首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hepatocellular carcinoma (HCC) is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2) was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients. Furthermore, knockdown of PKM2 suppressed aerobic glycolysis and cell proliferation in HCC cell lines in vitro. Importantly, knockdown of PKM2 hampered HCC growth in both subcutaneous injection and orthotopic liver implantation models, and reduced lung metastasis in vivo. Of significance, PKM2 over-expression in human HCCs was associated with a down-regulation of a liver-specific microRNA, miR-122. We further showed that miR-122 interacted with the 3UTR of the PKM2 gene. Re-expression of miR-122 in HCC cell lines reduced PKM2 expression, decreased glucose uptake in vitro, and suppressed HCC tumor growth in vivo. Our clinical data and functional studies have revealed a novel biological mechanism involved in HCC metabolic reprogramming.  相似文献   

3.
CD147 molecule is reported to be correlated with the malignancy of some cancers; however, it remains unclear whether it is involved in the progression of hepatocellular carcinoma (HCC). Here, we investigated the function of HAb18G/CD147, a member of CD147 family, and its antibodies, HAb18 and LICARTIN, in HCC invasion and metastasis. We observed that HAb18G/CD147 gene silence in HCC cells significantly decreased the secretion of matrix metalloproteinase (MMP) and the invasive potential of HCC cells (P < 0.001). MMP silence in HCC cells also significantly suppressed the invasion of the cells when cocultured with fibroblasts; however, its inhibitory effect was significantly weaker than that of both HAb18G/CD147 silence in HCC cells and that of MMP silence in fibroblasts (P < 0.001). Blocking theHAb18G/CD147 molecule on HCC cells with HAb18 monoclonal antibody resulted in a similar suppressive effect on MMP secretion and cell invasion, but with no significant effects on the cell growth. (131)I-labeled HAb18 F(ab')(2) (LICARTIN), however, significantly inhibited the in vitro growth of HCC cells (P < 0.001). In an orthotopic model of HCC in nude mice, HAb18 and LICARTIN treatment effectively reduced the tumor growth and metastasis as well as the expression of three major factors in the HCC microenviroment (MMPs, vascular endothelial growth factor, and fibroblast surface protein) in the paracancer tissues. Overall, these results suggest that HAb18G/CD147 plays an important role in HCC invasion and metastasis mainly via modulating fibroblasts, as well as HCC cells themselves to disrupt the HCC microenviroment. LICARTIN can be used as a drug targeting to HAb18G/CD147 in antimetastasis and recurrence therapy of HCC.  相似文献   

4.
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Due to the insidious onset of HCC, early diagnosis is relatively difficult. HCC also exhibit strong resistance to first-line therapeutic drugs. Therefore, novel precise diagnostic and prognostic biomarkers for HCC are urgently needed. We employed a combination methods of bioinformatic analysis, cell functional experiments in vitro and a xenograft tumour model in vivo to systematically investigate the role of solute carrier family 37 member 3 (SLC37A3) in HCC progression. First, bioinformatic analysis demonstrated that SLC37A3 expression was significantly increased in HCC tissues compared with normal tissues. SLC37A3 expression was also associated with tumour stages and various clinical and pathological features. Similar trends in SLC37A3 expression levels were verified in HCC cells and by using IHC experiments. Next, survival analysis showed that the overall, 1-year, 3-year and 5-year survival rates were decreased in HCC patients with high SLC37A3 expression compared with HCC patients low SLC37A3 expression. Xenograft tumour experiments also suggested that SLC37A3 knockdown significantly inhibited HCC tumourigenesis in vivo. Cell functional experiments suggested that SLC37A3 knockdown inhibited HCC cell proliferation and metastasis, but promoted apoptosis. Furthermore, RNA-seq analysis of SLC37A3-knockdown HCC cells indicated that the type 1 diabetes mellitus (T1DM)-related signalling pathway was significantly altered. The expression levels of insulin secretion-related and glycolysis/gluconeogenesis-related genes were also altered, suggesting that SLC37A3 might be involved in the regulation of glucose homeostasis. In summary, SLC37A3 represents a prospective diagnostic and prognostic biomarker for HCC that functions in glucose metabolism regulation.  相似文献   

5.
6.
7.
Circular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.Subject terms: Liver cancer, Long non-coding RNAs  相似文献   

8.
The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC.  相似文献   

9.

Backgroud

RNA interference (RNAi) has recently emerged as a potential treatment modality for hepatocellular carcinoma (HCC) therapy, but the lack of cellular targets and sustained efficacy limits its application. The purpose of this study is to develop an HCC tissue-specific RNAi system and investigate its possibility for HCC treatment.

Methods

Two different HCC-specific RNAi systems in which therapeutic miRNA or shRNA against target gene (Beclin 1) was directly or indirectly driven by alpha-fetoprotein promoter (AFP-miRNA and AFP-Cre/LoxP-shRNA) were constructed. Human HCC cell lines (HepG2, Hep3B and HCCLM3) and non-HCC cell lines (L-02, Hela and SW1116) were infected with the systems. The effectiveness and tissue-specificity of the systems were examined by Q-PCR and western blot analysis. The efficacy of the systems was further tested in mouse model of HCC by intravenous or intratumoral administration. The feasibility of the system for HCC treatment was evaluated by applying the system as adjuvant therapy to enhance sorafenib treatment. An AFP-Cre/LoxP-shRNA system targeting Atg5 gene (AFP-Cre/LoxP-shRNA-Atg5) was constructed and its efficacy in sensitizing HCC cells (MHCC97L/PLC) to sorafenib treatment was examined by apoptosis assay in vitro and tumorigenesis assay in vivo.

Results

The AFP-miRNA system could silence target gene (Beclin 1) but required a high titer which was lethal to target cells. The AFP-Cre/LoxP-shRNA system could efficiently knockdown target gene while maintain high HCC specificity. Intratumoral injection of the AFP-Cre/LoxP-shRNA system could efficiently silence target gene (Beclin 1) in vivo while intravenous administration could not. The AFP-Cre/LoxP-shRNA system target Atg5 gene could significantly sensitize MHCC97L/PLC cells to sorafenib-induced apoptosis in vitro and tumor growth suppression in vivo.

Conclusions

An efficient HCC tissue-specific RNAi system (AFP-Cre/LoxP-shRNA) was successfully established. The system provides a usable tool for HCC-specific RNAi therapy, which may serve as a new treatment modality for HCC.  相似文献   

10.
Isocorydine (ICD), an anticancer agent under current evaluation, decreased the percentage of side population (SP) cells significantly in hepatocellular carcinoma (HCC) cell lines. ICD treatment sensitized cancer cells to doxorubicin (DXR), a conventional clinical chemotherapeutic drug for HCC. We found that ICD decreased the percentage of SP cells in HCC cell lines by preferentially killing SP cells. In the early stage of treatment, ICD inhibited SP cell growth by arresting cells in G2/M; later, it induced apoptosis. Our xenograft model confirmed that ICD selectively reduced the size and weight of SP-induced tumor masses in vivo. Furthermore, it was found that programmed cell death 4 (PDCD4), a tumor suppressor gene, was relatively low when expressed in SP cells compared with non-SP cells, and its expression level was remarkably elevated when cells were treated with ICD. Taken together, these data suggest that ICD is a drug that may target the SP cells of HCC.  相似文献   

11.
The cancer-testis antigen 23 (CT23) gene has been reported in association with the pathogenesis and progress of hepatocellular carcinoma (HCC). However, the alterations of gene expression profiling induced by CT23 knockdown in HCC cells remains largely unknown. In this study, the RNA interfering (RNAi) method was used to silence CT23 expression in BEL-7404 cells. Microarray analysis was performed on mRNA extracted from the CT23 knockdown cells and the control cells to determine the alterations of gene expression profiles. The result showed a total of 1051 genes expressed differentially (two-fold change), including 470 genes upregulated and 581 gene downregulated in the CT23 knockdown cells. A bioinformatic analysis showed that the functional differentially expressed genes (DEGs) were linked to cell proliferation, migration, and apoptosis, and metallothionein 1 (MT1) attained the maximum enrichment scores in functional annotation, classification, and pathway analysis of DEGs. Furthermore, Western blot analysis and cell behaviors assays verified that CT23 modulates cell proliferation, migration, and apoptosis by regulating MT1 expression in HCC cells and non-neoplastic hepatocytes. In summary, downregulated CT23 gene in BEL-7404 cells might change the expressions of carcinogenesis and progression related genes in HCC by upregulating MT1 expression, which would provide insight into searching for a novel therapeutic target for HCC.  相似文献   

12.
PurposeOur study aimed to study the role of lncRNA TP73-AS1/miR-539/MMP-8 axis in modulating M2 macrophage polarization in hepatocellular carcinoma (HCC).MethodsThe gene expression levels of TP73-AS1, miR-539 and MMP-8 were modified by transfection with the overexpression or knockdown vectors. The patient survival rate was analyzed using Kaplan-Meier method. The levels of TP73-AS1, miR-539, MMP-8 and M1/2 macrophage polarization markers were analyzed by qRT-PCR, western blot, and flow cytometry. The release of TGF-β1 in the supernatant was determined by ELISA assay. The interaction between TP73-AS1, miR-539 and MMP-8 was analyzed by bioinformatics analysis and dual-luciferase reporter assays. Mouse xenograft model was further established to examine the therapeutic effects of the TP73-AS1 knockdown and miR-539 overexpression in vivo.ResultsWe found TP73-AS1 and MMP-8 upregulation, and miR-539 downregulation in HCC tissues and cell lines. Lower TP73-AS1 and MMP-8 expressions and higher miR-539 expression were associated with higher survival rate of patients. M2-macrophage markers CD206, Arg-1 and CD163 were significantly upregulated in the tumor tissues. TP73-AS1 negatively and directly regulated miR-539 and knockdown of TP73-AS1 inhibited MMP-8 expression and M2 macrophage polarization. Also, overexpression of miR-539 suppressed M2 macrophage polarization by negatively regulating MMP-8. Furthermore, knockdown of MMP-8 also restrained M2 macrophage polarization via inhibiting TGF-β1 signaling. We also found knockdown of TP73-AS1 or overexpression of miR-539 inhibited HCC tumor growth and M2 macrophage infiltration in vivo.ConclusionOur study demonstrated lncRNA TP73-AS1 negatively regulated miR-539 to promote MMP-8 expression, which activated TGF-β1 signaling to induce M2 macrophage polarization in HCC.  相似文献   

13.
Latent membrane protein 2A (LMP2A) is found to play a key role in the development of nasopharyngeal carcinoma (NPC). However, the role of LMP2A silencing in the inhibition of cell growth of NPC has not been clarified. In this study, we inhibited LMP2A gene expression by lentivirus-mediated RNAi, to explore the effects of LMP2A silencing on the growth of NPC cell line in vitro. A lentivirus-mediated RNAi technology was employed to specifically knock down the LMP2A gene in NPC cell line C666-1. Quantitative real-time polymerase chain reaction, Western blot, flow cytometry and colony formation assays were performed to evaluate the expression of LMP2A and biological behavior of cell line C666-1 in vitro. We successfully construct a highly efficient and stable lentivirus vector, which efficiently downregulate the expression of LMP2A gene in infected cell line C666-1. Down-regulation of the expression of LMP2A significantly inhibits the proliferation and colony formation of C666-1 cells. In addition, the specific down-regulation of LMP2A arrests cells in G0/G1 phase of cell cycle and increases apoptosis rate. Our findings suggest that lentivirus-mediated RNAi knockdown of LMP2A inhibits the growth of NPC cell line C666-1 in vitro, and LMP2A may be a potential target for gene therapy in treatment of NPC.  相似文献   

14.
Hepatocellular carcinoma (HCC) remains the fifth most frequent cancer with high mortality rate worldwide. However, the underlying molecular mechanisms of HCC progression are still barely known. Long noncoding RNAs (lncRNAs) have been recognized as significant therapeutic targets for HCC. Recently, the biological role of LINC00857 in several cancer types has been reported. Our present study was aimed to investigate the role of LINC00857 in HCC progression. We observed that LINC00857 was overexpressed in HCC cell lines (Huh7, Hep3B, HepG2, MHCC-97H, and SNU449). Knockdown of LINC00857 significantly repressed Hep-3B and SNU449 cell proliferation and inhibited the HCC cell colony formation. In addition, cell apoptosis was induced by the silence of LINC00857 and cell cycle progression was blocked in G1 phase. Besides these, downregulation of LINC00857 was able to restrain HCC cell migration and invasion capacity via enhancing epithelial-mesenchymal transition (EMT) process. As displayed, E-cadherin protein expression was increased by LINC00857 silence, while N-cadherin protein level was repressed by LV-shLINC00857 in HCC cells. Finally, the in vivo assays were used and the data indicated that LINC00857 could also obviously suppress the HCC tumor growth in vivo. In conclusion, our study revealed that LINC00857 might provide a novel perspective for the HCC treatment.  相似文献   

15.
16.
17.
Forkhead Box Q1 (FOXQ1)是FOX家族的重要成员之一,在许多肿瘤中异常高表达,而FOXQ1在肝癌中的研究甚少。本研究通过重组慢病毒载体介导的FOXQ1 shRNA感染肝癌SMMC-7721细胞,敲减FOXQ1的表达,研究FOXQ1对SMMC-7721细胞增殖的影响。CCK8法、倍增时间及集落形成实验显示,敲减FOXQ1导致细胞生长减慢,倍增时间延长,细胞集落形成能力减弱。流式细胞技术检测证明,与对照比较,敲减FOXQ1的表达可显著增加G1期细胞、减少S期细胞,提示G1期阻滞。qRT-PCR和Western印迹法显示,cyclinD1和c-Myc表达下调,其可能与G1阻滞有关。上述结果提示,沉默FOXQ1的表达能够抑制SMMC-7721细胞增殖,其机制可能与cyclinD1和c-Myc的下调有关。  相似文献   

18.
Epithelial-to-mesenchymal transition (EMT) has an important role in invasion and metastasis of hepatocellular carcinoma (HCC). To explore the regulatory mechanism of atypical protein kinase C ι (aPKCι) signaling pathways to HCC development, and find an agent for targeted therapy for HCC, immortalized murine hepatocytes were employed to establish an EMT cell model of HCC, MMH-RT cells. Our study showed that EMT took place in MMH-R cells under the effect of transforming growth factor-β1 (TGF-β1) overexpressing aPKCι. Furthermore, we showed that the aPKCι blocking agent aurothiomalate (ATM) inhibited EMT and decreased invasion of hepatocytes. Moreover, ATM selectively inhibited proliferation of mesenchymal cells and HepG2 cells and induced apoptosis. However, ATM increased proliferation of epithelial cells and had little effect on apoptosis and invasion of epithelial cells. In conclusion, our result suggested that aPKCι could be an important bio-marker of tumor EMT, and used as an indicator of invasion and malignancy. ATM might be a promising agent for targeted treatment of HCC.  相似文献   

19.
Our previous studies identified the oncogenic role of p21-activated kinase 1 (PAK1) in hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC). Contrarily, PAK6 was found to predict a favorable prognosis in RCC patients. Nevertheless, the ambiguous tumor suppressive function of PAK6 in hepatocarcinogenesis remains obscure. Herein, decreased PAK6 expression was found to be associated with tumor node metastasis stage progression and unfavorable overall survival in HCC patients. Additionally, overexpression and silence of PAK6 experiments showed that PAK6 inhibited xenografted tumor growth in vivo, and restricted cell proliferation, colony formation, migration, and invasion and promoted cell apoptosis and anoikis in vitro. Moreover, overexpression of kinase dead and nuclear localization signal deletion mutants of PAK6 experiments indicated the tumor suppressive function of PAK6 was partially dependent on its kinase activity and nuclear translocation. Furthermore, gain or loss of function in polycomb repressive complex 2 (PRC2) components, including EZH2, SUZ12, and EED, elucidated epigenetic control of H3K27me3-arbitrated PAK6 down-regulation in hepatoma cells. More importantly, negative correlation between PAK6 and EZH2 expression was observed in hepatoma tissues from HCC patients. These data identified the tumor suppressive role and potential underlying mechanism of PAK6 in hepatocarcinogenesis.  相似文献   

20.
Ribosomal protein s15a (RPS15A) is a highly conserved protein that promotes mRNA/ribosome interactions early in translation. Recent evidence showed that RPS15A could stimulate growth in yeast, plant and human lung carcinoma. Here we report that RPS15A knockdown could inhibit hepatic cancer cell growth in vitro. When transduced with shRPS15A-containing lentivirus, we observed inhibited cell proliferation and impaired colony formation in both HepG2 and Bel7404 cells. Furthermore, cell cycle analysis showed that HepG2 cells were arrested at the G0/G1 phase when transduced with Lv-shRPS15A. In conclusion, our findings provide for the first time the biological effects of RPS15A in hepatic cancer cell growth. RPS15A may play a prominent role in heptocarcinogenesis and serve as a potential therapeutic target in hepatocellular carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号