首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein-tyrosine phosphatase PTP-1B is an important regulator of intracellular protein tyrosine phosphorylation, and is itself regulated by phosphorylation. We report that PTP-1B and its yeast analog, YPTP, are phosphorylated and activated by members of the CLK family of dual specificity kinases. CLK1 and CLK2 phosphorylation of PTP-1B in vitro activated the phosphatase activity approximately 3-5-fold using either p-nitrophenol phosphate, or tyrosine-phosphorylated myelin basic protein as substrates. Co-expression of CLK1 or CLK2 with PTP-1B in HEK 293 cells led to a 2-fold stimulation of phosphatase activity in vivo. Phosphorylation of PTP-1B at Ser(50) by CLK1 or CLK2 is responsible for its enzymatic activation. These findings suggest that phosphorylation at Ser(50) by serine threonine kinases may regulate the activation of PTP-1B in vivo. We also show that CLK1 and CLK2 phosphorylate and activate the S. cerevisiae PTP-1B family member, YPTP1. CLK1 phosphorylation of YPTP1 led to a 3-fold stimulation of phosphatase activity in vitro. We demonstrate that CLK phosphorylation of Ser(83) on YPTP1 is responsible for the activation of this enzyme. These findings demonstrate that the CLK kinases activate PTP-1B family members, and this phosphatase may be an important cellular target for CLK action.  相似文献   

2.
Forsell PA  Boie Y  Montalibet J  Collins S  Kennedy BP 《Gene》2000,260(1-2):145-153
PTP-1B is a ubiquitously expressed intracellular protein tyrosine phosphatase (PTP) that has been implicated in the negative regulation of insulin signaling. Mice deficient in PTP-1B were found to have an enhanced insulin sensitivity and a resistance to diet-induced obesity. Interestingly, the human PTP-1B gene maps to chromosome 20 q13.1 in a region that has been associated with diabetes and obesity. Although there has been a partial characterization of the 3′ end of the human PTP-1B gene, the complete gene organization has not been described. In order to further characterize the PTP-1B gene, we have cloned and determined the genomic organization for both the human and mouse PTP-1B genes including the promoter. The human gene spans >74 kb and features a large first intron of >54 kb; the mouse gene likewise contains a large first intron, although the exact size has not been determined. The organization of the human and mouse PTP-1B genes is identical except for an additional exon at the 3′ end of the human that is absent in the mouse. The mouse PTP-1B gene maps to the distal arm of mouse chromosome 2 in the region H2-H3. This region is associated with a mouse obesity quantitiative trait locus (QTL) and is syntenic with human chromosome 20. The promoter region of both the human and mouse genes contain no TATA box but multiple GC-rich sequences that contain a number of consensus SP-1 binding sites. The basal activity of the human PTP-1B promoter was characterized in Hep G2 cells using up to 8 kb of 5′ flanking sequence. A 432 bp promoter construct immediately upstream of the ATG was able to confer maximal promoter activity. Within this sequence, there are at least three GC-rich sequences and one CCAAT box, and deletion of any of these elements results in decreased promoter activity. In addition, the promoter in a number of mouse strains contains, 3.5 kb upstream of the start codon, an insertion of an intracisternal a particle (IAP) element that possibly could alter the expression of PTP-1B mRNA in these strains.  相似文献   

3.
Protein tyrosine phosphatases (PTPs) play multiple roles in many physiological processes. Over-expression of the PTPs has been shown to be associated with cellular toxicity, which may also lead to the deletion of the respective gene from stable cell clones. We also observed that PTP-1B over-expression in CHO and HEK293 stable cell clones led to cytotoxicity and low revival rates during clone generation and maintenance. To address these issues, bacmid transposition technology was utilized to generate recombinant PTP-1B baculovirus, and Spodoptera frugiperda (Sf9 and Sf21) insect cell lines were infected with the virus. The data obtained on expression and activity of the PTP-1B highlights clear advantage of the recombinant baculovi-rus-insect cell expression system over the mammalian cell line technique due to increase in enzyme activity, strongly inhibited by phosphatase specific inhibitor RK682. Possible application of the expression system for producing active enzymes in bulk quantity for a new drug discovery is also discussed.  相似文献   

4.
Seven Tyr-protein phosphatase activities were isolated from bovine brain using phosphotyrosyl-casein as a model substrate. The activities were resolved from the cytosolic fraction by a three-step procedure employing successive DEAE-cellulose, phosphocellulose, and gel permeation chromatography steps. The seven activities accounted for 70% of the Tyr-protein phosphatase activity in bovine brain extracts and were distinct from type 1 and type 2 Ser/Thr-protein phosphatases and from the major alkaline phosphatase activities. Apparent molecular weights of the activities by gel permeation chromatography were: phosphotyrosyl-protein phosphatase (PTP)-1A (Mr 86,000), PTP-1B (Mr 24,000), PTP-2 (Mr 88,000), PTP-3 (Mr 90,000), PTP-4 (Mr 80,000), PTP-5 (Mr 48,000), and PTP-6 (Mr 104,000). PTP-5 was the major activity accounting for 26% of total while the remaining activity was divided rather evenly among the other six activities. PTP-5 was further purified to near homogeneity by additional chromatographies on Affi-Gel Blue, heparin-agarose, and Mono S giving an overall purification of 50,000-fold and a yield of 5.8%. One of two major polypeptides (Mr 46,000) in the preparation was identified as PTP-5 since it alone expressed protein phosphatase activity when protein-staining bands were eluted from sodium dodecyl sulfate-polyacrylamide gels and renatured. PTP-5 had a neutral pH optimum, and using phosphotyrosyl-casein as substrate it had a Km of 130 nM and a Vmax of 10 mumol Pi released.min-1.mg protein-1. These kinetic parameters are well within the range of values obtained for other pure protein phosphatases. PTP-5 also dephosphorylated pp60v-src (autophosphorylated at Tyr-416) at 10% of the rate observed with phosphotyrosyl-casein. Additionally the ratio of phosphotyrosyl-casein/pp60v-src phosphatase activity was relatively constant throughout the PTP-5 purification procedure. These results indicate that PTP-5 is able to bind and efficiently dephosphorylate phosphotyrosyl-proteins and suggest that it is a physiologically relevant Tyr-protein phosphatase.  相似文献   

5.
J V Frangioni  A Oda  M Smith  E W Salzman    B G Neel 《The EMBO journal》1993,12(12):4843-4856
The non-transmembrane phosphotyrosine phosphatase 1B (PTP-1B) is an abundant enzyme, normally localized to the cytosolic face of the endoplasmic reticulum via a C-terminal targeting sequence. We have found that agonist-induced platelet activation results in proteolytic cleavage of PTP-1B at a site upstream from this targeting sequence, causing subcellular relocation of its catalytic domain from membranes to the cytosol. PTP-1B cleavage is catalyzed by the calcium-dependent neutral protease calpain and is a general feature of platelet agonist-induced aggregation. Moreover, PTP-1B cleavage correlates with the transition from reversible to irreversible platelet aggregation in platelet-rich plasma. Engagement of gpIIb-IIIa is necessary for inducing PTP-1B cleavage, suggesting that integrins regulate tyrosine phosphatases as well as tyrosine kinases. PTP-1B cleavage is accompanied by a 2-fold stimulation of its enzymatic activity, as measured by immune complex phosphatase assay, and correlates with discrete changes in the pattern of tyrosyl phosphorylation. Cleavage and subcellular relocation of PTP-1B represents a novel mechanism for altering tyrosyl phosphorylation that may have important physiological implications in cell types other than platelets.  相似文献   

6.
We report the first intracellular characterization of an endogenous nontransmembrane protein tyrosine phosphatase (PTP). Using affinity-purified polyclonal antibodies, we have identified PTP-1B as a 50 kd serine phosphoprotein in immunoprecipitation and immunoblotting assays. Surprisingly, indirect immunofluorescence experiments indicate that PTP-1B is localized predominantly in the endoplasmic reticulum (ER). Subcellular fractionation is consistent with this localization and establishes that PTP-1B is tightly associated with microsomal membranes, with its phosphatase domain oriented towards the cytoplasm. The C-terminal 35 amino acids of PTP-1B are both necessary and sufficient for targeting to the ER. The finding of a tyrosine phosphatase on the ER suggests new possibilities for cellular events controlled by tyrosine phosphorylation.  相似文献   

7.
Although protein-tyrosine phosphatase 1B (PTP-1B) is a negative regulator of insulin action, adipose tissue from PTP-1B-/- mice does not show enhanced insulin-stimulated insulin receptor phosphorylation. Investigation of glucose uptake in isolated adipocytes revealed that the adipocytes from PTP-1B-/- mice have a significantly attenuated insulin response as compared with PTP-1B+/+ adipocytes. This insulin resistance manifests in PTP-1B-/- animals older than 16 weeks of age and could be partially rescued by adenoviral expression of PTP-1B in null adipocytes. Examination of adipose signaling pathways found that the basal p70S6K activity was at least 50% higher in adipose from PTP-1B-/- mice compared with wild type animals. The increased basal activity of p70S6K in PTP-1B-/- adipose correlated with decreases in IR substrate-1 protein levels and insulin-stimulated Akt/protein kinase B activity, explaining the decrease in insulin sensitivity even as insulin receptor phosphorylation was unaffected. The insulin resistance of the of the PTP-1B-/- adipocytes could also be rescued by treatment with rapamycin, suggesting that in adipose the loss of PTP-1B results in basal activation of mTOR (mammalian target of rapamycin) complex 1 leading to a tissue-specific insulin resistance.  相似文献   

8.
A fructose-fed hamster model of insulin resistance was previously documented to exhibit marked hepatic very low density lipoprotein (VLDL) overproduction. Here, we investigated whether VLDL overproduction was associated with down-regulation of hepatic insulin signaling and insulin resistance. Hepatocytes isolated from fructose-fed hamsters exhibited significantly reduced tyrosine phosphorylation of the insulin receptor and insulin receptor substrates 1 and 2. Phosphatidylinositol 3-kinase activity as well as insulin-stimulated Akt-Ser473 and Akt-Thr308 phosphorylation were also significantly reduced with fructose feeding. Interestingly, the protein mass and activity of protein-tyrosine phosphatase-1B (PTP-1B) were significantly higher in fructose-fed hamster hepatocytes. Chronic ex vivo exposure of control hamster hepatocytes to high insulin also appeared to attenuate insulin signaling and increase PTP-1B. Elevation in PTP-1B coincided with marked suppression of ER-60, a cysteine protease postulated to play a role in intracellular apoB degradation, and an increase in the synthesis and secretion of apoB. Sodium orthovanadate, a general phosphatase inhibitor, partially restored insulin receptor phosphorylation and significantly reduced apoB secretion. In summary, we hypothesize that fructose feeding induces hepatic insulin resistance at least in part via an increase in expression of PTP-1B. Induction of hepatic insulin resistance may then contribute to reduced apoB degradation and enhanced VLDL particle assembly and secretion.  相似文献   

9.
The insulin-like growth factor type I (IGF-I) receptor (IGF-IR), activated by its ligands IGF-I and IGF-II, can initiate several signal transduction pathways that mediate suppression of apoptosis, proliferation, differentiation, and transformation. Here we investigated the regulation of IGF-IR activation and function by protein tyrosine phosphatase 1B (PTP-1B). Coexpression of PTP-1B with a beta-chain construct of the IGF-IR (betaWT) inhibited IGF-IR kinase activity in fission yeast Schizosaccharomyces pombe, in COS cells, and in IGF-IR-deficient fibroblasts. In both spontaneously immortalized and simian virus 40 T antigen-transformed embryonic fibroblast cell lines derived from PTP-1B knockout mice, IGF-I induced higher levels of IGF-IR autophosphorylation and kinase activity than were induced in PTP-1B-expressing control cells. PTP-1B-deficient cells exhibited enhanced IGF-I-mediated protection from apoptosis in response to serum withdrawal or etoposide killing, as well as enhanced plating efficiency and IGF-I-mediated motility. Reexpression of PTP-1B in spontaneously immortalized fibroblasts resulted in decreased IGF-IR and AKT activation, as well as decreased protection from apoptosis and decreased motility. These findings demonstrate that PTP-1B can regulate IGF-IR kinase activity and function and that loss of PTP-1B can enhance IGF-I-mediated cell survival, growth, and motility in transformed cells.  相似文献   

10.
Protein tyrosine phosphatase 1B (PTP-1B) has been implicated in the regulation of the insulin receptor. Dephosphorylation of the insulin receptor results in decreased insulin signaling and thus decreased glucose uptake. PTP-1B-/- mice have increased insulin sensitivity and are resistant to weight gain when fed a high fat diet, validating PTP-1B as a potential target for the treatment of type 2 diabetes. Many groups throughout the world have been searching for selective inhibitors for PTP-1B, and most of them target inhibitors to PTP-1B-(1-298), the N-terminal catalytic domain of the enzyme. However, the C-terminal domain is quite large and could influence the activity of the enzyme. Using two constructs of PTP-1B and a phosphopeptide as substrate, steady state assays showed that the presence of the C-terminal domain decreased both the Km and the k(cat) 2-fold. Pre-steady state kinetic experiments showed that the presence of the C-terminal domain improved the affinity of the enzyme for a phosphopeptide 2-fold, primarily because the off-rate was slower. This suggests that the C-terminal domain of PTP-1B may contact the phosphopeptide in some manner, allowing it to remain at the active site longer. This could be useful when screening libraries of compounds for inhibitors of PTP-1B. A compound that is able to make contacts with the C-terminal domain of PTP-1B would not only have a modest improvement in affinity but may also provide for specificity over other phosphatases.  相似文献   

11.
Protein tyrosine phosphatase 1B (PTP-1B) is an enzyme that plays a critical role in down-regulating insulin signaling through dephosphorylation of the insulin receptor. Studies have shown that PTP-1B knockout mice showed increased insulin sensitivity in muscle and liver as well as resistance to obesity. A series of hydroxy benzofuran methyl ketones and their naturally mimicking dimers and linear and angular furanochalcones and flavones have been evaluated as PTP-1B inhibitors. Screened compounds displayed good inhibitory activity.  相似文献   

12.
Outside-in integrin alphaIIbbeta3 signaling is required for normal platelet thrombus formation and is triggered by c-Src activation through an unknown mechanism. In this study, we demonstrate an essential role for protein-tyrosine phosphatase (PTP)-1B in this process. In resting platelets, c-Src forms a complex with alphaIIbbeta3 and Csk, which phosphorylates c-Src tyrosine 529 to maintain c-Src autoinhibition. Fibrinogen binding to alphaIIbbeta3 triggers PTP-1B recruitment to the alphaIIbbeta3-c-Src-Csk complex in a manner that is dependent on c-Src and specific tyrosine (tyrosine 152 and 153) and proline (proline 309 and 310) residues in PTP-1B. Studies of PTP-1B-deficient mouse platelets indicate that PTP-1B is required for fibrinogen-dependent Csk dissociation from alphaIIbbeta3, dephosphorylation of c-Src tyrosine 529, and c-Src activation. Furthermore, PTP-1B-deficient platelets are defective in outside-in alphaIIbbeta3 signaling in vitro as manifested by poor spreading on fibrinogen and decreased clot retraction, and they exhibit ineffective Ca2+ signaling and thrombus formation in vivo. Thus, PTP-1B is an essential positive regulator of the initiation of outside-in alphaIIbbeta3 signaling in platelets.  相似文献   

13.
Protein tyrosine phosphatases (PTP) are crucial elements in eukaryotic signal transduction. Several reports suggested that the LMW-PTP family has oncogenic relevance. Moreover, LMW-PTP has been recognized as a negative regulator of insulin-mediated mitotic and metabolic signaling. Thus, inhibition of the LMW-PTP can be considered an attractive approach for the design of new therapeutic agents for the treatment of type II diabetes and for new antitumoral drugs. To date very few (and weak) inhibitors of LMW-PTP have been identified. On the basis of the reported weak activity of some flavonoids on phosphatases, we discovered a lead that originated a new class of highly active LMW-PTP inhibitors; these compounds inhibit also PTP-1B and are active in cellular assays. Docking experiments and SAR highlighted the possible binding mode of these compounds to the enzyme, putting the background for the future optimization of their inhibitory activity and selectivity towards the closely related enzyme PTP-1B.  相似文献   

14.
Protein-tyrosine phosphatase 1B (PTP-1B) is a major protein-tyrosine phosphatase that has been implicated in the regulation of insulin action, as well as in other signal transduction pathways. To investigate the role of PTP-1B in vivo, we generated homozygotic PTP-1B-null mice by targeted gene disruption. PTP-1B-deficient mice have remarkably low adiposity and are protected from diet-induced obesity. Decreased adiposity is due to a marked reduction in fat cell mass without a decrease in adipocyte number. Leanness in PTP-1B-deficient mice is accompanied by increased basal metabolic rate and total energy expenditure, without marked alteration of uncoupling protein mRNA expression. In addition, insulin-stimulated whole-body glucose disposal is enhanced significantly in PTP-1B-deficient animals, as shown by hyperinsulinemic-euglycemic clamp studies. Remarkably, increased insulin sensitivity in PTP-1B-deficient mice is tissue specific, as insulin-stimulated glucose uptake is elevated in skeletal muscle, whereas adipose tissue is unaffected. Our results identify PTP-1B as a major regulator of energy balance, insulin sensitivity, and body fat stores in vivo.  相似文献   

15.
The MSP domain is a conserved immunoglobulin-like structure that is important for C. elegans reproduction and human motor neuron survival. C. elegans MSPs are the most abundant proteins in sperm, where they function as intracellular cytoskeletal proteins and secreted hormones. Secreted MSPs bind to multiple receptors on oocyte and ovarian sheath cell surfaces to induce oocyte maturation and sheath contraction. MSP binding stimulates oocyte MPK-1 ERK MAP Kinase (MAPK) phosphorylation, but the function and mechanism are not well understood. Here we show that the Shp class protein-tyrosine phosphatase PTP-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote MSP-induced MPK-1 phosphorylation. PTP-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. We also provide evidence that MSP promotes production of reactive oxygen species (ROS), which act as second messengers to augment MPK-1 phosphorylation. The Cu/Zn superoxide dismutase SOD-1, an enzyme that catalyzes ROS breakdown in the cytoplasm, inhibits MPK-1 phosphorylation downstream of or in parallel to ptp-2. Our results support the model that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation. We propose that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling.  相似文献   

16.
A series of novel cyclopenta[d][1,2]-oxazine derivatives was prepared and evaluated for their inhibitory activity toward protein tyrosine phosphatase 1B (PTP-1B). Compound 6s was found to be an inhibitor of PTP-1B with nanomolar IC(50) value and high level of selectivity over other recombinant phosphatases.  相似文献   

17.
Protein tyrosine phosphatase 1B (PTP-1B) is a ubiquitously expressed cytosolicphosphatase best known for its role in insulin signaling. Despite the fact that it is highlyexpressed in hematopoietic tissues and has been shown to downregulate cytokinereceptor signaling, no physiological role for PTP-1B in immune regulation had beenreported. Our recent results show that the absence of PTP-1B affects murinemyelopoiesis through increased phosphorylation of the CSF-1 receptor tyrosine kinase.Here we further discuss the role of PTP-1B in monocyte/macrophage differentiation aswell as the implications of our findings in the context of PTP-1B inhibitors.  相似文献   

18.
Objective To investigate the effect of siRNA against PTP-1B on neonatal rat cardiac myocyte apoptosis induced by hypoxia-reoxygenation (H/R) and its molecular mechanisms. Methods Isolated neonatal and adult rat cardiac myocytes were cultured for 24 h after PTP-1B siRNA transfection, and with 2, 4 and 6 h of hypoxia followed by 6 h of reoxygenation (H/R). The cardiac myocyte apoptosis induced by the treatments was assessed by TUNEL staining. Levels of PTP-1B and phospho-Akt were determined by Western blot, colorimetric assay kits were used to measure activities of caspase-3 and 8, and co-immunoprecipitation was used to check the amount of PTP-1B bound to FasR. Sodium orthovanadate, a general pharmacological phosphatase blocker and LY294002, an inhibitor of PI3-kinase/Akt pathway, were respectively used to inhibit PTP-1B and Akt activity. Results H/R resulted in severe injury in cultured rat cardiomyocytes and upregulated PTP-1B expression. However, siRNA against PTP-1B significantly decreased the number of apoptotic cardiomyocytes induced by 4H/6R as compared with cells without siRNA treatment (Apoptotic index: 12.1 ± 1.4% vs. 23.2 ± 1.6%, P < 0.05), along with greater phosphorylation of Akt, reduced activities of caspase-3 and 8, and the lower association of PTP-1B with FasR. Vanadate and LY294002 also partly reduced apoptosis of cardiomyocytes induced by 4H/6R. Conclusions PTP-1B is a key regulator of apoptosis of cardiomyocytes induced by H/R, and siRNA against PTP-1B effectively protects cardiomyocytes against H/R injury, the mechanisms of which might be associated with Akt activation, the reduction of both caspase-3 and 8 activities, and the lower amount of PTP-1B bound to FasR.  相似文献   

19.
Inhibitors of PTP-1B could be therapeutically beneficial in the treatment of type 2 diabetes. Owing to the large number of phosphatases in the cell, inhibitors against PTP-1B must not only be potent but selective as well. N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanine-[4-phosphono(difluoro-methyl)]-L-phenylalanineamide (BzN-EJJ-amide) is a low nanomolar inhibitor of PTP-1B that shows selectivity over several protein tyrosine phosphatases. To gain an insight into the basis of its potency and selectivity, we evaluated several analogues of the inhibitor and introduced amino acid substitutions into PTP-1B by site-directed mutagenesis. We also determined the crystal structure of PTP-1B in complex with BzN-EJJ-amide at 2.5 A resolution. Our results indicate that the high inhibitory potency is due to interactions of several of its chemical groups with specific protein residues. An interaction between BzN-EJJ-amide and Asp48 is of particular significance, as substitution of Asp48 to alanine resulted in a 100-fold loss in potency. The crystal structure also revealed an unexpected binding orientation for a bisphosphonate inhibitor on PTP-1B, where the second difluorophosphonomethyl phenylalanine (F(2)PMP) moiety is bound close to Arg47 rather than in the previously identified second aryl phosphate site demarked by Arg24 and Arg254. Our results suggest that potent and selective PTP-1B inhibitors may be designed by targeting the region containing Arg47 and Asp48.  相似文献   

20.
Protein-tyrosine phosphatase 1B (PTP-1B) is the prototypic tyrosine phosphatase whose function in insulin signaling and metabolism is well established. Although the role of PTP-1B in dephosphorylating various cell surface receptor tyrosine kinases is clear, the mechanisms by which it modulates receptor function from the endoplasmic reticulum (ER) remains an enigma. Here, we provide evidence that PTP-1B has an essential function in regulating the unfolded protein response in the ER compartment. The absence of PTP-1B caused impaired ER stress-induced IRE1 signaling. More specifically, JNK activation, XBP-1 splicing, and EDEM (ER degradation-enhancing alpha-mannosidase-like protein) gene induction, as well as ER stress-induced apoptosis, were attenuated in PTP-1B knock-out mouse embryonic fibroblasts in response to two ER stressors, tunicamycin and azetidine-2 carboxylic acid. We demonstrate that PTP-1B is not just a passive resident of the ER but on the contrary has an essential role in potentiating IRE1-mediated ER stress signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号