with purified human C5a. Prior exposure to C5a before the cytochalasin B, however, abrogated the subsequent secretory process. Interaction of neutrophils with C5a was shown to result in a concentration-dependent rapid desensitization that could not be overcome by later addition of cytochalasin B or of cytochalasin B and C5a. The effect was relatively stimulus specific in that neutrophils desensitized in this manner could be induced to release granule enzymes by casein or by complement-coated zymosan particles. Cytochalasin B effects on neutrophils appear to mimic those of surface binding of soluble stimuli such as C5a and immune complexes. It is suggested that desensitization in concert with surface stimulation may represent an important intracellular mechanism for limiting neutrophil secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号