首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doxorubicin, as a widely used chemotherapeutic, always causes multidrug resistance in human cancer cells. To circumvent drug resistance, we developed a novel formulation where doxorubicin hydrochloride (DOX) and chloroquine phosphate (CQ) were simultaneously loaded into liposomes by a pH-gradient method where CQ played the role of a chemical sensitizer. The various factors were investigated to optimize the formulation and manufacturing conditions of DOX and CQ coencapsulated liposomes (DCL). The resultant DCLs achieved the high encapsulation efficiency of both drugs over 90%. Further, DCLs significantly displayed resistance reversal action on a doxorubicin-resistant human breast cancer cell line (MCF-7/ADR) through the cooperation of CQ with DOX. The reversal fold of DCL with the DOX/CQ/soybean phosphatidylcholine weight ratio of 0.5:1:50 was 5.7, compared to free DOX. These results demonstrate that DCL is a promising formulation for the treatment of DOX-resistant breast cancer.  相似文献   

2.
BackgroundMulti-drug resistance (MDR) develops because cancer cells evade toxicity of several structurally unrelated drugs. Besides other mechanisms, MDR is linked to the overexpression of ATP Binding Cassette (ABC), transporters, among which ABCB1 is the best characterized one. Since overactivation of PI3K/Akt/mTOR plays a pivotal role in the growth of human cancers, we hypothesized whether dual PI3K and mTOR inhibitor, BEZ235 (BEZ, dactolisib) reverses resistance to doxorubicin (DOX).MethodsOvarian (A2780) and pancreatic (MiaPaca2) cancer cells were used to generate DOX-resistant clones by overexpressing ABCB1 or stepwise treatment of DOX. Intracellular accumulation of DOX was measured by flow cytometry after treatment with BEZ.ResultsBEZ treatment caused an increase in intracellular levels of DOX which was almost identical to the naïve parental cell lines. BEZ was found to be a weak substrate for ABCB1 as demonstrated by minimal increase in ATPase activity. BEZ treatment caused a dose-dependent decrease in cell viability in combination with DOX, which was associated with an increase in cleaved PARP expression in the drug resistant clones.ConclusionsThese results suggest that BEZ is a non-substrate inhibitor of ABCB1 and is able to effectively re-sensitize cells overexpressing ABCB1 to the effects of DOX.General significanceDual PI3 Kinase/mTOR inhibitor, BEZ, has the potential to reverse MDR in cancer patients.  相似文献   

3.
Resistance to doxorubicin (DOX) remains a big challenge to breast cancer treatment especially for triple negative breast cancer (TNBC). Our previous study revealed that the antioxidant system plays an important role in conferring metastasis derived DOX resistance. In this study, we used two-dimensional difference gel electrophoresis (2D-DIGE) proteomics to compare the expression profiles of two generations of TNBC cell lines which have increased metastatic ability in nude mice and exhibited resistance to DOX. Through careful analyses, one antioxidant protein: glucose-6-phosphate dehydrogenase (G6PD) was identified with 3.2-fold higher level in metastatic/DOX-resistant 231-M1 than its parental 231-C3 cells. Analyses of clinical data showed that TNBC patients with higher G6PD levels exhibited lower overall survival than patients with lower G6PD level. Reducing G6PD expression by siRNA or inhibiting its activity with dehydroepiandrosterone (DHEA) significantly increased DOX''s cytotoxicity in both cell lines. Importantly, inhibiting G6PD''s activity with DHEA dramatically increased the apoptotic rate of 1.25 µM DOX from 2% to 54%. Our results suggest that high level of G6PD can help TNBC to resist DOX-induced oxidative stress. Thus, inhibiting G6PD shall be a good strategy to treat DOX-resistant TNBC.  相似文献   

4.
Bark H  Xu HD  Kim SH  Yun J  Choi CH 《FEBS letters》2008,582(17):2595-2600
This study investigated whether P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) are linked in terms of expression. RT-PCR and Western blot analyses showed that the lung cancer cell line SK-MES-1/WT expressed BCRP. In a drug-free state, BCRP expression was significantly down-regulated in doxorubicin-resistant SK-MES-1/DX1000 cells overexpressing Pgp. Pharmacological inhibitors (PSC833 or verapamil) or siRNA for Pgp inhibited the down-regulation of BCRP, which was confirmed by confocal microscopy. PSC833 induced the phosphorylation of c-Jun NH2-terminal kinase (JNK) and c-Jun, while the JNK inhibitor SP600125 inhibited this effect. Dominant negative c-Jun decreased the expression of BCRP, but increased that of Pgp. These results indicate that Pgp down-regulates BCRP expression in a drug-free state in which JNK/c-Jun is involved.  相似文献   

5.
6.
Development of the acquired resistance is one major obstacle during chemotherapy for cancer patients. Exosomes mediate intercellular communication and cause environmental changes in tumor progression by transmitting active molecules. In this study, the role of long noncoding RNA H19 within exosomes is elucidated in terms of regulating doxorubicin (DOX) resistance of breast cancer. As a result, increased H19 expression was observed in DOX-resistant breast cancer cells in comparison with the corresponding parental cells. Suppression of H19 significantly lowered DOX resistance by decreasing cell viability, lowering colony-forming ability, and inducing apoptosis. Moreover, extracellular H19 could be moved to sensitive cells via being incorporated into exosomes. Treating sensitive cells with exosomes from resistant cells increased the chemoresistance of DOX, while downregulation of H19 in sensitive cells abated this effect. Taken together, H19 could be delivered by exosomes to sensitive cells, leading to the dissemination of DOX resistance. Our finding highlights the potential of exosomal H19 as a molecular target to reduce DOX resistance.  相似文献   

7.
Fulminant hepatic failure (FHF) is a dramatic clinical syndrome characterized by massive hepatocyte apoptosis and very high mortality. The c-Jun-N-terminal kinase (JNK) pathway is an important stress-responsive kinase activated by several forms of liver injury. The aim of this study is to assess the role of JNK during D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced liver injury, an experimental model of FHF, using SP600125, a small molecule JNK-specific inhibitor. Mice were given an intraperitoneal dose of GalN (800 microg/g body weight)/LPS (100 ng/g body weight) with and without subcutaneous SP600125 (50 mg/kg body weight) treatment (at 6 and 2 h before and 2 h after GalN/LPS administration). GalN/LPS treatment induced sustained JNK activation. Administration of SP600125 diminished JNK activity, suppressed lethality and the elevation of both serum alanine aminotransferase and aspartate aminotransferase, but had no effect on serum tumor necrosis factor-alpha, and reduced hepatocyte apoptosis after GalN/LPS administration. In support of the role of JNK in promoting the mitochondria-mediated apoptosis pathway, SP600125 prevented cytochrome c release, caspase-9 and caspase-3 activity. Moreover, SP600125 downregulated the mRNA and protein expression of Bad in the early periods following GalN/LPS injection and prevented Bid cleavage in the late periods. These results confirm the role of JNK as a critical apoptotic mediator in GalN/LPS-induced FHF. SP600125 has the potential to protect FHF by downregulating Bad and inhibiting Bid cleavage.  相似文献   

8.
Targeted drug delivery approaches have been implementing significant therapeutic gain for cancer treatment since last decades. Aptamers are one of the mostly used and highly selective targeting agents for cancer cells. Herein, we address a nano-sized targeted drug delivery approach adorned with A-172 glioblastoma cell-line-specific single stranded DNA (ssDNA) aptamer in which the chemotherapeutic agent Doxorubicin (DOX) had been conjugated. DNA aptamer, GMT-3, was previously selected for specific recognition of glioblastoma and represented many advantageous characteristics for drug targeting purposes. Flow cytometry analysis proved the binding efficiency of the specific aptamer to tumour cell lines. Cell-type-specific toxicity of GMT-3:DOX complex was showed by XTT assay and terminated cytotoxic effects were screened for both target cell and a control breast cancer cell line. The result of this contribution demonstrated the potential utility of GMT-3 aptamer-mediated therapeutic drug transportation in the treatment of gliomas specifically. It was concluded that aptamer-mediated drug delivery can be applied successfully for clinical use.  相似文献   

9.
Multidrug resistance (MDR) and disease relapse are challenging clinical problems in the treatment of leukaemia. Relapsed disease is frequently refractory to chemotherapy and exhibits multiple drug resistance. Therefore, it is important to identify the mechanism by which cancer cells develop resistance. In this study, we used microRNA (miRNA) microarray and qRT-PCR approaches to investigate the expression of miRNAs in three leukaemia cell lines with different degrees of resistance to doxorubicin (DOX) compared with their parent cell line, K562. The expression of miR-331-5p and miR-27a was inversely correlated with the expression of a drug-resistant factor, P-glycoprotein (P-gp), in leukaemia cell lines with gradually increasing resistance. The development of drug resistance is regulated by the expression of the P-gp. Transfection of the K562 and, a human promyelocytic cell line (HL) HL60 DOX-resistant cells with miR-331-5p and miR-27a, separately or in combination, resulted in the increased sensitivity of cells to DOX, suggesting that correction of altered expression of miRNAs may be used for therapeutic strategies to overcome leukaemia cell resistance. Importantly, miR-331-5p and miR-27a were also expressed at lower levels in a panel of relapse patients compared with primary patients at diagnosis, further illustrating that leukaemia relapse might be a consequence of deregulation of miR-331-5p and miR-27a.  相似文献   

10.
11.
Recent data suggest that rare stem cell populations with the capacity to self renew and drive tumor formation are a feature of solid tumors. Several investigators have identified putative stem cells from solid tumors and cancer cell lines following isolation of a side population (SP) defined by dye exclusion. We investigated this parameter in our efforts to identify an endometrial cancer (EnCa) stem cell population. Multiple EnCa cell lines were assessed and verapamil sensitive SP and non-SP cells were isolated from two human EnCa cell lines. The functional significance of the SP and non-SP derived from AN3CA was evaluated in vitro and in vivo. SP cells proliferated at a significantly slower rate than the non-SP fraction, and a larger proportion of the SP cells were in G1 phase of the cell cycle as compared to the non-SP fraction. The SP fraction was more resistant to the chemotherapeutic agent paclitaxel. The SP comprised ~0.02% of the initial AN3CA cell population and this proportion of SP cells was maintained within the larger heterogeneous population following repeated passages of purified SP cells. These findings suggest that SP cells derived from the AN3CA cell line have the stem cell properties of low proliferative activity, chemoresistance, and self-renewal. We also tested relative tumor formation activity of the SP and non-SP fractions. Only the SP fraction was tumorigenic. Additionally, we identified SP fractions in primary EnCa. Together these results are consistent with the hypothesis that EnCa contain a subpopulation of tumor initiating cells with stem like properties.  相似文献   

12.
Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phyto-antioxidant, anti-inflammatory and anti-cancerous properties. The present study aimed to investigate the chemopreventive effect of SP against rat liver toxicity and carcinogenesis induced by dibutyl nitrosamine (DBN) precursors, and further characterized its underlying mechanisms of action in HepG2 cell line. Investigation by light and electron microscopy showed that DBN treatment induced severe liver injury and histopathological abnormalities, which were prevented by SP supplementation. The incidence of liver tumors was significantly reduced from 80 to 20% by SP. Immunohistochemical results indicated that both PCNA and p53 were highly expressed in the liver of DBN-treated rats, but were significantly reduced by SP supplementation. Molecular analysis indicated that SP treatment inhibited cell proliferation, which was accompanied by increased p21 and decreased Rb expression levels at 48hrs post-treatment. In addition, SP increased Bax and decreased Bcl-2 expression, indicating induction of apoptosis by 48hrs. This is the first report of the in vivo chemopreventive effect of SP against DBN-induced rat liver cytotoxicity and carcinogenesis, suggesting its potential use in chemoprevention of cancer.  相似文献   

13.
A comparative study of the radiation and/or doxorubicin (DOX) survival response for synchronous populations of Chinese hamster V79 cells and two DOX-resistant variants (77A and LZ-8) was performed. The greatest cellular radiation sensitivity was observed in mitosis, while the greatest resistance was observed during late S phase for the three cell lines. The variation in radiation response throughout the cell cycle was expressed as a change in the width of the shoulder of the survival curves (Dq) with little change in D0. This suggests that each phase of the cell cycle has a different capacity for accumulation of radiation injury. The radiation age-response function for the three cell lines revealed that 77A and LZ-8 cells were more radiosensitive than V79 cells throughout the cell cycle. Exposure of synchronous populations to DOX (1.84 microM for V79, 9.21 microM for 77A, and 921 microM for LZ-8) for 1 h as a function of cell cycle phase revealed that V79, 77A, and LZ-8 cells exhibited the greatest sensitivity to DOX in mitosis and the most resistance to DOX during S phase, as indicated by the differences in the slope of the initial component of the survival curve. Levels of P-glyco-protein (P-gp) are probably not a factor contributing to DOX age-response function since P-gp levels remain constant throughout the cell cycle in all three cell lines. Synchronous populations of V79, 77A, and LZ-8 cells sequentially treated with DOX and radiation at various cell cycle phases were also analyzed. The results showed that the interaction between radiation and DOX damage resulted in a reduced cellular capacity for the accumulation of radiation damage throughout the cell cycle, as indicated by a decrease in the width of the shoulder of the survival curve. Overall, both DOX-sensitive V79 cells and DOX-resistant 77A and LZ-8 cells exhibited (1) a similar age-response function for radiation or DOX, and (2) no differences in the effects of DOX on radiation-induced damage throughout the cell cycle. These results indicate that acquired resistance to DOX associated with increased levels of P-gp in the cell membrane did not appear to affect the age-response function for radiation or DOX, and the nature of the interaction between damage caused by radiation and DOX was also not affected.  相似文献   

14.
15.
Hee-Jin Ahn 《FEBS letters》2009,583(17):2922-386
FGF2 has been shown to enhance proliferation and maintain differentiation potential in hMSCs during in vitro propagation. In this study, we investigated the role of mitogen-activated protein kinase in the functions of FGF2 in hMSCs. We demonstrated that FGF2 induces the transient activation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated protein kinase or p38 protein kinase. SP600125 and a dominant negative JNK1 significantly reduced the FGF2-enhanced proliferation of hMSCs. Treatment with SP600125 also diminished the activity of FGF2 in the maintenance of adipogenic and osteogenic differentiation potential. These results suggest that JNK signaling is involved in the FGF2-induced stimulation of the proliferation and the maintenance of differentiation potential in hMSCs.  相似文献   

16.
Resistance to chemotherapeutic drugs is a critical problem in cancer therapy, but the underlying mechanism has not been fully elucidated. TP53‐induced glycolysis regulatory phosphatase (TIGAR), an important glycolysis and apoptosis regulator, plays a crucial role in cancer cell survival by protecting cells against oxidative stress‐induced apoptosis. In the present study, we investigated whether TIGAR is involved in epithelial‐mesenchymal transition (EMT) in doxorubicin (DOX)‐resistant human non‐small cell lung cancer (NSCLC), A549/DOX cells. We found that the expression of TIGAR was significantly higher in A549/DOX cells than in the parent A549 cell lines. siRNA‐mediated TIGAR knockdown reduced migration, viability and colony survival of doxorubicin‐resistant lung cancer cells. Also, TIGAR knockdown decreased pro‐survival protein Bcl‐2 and increased pro‐apoptotic Bax and cleaved poly (ADP‐ribose) polymerase (PARP). Moreover, TIGAR depletion significantly up‐regulated both caspase‐3 and caspase‐9 expression. Furthermore, TIGAR depletion up‐regulated the expression of E‐cadherin and down‐regulated the expression of vimentin. These results indicate that TIGAR knockdown may inhibit EMT in doxorubicin (DOX)‐resistant human NSCLC and may represent a therapeutic target for a non‐small lung cancer cells chemoresistance.  相似文献   

17.
While analyzing the role of c‐Jun NH2‐terminal kinase (JNK) in neurogenesis in P19 embryonal carcinoma cells, we noticed that treatment with SP600125, a JNK inhibitor, increased the cell size markedly. SP600125‐induced enlargement of P19 cells was time‐ and dose‐dependent. The increased cell size in response to SP600125 was also detected in B6mt‐1 embryonic stem cells. SP600125 treatment inhibited cell growth and increased DNA contents, indicating the inhibition of cell proliferation resulting from endoreduplication. Concurrently, the gene expression of p21, a regulator of G2/M arrest as well as G1 arrest, was increased in cells treated with SP600125. The increased cell size in response to SP600125 was detected even in P19 cells treated with colcemide, an inhibitor of cell cycle progression at the metaphase. The present study suggests that treatment with SP600125 progresses the cell cycle, skipping cytokinesis in P19 cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
目的:探讨血红素氧合酶-1(HO-1)在骨肉瘤U2OS细胞多柔比星(DOX)耐药中的作用及相关分子机制。方法:体外培养U2OS细胞,建立U2OS-DOX耐药株,分为U2OS-WT组和U2OS-DOX组。采用siRNA HO-1转染U2OS-DOX细胞,CCK-8法检测细胞活性;RT-PCR法检测缺氧诱导因子1(HIF-1α)及HO-1的mRNA表达;WB法检测HIF-1α及HO-1的蛋白表达水平;流式细胞仪检测罗丹明Rh123在细胞内的蓄积。结果:DOX可降低U2OS细胞活性并随剂量的增加愈加明显,这种诱导作用可以被抗氧化剂(NAC)所逆转(P<0.01)。U2OS-DOX组HIF-1α及HO-1的mRNA和蛋白表达以及P糖蛋白(P-gp)表达水平均显著增加(P<0.05)。转染可恢复U2OS-DOX细胞对DOX化疗敏感性并增加其对Rh123的蓄积(P<0.001)。结论:HO-1可能通过抗氧化应激、增加化疗药物的蓄积等机制发挥U2OS细胞对DOX的耐药性。  相似文献   

19.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters play a key role in the development of multidrug resistance (MDR) in cancer cells. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) are important proteins in this superfamily which are widely expressed on the membranes of multidrug resistance (MDR) cancer cells. Besides, upregulation of cellular autophagic responses is considered a contributing factor for MDR in cancer cells. We designed a liposome system co-encapsulating a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and a typical autophagy inhibitior (chloroquine phosphate, CQ) at a weight ratio of 1:2 and investigated its drug resistance reversal mechanism. MTT assay showed that the IC50 of DOX/CQ co-encapsulated liposome in DOX-resistant human breast cancer cells (MCF7/ADR) was 4.7?±?0.2?μM, 5.7-fold less than that of free DOX (26.9?±?1.9 μM), whereas it was 19.5-fold in doxorubicin-resistant human acute myelocytic leukemia cancer cells (HL60/ADR) (DOX/CQ co-encapsulated liposome 1.2?±?0.1?μM, free DOX 23.4?±?2.8?μM). The cellular uptake of DOX increased upon addition of free CQ, indicating that CQ may interact with P-gp and MRP1; however, the expressions of P-gp and MRP1 remained unchanged. In contrast, the expression of the autophagy-related protein LC3-II increased remarkably. Therefore, the mechanism of MDR reversal may be closely related to autophagic inhibition. Evaluation of anti-tumor activity was achieved in an MCF-7/ADR multicellular tumor spheroid model and transgenic zebrafish model. DOX/CQ co-encapsulated liposome exerted a better anti-tumor effect in both models than that of liposomal DOX or DOX alone. These findings suggest that encapsulating CQ with DOX in liposomes significantly improves the sensitivity of DOX in DOX-resistant cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号