首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the role of iron in the toxicity of oxidized low density lipoprotein (Ox-LDL) to cultured vascular endothelial cells. Exposure of the endothelial cells to Ox-LDL led to cell lysis as judged by the release of lactate dehydrogenase into the medium. The presence of deferoxamine, an iron chelator, in the reaction medium containing Ox-LDL prevented the lysis of cells by Ox-LDL. Pretreatment of the cells with deferoxamine also reduced their susceptibility to the cytotoxicity of Ox-LDL. The formation of thiobarbituric acid-reacting substances (TBARS) was observed in the cells exposed to Ox-LDL. Pretreatment of cells with deferoxamine reduced the formation of TBARS which was induced by Ox-LDL. These observations suggest that the toxicity of Ox-LDL to cultured endothelial cells involves the lipid peroxidation of cellular membrane catalyzed by iron derived from the target (endothelial) cells.  相似文献   

2.
Stress-induced development of enhanced tolerance against various kinds of stresses has been observed in vascular endothelial cells as well as in several other cell types. Stress proteins are thought to play a key role in the development of stress tolerance. In this study we show that endothelial cells of various sources contain the major stress protein of the eye lens, alphaB-crystallin. In the mouse myocardial microvascular cell line, MyEnd, alphaB-crystallin as well as the heat shock proteins HSP 70i and HSP 25 display a low constitutive expression but can be significantly upregulated by sodium arsenite stress. Osmotic stress also resulted in strong upregulation of alphaB-crystallin and HSP 70i but not of HSP 25. Both osmotic and arsenite stress resulted in significant stress tolerance of MyEnd cells against glucose deprivation as assayed by lactate dehydrogenase release and overall cellular morphology. Development of stress tolerance without induction of HSP 25 indicates that HSP 25 is not essential for the protective effect. MyEnd cells from alphaB-crystallin-/- mice displayed a similar degree of stress tolerance showing that alphaB-crystallin is dispensable for protection of cells against energy depletion. The functional role of alphaB-crystallin in endothelial cells needs to be further elucidated. In our experiments HSP 70i turned out to be the only potential candidate of the stress proteins assayed to be involved in the development of tolerance against energy depletion.  相似文献   

3.
Increasing evidence suggests that the formation of oxidized low-density lipoprotein (Ox-LDL) in vivo is associated with the development of atherosclerotic vascular disease. We investigated the effects of Ox-LDL on two vascular endothelial cell coagulant properties, tissue factor expression, and protein C activation. The Ox-LDL increased human arterial and venous endothelial cell tissue factor activity, with 100 micrograms/ml of Ox-LDL increasing factor activity fourfold. Native LDL modified by incubation with cultured human arterial and venous endothelial cells also induced endothelial cell tissue factor activity. This modification was blocked by coincubation with the antioxidants, probucol or ascorbic acid. It was determined, based on inhibition by known scavenger receptor antagonists (fucoidin, dextran sulfate), that binding of Ox-LDL via the acetyl LDL (scavenger) receptor was partially responsible for the increase in tissue factor expression. Whereas endothelial cell tissue factor expression was increased by incubation with Ox-LDL, protein C activation was reduced approximately 80% by incubating cultured endothelial cells with Ox-LDL. The effect of Ox-LDL on protein C activation was not inhibited by antagonists to the scavenger receptor. These data indicating that an atherogenic lipoprotein can regulate key vascular coagulant activities provide an additional link between vascular disease and thrombosis.  相似文献   

4.
Oxidized low-density lipoprotein (Ox-LDL) is an atherogenic lipoprotein. It has been suggested that Ox-LDL causes endothelial dysfunction by decreasing the release of endothelium-derived factors (EDRF-NO) or increasing the inactivation of EDRF-NO. The mechanism by which Ox-LDL causes dysfunctional NO during early stages of atherosclerosis is not clear. The purpose of this study was to examine the role of Ox-LDL on nitric oxide synthetase (eNOS), protein kinase C (PKC) activities and cAMP production in bovine aortic endothelial cells (BAEC). Ox-LDL stimulated PKC activity of BAEC but it inhibited both eNOS activity and cAMP production. Ox-LDL partially inhibited the forskolin stimulated cAMP production. Furthermore, we observed that 8Br-cAMP treatment decreased the activity of eNOS in a concentration dependent manner. Serotonin which has a profound inhibitory effect on cAMP production also stimulated eNOS activity. Pertusis toxin treatment blocked the stimulatory action of serotonin on the stimulation of eNOS activity. Our results thus suggest that Ox-LDL inhibit the endothelium-dependent relaxation. One possible mechanism is that Ox-LDL stimulates PKC activity, which in turn increases the phosphorylation of the Gi-protein. Inhibition of Gi-protein then leads to reduced release of NO from endothelial cells and thus causes endothelial dysfunction.  相似文献   

5.
Although accumulating evidence indicates that heat shock protein 70 (HSP70) could be secreted into plasma and its levels have been found to have an ambiguous association with atherosclerosis, our knowledge for the exact role of circulating HSP70 in the development of atherosclerosis is still limited. In the present study, we report an adhesion-promoting effect of exogenous HSP70 and evaluate the potential involvement of elevated circulating HSP70 in the development of atherosclerosis. Time-dependent elevation of plasma HSP70 was found in diet-induced atherosclerotic rats, whose effect was investigated through further in vitro experiments. In rat aortic endothelial cell (RAEC) cultures, exogenous HSP70 incubation neither produced cell injuries by itself nor had protective effects on cell injuries caused by Ox-LDL or homocysteine. However, exogenous HSP70 administration could lead to a higher adhesion rate between rat peripheral blood monocytes (PBMCs) and RAECs. This adhesion-promoting effect appeared only when PBMCs, rather than RAECs, were pretreated with HSP70 incubation. PBMCs in an HSP70 environment released more IL-6 to supernatant, which subsequently up-regulated the expression of ICAM-1 in RAECs. These results indicate that the diet-induced elevation of circulating HSP70 could trigger cell adhesion with the help of IL-6 as a mediator, which provides a novel possible mechanism for understanding the role of circulating HSP70 in the pathogenesis of atherosclerosis.  相似文献   

6.
7.
Human low density lipoprotein was oxidized (Ox-LDL) by exposure to 5 microM Cu2+ and its fate in vivo was compared to acetylated low density lipoprotein (Ac-LDL). Ox-LDL, when injected into rats, is rapidly removed from the blood circulation by the liver, similarly as Ac-LDL. A separation of rat liver cells into parenchymal, endothelial, and Kupffer cells at 10 min after injection of Ox-LDL or Ac-LDL indicated that the Kupffer cell uptake of Ox-LDL is 6.8-fold higher than for Ac-LDL, leading to Kupffer cells as the main liver site for Ox-LDL uptake. In vitro studies with isolated liver cells indicated that saturable high affinity sites for Ox-LDL were present on both endothelial and Kupffer cells, whereby the capacity of Kupffer cells to degrade Ox-LDL is 6-fold higher than for endothelial cells. Competition studies showed that unlabeled Ox-LDL competed as efficiently (90%) as unlabeled Ac-LDL with the cell association and degradation of 125I-labeled Ac-LDL by endothelial and Kupffer cells. However, unlabeled Ac-LDL competed only partially (20-30%) with the cell association and degradation of 125I-labeled Ox-LDL by Kupffer cells, while unlabeled Ox-LDL or polyinosinic acid competed for 70-80%. It is concluded that the liver contains, in addition to the scavenger (Ac-LDL) receptor which interacts efficiently with both Ac-LDL and Ox-LDL and which is concentrated on endothelial cells, an additional specific Ox-LDL receptor which is highly concentrated on Kupffer cells. In vivo the specific Ox-LDL recognition site on Kupffer cells will form the major protection system against the occurrence of the atherogenic Ox-LDL particles in the blood.  相似文献   

8.
The toxicity of oxidized low density lipoprotein (Ox-LDL) to cultured vascular endothelial cells was investigated. The modification of low density lipoprotein (LDL) by copper led to the production of thiobarbituric acid-reacting substance (TBARS) and lipid hydroperoxide (LPO). TBARS was distributed not only in lipoprotein, but also in the aqueous phase, whereas LPO was observed only in the lipoprotein particle. During the incubation of LDL with copper, the copper bound to lipoprotein and formed a complex. The toxicity of products resulting from the oxidation of LDL to endothelial cells was recognized in Ox-LDL particles, not in the aqueous phase. Following dialysis of Ox-LDL against EDTA, copper which had bound to the Ox-LDL particle was released and the toxicity of Ox-LDL disappeared. The addition of copper to the dialyzed Ox-LDL restored the cytotoxicity. To a lesser extent this effect was also observed with the addition of iron. A study of the time-course of LDL oxidation showed that the toxicity of Ox-LDL depends upon the level of LPO, not upon the content of TBARS, the extent of negative charge or the protein adduct of aldehydes. These results demonstrate that transition metal is required for Ox-LDL toxicity and that the toxic moiety of the products resulting from LDL oxidation is LPO associated with the Ox-LDL particle.  相似文献   

9.
Zhu J  Xie R  Piao X  Hou Y  Zhao C  Qiao G  Yang B  Shi J  Lu Y 《Amino acids》2012,43(3):1243-1250
Total elevated plasma homocysteine (Hcy) is a risk factor for thromboembolism. Vascular endothelium is important to regulate coagulation, but the impact of Hcy on the clot-promoting activity (CPA) of endothelial cells has not been fully understood. In our study, human umbilical vein endothelial cells (HUVECs) were treated with Hcy (8, 20, 80, 200, 800?μmol/L) for 24?h. Annexin V was utilized to detect phosphatidylserine (PS) externalization and endothelial microparticles (MPs) formation. CPA was assessed by recalcification time and purified clotting complex tests. We found that Hcy enhanced the externalized PS and consequent CPA of HUVECs in a dose-dependent fashion, effect of Hcy had statistical significance at 800?μmol/L. In addition, Hcy also increased the shedding of procoagulant endothelial MPs. Blocking of PS with 128?nmol/L annexin V reduced approximately 70% CPA of HUVECs and endothelial MPs, but human anti-tissue factor antibody had little inhibitive effect. Our results showed that Hcy increased CPA of HUVECs via PS externalization and MPs release. Our present study has implications for hyperhomocysteinemia-related hypercoagulability.  相似文献   

10.
11.
The present study examined potential interactions between endothelial NO synthase (eNOS), heat shock protein (HSP)90, and Akt in vascular endothelial cells stimulated with globular adiponectin to produce nitric oxide (NO). Globular adiponectin-induced eNOS phosphorylation was accompanied by eNOS-HSP90-Akt complex formation, resulting in a dose-dependent increase in NO release. Globular adiponectin stimulated binding of HSP90 to eNOS, and inhibition of HSP90 significantly suppressed globular adiponectin-stimulated NO release. Globular adiponectin also caused Akt phosphorylation, and inhibition of PI3 kinase significantly suppressed globular adiponectin-stimulated NO release. This study also examined whether globular adiponectin really induces endothelial-dependent vasodilation using rings from rat thoracic aorta. It was observed that globular adiponectin caused dose-dependent vasorelaxation in the aorta. These results indicate that stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced eNOS phosphorylation and NO production, and to endothelium-dependent vasorelaxation.  相似文献   

12.
Vascular endothelial growth factor A (VEGF-A) binds to the VEGFR2 receptor tyrosine kinase, regulating endothelial function, vascular physiology and angiogenesis. However, the mechanism underlying VEGFR2 turnover and degradation in this response is unclear. Here, we tested a role for heat-shock proteins in regulating the presentation of VEGFR2 to a degradative pathway. Pharmacological inhibition of HSP90 stimulated VEGFR2 degradation in primary endothelial cells and blocked VEGF-A-stimulated intracellular signaling via VEGFR2. HSP90 inhibition stimulated the formation of a VEGFR2-HSP70 complex. Clathrin-mediated VEGFR2 endocytosis is required for this HSP-linked degradative pathway for targeting VEGFR2 to the endosome-lysosome system. HSP90 perturbation selectively inhibited VEGF-A-stimulated human endothelial cell migration in vitro. A mouse femoral artery model showed that HSP90 inhibition also blocked blood vessel repair in vivo consistent with decreased endothelial regeneration. Depletion of either HSP70 or HSP90 caused defects in blood vessel formation in a transgenic zebrafish model. We conclude that perturbation of the HSP70-HSP90 heat-shock protein axis stimulates degradation of endothelial VEGFR2 and modulates VEGF-A-stimulated intracellular signaling, endothelial cell migration, blood vessel development and repair.  相似文献   

13.
Endothelial nitric oxide (NO) synthase (eNOS) is regulated by heat shock protein 90 (HSP90), a heat-inducible protein; however, the effect of heat shock on eNOS expression and eNO release is unknown. Bovine aortic endothelial cells were incubated for 1 h at 37 degrees C, 42 degrees C, or 45 degrees C and cell lysates were evaluated with the use of Western blotting. We observed a 2.1 +/- 0.1-fold increase in eNOS protein content, but no change in HSP90 content, HSP70 content, or HSP90/eNOS association, 24 h after heat shock at 42 degrees C. We also observed a 7.7 +/- 1.5-fold increase in HSP70 protein content, but did not observe a change in eNOS or HSP90 24 h after heat shock at 45 degrees C. eNOS activity and maximal bradykinin-stimulated NO release was significantly increased 24 h after heat shock at 42 degrees C. Heat shock in rats (core temperature: 42 degrees C, 15 min) resulted in a significant increase in aortic eNOS, HSP90, and HSP70 protein content. The aorta from heat-shocked rats exhibited a decreased maximal contractile response to phenylephrine, which was abolished by preincubation with NG-nitro-l-arginine. We conclude that prior heat shock is a physical stimulus of increased eNOS expression and is associated with an increase in eNOS activity, agonist-stimulated NO release, and a decreased vasoconstrictor response.  相似文献   

14.
The myocardial inflammatory response contributes to cardiac functional injury associated with heart surgery obligating global ischemia/reperfusion (I/R). Toll-like receptors (TLRs) play an important role in the mechanism underlying myocardial I/R injury. The aim of this study was to examine the release of small constitutive heat shock proteins (HSPs) from human and mouse myocardium after global ischemia and examine the role of extracellular small HSP in myocardial injury. HSP27 release was assessed by enzyme-linked immunosorbent assay. Anti-HSP27 was applied to evaluate the role of extracellular HSP27 in the postischemic inflammatory response and functional injury in mouse hearts. Isolated hearts and cultured coronary vascular endothelial cells were exposed to recombinant HSP27 to determine its effect on proinflammatory signaling and production of proinflammatory mediators. HSP27 levels were markedly elevated in coronary sinus blood of patients and in coronary effluent of mouse hearts after global ischemia. Neutralizing extracellular HSP27 suppressed myocardial nuclear factor (NF)-κB activation and interleukin (IL)-6 production and improved cardiac function in mouse hearts. Perfusion of HSP27 to mouse hearts induced NF-κB activation and IL-6 production and depressed contractility. Further, recombinant HSP27 induced NF-κB phosphorylation and upregulated monocyte chemoattractant protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1 production in both human and mouse coronary vascular endothelial cells. TLR2 knockout (KO) or TLR4 mutation abolished NF-κB phosphorylation and reduced MCP-1 and ICAM-1 production induced by extracellular HSP27 in endothelial cells. In conclusion, these results show that the myocardium releases HSP27 after global ischemia and that extracellular HSP27 is proinflammatory and contributes to the inflammatory mechanism of myocardial functional injury. Both TLR2 and TLR4 are involved in mediating the proinflammatory effect of extracellular HSP27.  相似文献   

15.
Heat shock protein (HSP)70 can be released from tumor cells and stimulate a potent antitumor immune response. However, HSP70 does not contain a consensus secretory signal and thus cannot traverse the plasma membrane by conventional mechanisms. We have observed HSP70 release from intact human prostate carcinoma cell lines (PC-3 and LNCaP) by a mechanism independent of de novo HSP70 synthesis or cell death. This pathway is similar to one used by the leaderless protein IL-1beta. Our studies show that HSP70 release involves transit though an endolysosomal compartment and is inhibited by lysosomotropic compounds. In addition, the rate of HSP70 secretion correlates well with the appearance of the lysosomal marker LAMP1 on the cell surface, further suggesting the role for endolysosomes. The entry of HSP70 into this secretory compartment appears to involve the ABC family transporter proteins and ABC transporter inhibitor glibenclamide antagonizes secretion. Although the cell signals involved in triggering stress induced HSP70 release though this lysosomal pathway are largely unknown, our experiments suggest a regulatory role for extracellular ATP. These mechanisms appear to be shared by IL-1beta secretion. Following release, we observed the binding of extracellular HSP70 to the cell surface of the prostate carcinoma cells. These findings suggest that secreted HSP70 can take part in paracrine or autocrine interactions with adjacent cell surfaces. Our experiments therefore suggest a mechanism for HSP70 secretion and binding to the surface of other cells that may be involved in recognition of the tumor cells by the immune system.  相似文献   

16.
The nitric oxide receptor soluble guanylyl cyclase (sGC) exists in multimeric protein complexes, including heat shock protein (HSP) 90 and endothelial nitric oxide synthase. Inhibition of HSP90 by geldanamycin causes proteasomal degradation of sGC protein. In this study, we have investigated whether COOH terminus of heat shock protein 70-interacting protein (CHIP), a co-chaperone molecule that is involved in protein folding but is also a chaperone-dependent ubiquitin E3 ligase, could play a role in the process of degradation of sGC. Transient overexpression of CHIP in COS-7 cells degraded heterologous sGC in a concentration-related manner; this downregulation of sGC was abrogated by the proteasome inhibitor MG-132. Transfection of tetratricopeptide repeats and U-box domain CHIP mutants attenuated sGC degradation, suggesting that both domains are indispensable for CHIP function. Results from immunoprecipitation and indirect immunofluorescent microscopy experiments demonstrated that CHIP is associated with sGC, HSP90, and HSP70 in COS-7 cells. Furthermore, CHIP increased the association of HSP70 with sGC. In in vitro ubiquitination assays using purified proteins and ubiquitin enzymes, E3 ligase CHIP directly ubiquitinated sGC; this ubiquitination was potentiated by geldanamycin in COS-7 cells, followed by proteasomal degradation. In rat aortic smooth muscle cells, endogenous sGC was also degraded by adenovirus-infected wild-type CHIP but not by the chaperone interaction-deficient K30A CHIP, whereas CHIP, but not K30A, attenuated sGC expression in, and nitric oxide donor-induced relaxation of, rat aortic rings, suggesting that CHIP plays a regulatory role under physiological conditions. This study reveals a new mechanism for the regulation of sGC, an important mediator of cellular and vascular function.  相似文献   

17.
Proteome analysis of human umbilical endothelial cells was performed to identify proteins that are modified during vascular endothelial cell growth factor (VEGF)-induced transition from the quiescent into the proliferating-migrative phenotype. Subtractive analysis of two-dimensional gel patterns of human endothelial cells, before and after stimulation with VEGF(165), revealed differences in 85 protein spots. All proteins were identified by peptide sequencing and peptide mass fingerprinting using an electrospray spectrometer. The proteins identified were members of specific families including Ca(2+)-binding proteins, fatty-acid binding proteins, structural proteins, and chaperones. Remarkably, there was a massive activation of cellular machinery for both protein synthesis and protein degradation. Thus, among up-regulated proteins there were members of all groups of heat shock proteins (HSPs; HSP 27, HSP 60, HSP 70p5, HSP 70p8, HSP 90, and HSP 96) and some other proteins showing either chaperone activity or which participate in assembly of multimolecular structures (TCP-1, desmoplakins, junction plakoglobin, GRP 94, thioredoxin related protein, and peptidylprolyl isomerase). The increased expression of HSPs was confirmed at the mRNA level at different stages of treatment with VEGF. Similarly, components of the proteolytic machinery for the degradation of misfolded proteins (ER-60, cathepsin D, proteasome subunits, and protease inhibitor 6) were also up-regulated. On the other hand, changes in the expression of structural proteins (T-plastin, vimentin, alpha tubulin, actin, and myosin) could account, at least in part, for the different morphologies displayed by migrating endothelial cells. In summary, our data show that VEGF levels similar to those during physiological stresses induce a number of genes and multiple endogenous pathways seem to be engaged in restoring cellular homeostasis. To ensure cell survival, the molecular chaperones (the heat shock family of stress proteins) are highly up-regulated providing protein-folding machinery to repair or degrade misfolded proteins.  相似文献   

18.
A natural ligand of peroxisome proliferator-activated receptor gamma (PPARgamma), 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), decreases endothelial nitric oxide synthase (eNOS) expression by an unknown mechanism. Here we found that 15d-PGJ(2)-induced eNOS reduction is inversely associated with heat shock protein 70 (HSP70) induction in endothelial cells. Treatment of cells with 15d-PGJ(2) decreased eNOS protein expression in a concentration- and time-dependent manner, but independently of PPARgamma with no effect on mRNA levels. Although 15d-PGJ(2) elicited endothelial apoptosis, inhibition of both pan-caspases and cathepsins failed to reverse reduction of eNOS protein. Interestingly, we observed that 15d-PGJ(2) induced HSP70 in a dose-dependent manner. Immunoprecipitation and heat shock treatment demonstrated that eNOS reduction was strongly related to HSP70 induction. Cellular fractionation revealed that treatment with 15d-PGJ(2) increased eNOS distribution 2.5-fold from soluble to insoluble fractions. These findings provide new insights into mechanisms whereby eNOS regulation by 15d-PGJ(2) is related to HSP70 induction.  相似文献   

19.
Zhu WG  Li S  Lin LQ  Yan H  Fu T  Zhu JH 《Cellular immunology》2009,254(2):110-116
Atherosclerosis is a long-term chronic inflammatory and immunological disease. Endothelial dysfunction and the dendritic cell (DC) immune response are pivotal early events in atherogenesis. This study investigated the effects and possible mechanisms of action of homocysteine (Hcy) on DC adhesion to and transmigration between endothelial cells (ECs), and indicated a novel immunoregulatory mechanism by which Hcy induces atherogenesis. When ECs were stimulated with increasing concentrations of Hcy, immunofluorescence showed that endothelial reactive oxygen species (ROS) generation strikingly increased, while nitrite assay showed that nitric oxide (NO) release markedly decreased. Furthermore, DC adhesion and transmigration were significantly increased when ECs were activated by Hcy. However, pretreatment of ECs with antioxidant before Hcy markedly attenuated the induction of DC adhesion and transmigration, dependent on the intracellular ROS decrease and endothelial NO increase. In conclusion, DC adhesion and transmigration are significantly increased by vascular oxidative stress under conditions of elevated Hcy levels. These findings provide insight into the inflammatory processes and immune responses occurring in atherosclerosis induced by Hcy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号