首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inouye S  Sasaki S 《FEBS letters》2006,580(8):1977-1982
Blue fluorescent protein from the calcium-binding photoprotein aequorin (BFP-aq) is a complex of Ca2+ -bound apoaequorin and coelenteramide, and shows luminescence activity like a luciferase, catalyzing the oxidation of coelenterazine with molecular oxygen. To understand the catalytic properties of BFP-aq, various fluorescent proteins (FP-aq) have been prepared from semi-synthetic aequorin and characterized in comparison with BFP-aq. FP-aq has luciferase activity and could be regenerated into native aequorin by incubation with coelenterazine. The results from substrate specificity studies of FP-aq using various coelenterazine analogues have suggested that the oxidation of coelenterazine by BFP-aq in the luciferase reaction and the regeneration process to aequorin might involve the same catalytic site of BFP-aq.  相似文献   

2.
Fluorescent proteins related to and derived from green fluorescent protein (GFP) are widely used as tools for investigating a wide range of biological processes. In particular, GFP and its relatives have been used extensively as qualitative reporters of gene expression in many different organisms, but relatively few studies have investigated fluorescent proteins as quantitative reporters of gene expression. GFP has some limitations as a reporter gene, including possible toxicity when expressed at high levels. Therefore, it would be useful if other fluorescent proteins could be identified for use as quantitative reporters. Toward this end, we investigated BFP as a quantitative reporter of promoter activity in E. coli and directly compared it with GFPuv using a set of well-characterized synthetic constitutive promoters. The fluorescence produced in E. coli strains expressing GFPuv or BFP grown on solid medium was quantified using a CCD camera and fluorimetry. GFPuv consistently gave more reliable and statistically significant results than did BFP in all assays. Correspondingly, we found that the signal-to-noise ratio for GFPuv fluorescence is substantially higher than for BFP. We conclude that, under the conditions assessed in this study, GFPuv is superior to BFP as a quantitative reporter of promoter activity in E. coli. J. Bayes, M. Calvey, L. Reineke, A. Colagiavanni, and M. Tscheiner made equivalent contributions to this work.  相似文献   

3.
Aequorin is a Ca2+-binding photoprotein and consists of an apoprotein (apoaequorin) and a 2-peroxide of coelenterazine. Eight new coelenterazine analogues modified at the C2-position were synthesized and incorporated into recombinant apoaequorin with O2 to yield different semisynthetic aequorins. The luminescence properties and the sensitivity to Ca2+ of these semisynthetic aequorins were characterized. Two semisynthetic aequorins, namely me- and cf3-aequorin, showed a slow decay of the luminescence pattern with less sensitivity to Ca2+ and were useful for the cell-based G-protein-coupled receptor (GPCR) reporter assays.  相似文献   

4.
Inouye S 《FEBS letters》2004,577(1-2):105-110
Blue fluorescent protein from the calcium-sensitive photoprotein aequorin (BFP-aq) was prepared and determined to be a heat resistant enzyme, catalyzing the luminescent oxidation of coelenterazine (luciferin) with molecular oxygen as a general luciferase. After treatment with excess ethylenediaminetetraacetic acid to remove Ca2+ from BFP-aq, the blue fluorescence shifted to a greenish fluorescence. This greenish fluorescent protein (gFP-aq) was identified as a non-covalent complex of apoaequorin with coelenteramide (oxyluciferin) in a molar ratio of 1:1. By incubation with coelenterazine in the absence of reducing reagents, gFP-aq was converted to aequorin at 25 degrees C. BFP-aq and gFP-aq possessing both fluorescence and luminescence activities may work as novel reporter proteins.  相似文献   

5.
Gradient elution chromatography of recombinant apoaequorin carried out in the presence of Ca2+ revealed two isoforms of apoaequorin, reduced and oxidized, whereas in the presence of EDTA 3 isoforms were observed. In a regeneration mixture of apoaequorin, coelenterazine, EDTA, and 2-mercaptoethanol, four isoforms were obtained, of which only one, aequorin, gave light with Ca2+. A method is described for the preparation of highly pure aequorin. The aequorin was stable in solution for approximately 10 days at 4 degrees C and pH 7.6, and then it gradually lost activity with a half-life of about 20 days until it was almost completely inactive on day 30.  相似文献   

6.
The squid Watasenia scintillans emits blue light from numerous photophores. According to Tsuji [F.I. Tsuji, Bioluminescence reaction catalyzed by membrane-bound luciferase in the “firefly squid”, Watasenia scintillans, Biochim. Biophys. Acta 1564 (2002) 189–197.], the luminescence from arm light organs is caused by an ATP-dependent reaction involving Mg2+, coelenterazine disulfate (luciferin), and an unstable membrane-bound luciferase. We stabilized and partially purified the luciferase in the presence of high concentrations of sucrose, and obtained it as particulates (average size 0.6–2 µm). The ATP-dependent luminescence reaction of coelenterazine disulfate catalyzed by the particulate luciferase was investigated in detail. Optimum temperature of the luminescence reaction is about 5 °C. Coelenterazine disulfate is a strictly specific substrate in this luminescence system; any modification of its structure resulted in a very heavy loss in its light emission capability. The light emitter is the excited state of the amide anion form of coelenteramide disulfate. The quantum yield of coelenterazine disulfate is calculated at 0.36. ATP could be replaced by ATP-γ-S, but not by any other analogues tested. The amount of AMP produced in the luminescence reaction was much smaller than that of coelenteramide disulfate, suggesting that the reaction mechanism of the Watasenia bioluminescence does not involve the formation of adenyl luciferin as an intermediate.  相似文献   

7.
When aequorin is microinjected into cleavage-stage zebrafish embryos, it is largely used up by ~24 hours. Thus, it is currently not possible to image Ca(2+) signals from later stages of zebrafish development using this approach. We have, therefore, developed protocols to express apoaequorin, i.e., the protein component of aequorin, transiently in zebrafish embryos and then reconstitute intact aequorin in vivo by loading the coelenterazine co-factor into the embryos separately. Two types of apoaequorin mRNA, aeq-mRNA and aeq::EGFP-mRNA, the latter containing the enhanced green fluorescent protein (EGFP) sequence, were in vitro transcribed and when these were microinjected into embryos, they successfully translated apoaequorin and a fusion protein of apoaequorin and EGFP (apoaequorin-EGFP), respectively. We show that aeq::EGFP -mRNA was more toxic to embryos than equivalent amounts of aeq-mRNA. In addition, in an in vitro reconstitution assay, apoaequorin-EGFP produced less luminescence than apoaequorin, after reconstitution with coelenterazine and with the addition of Ca(2+). Furthermore, when imaging intact coelenterazine-loaded embryos that expressed apoaequorin, Ca(2+ )signals from ~2.5 to 48 hpf were observed, with the spatio-temporal pattern of these signals up to 24 hpf, being comparable to that observed with aequorin. This transient aequorin expression approach using aeq-mRNA provides a valuable tool for monitoring Ca(2+ )signaling during the 2448 hpf period of zebrafish development. Thus, it effectively extends the aequorin-based Ca(2+) imaging window by an additional 24 hours.  相似文献   

8.
Aequorin is a bioluminescent protein which consists of a polypeptide chain (apoaequorin), coelenterate luciferin, and bound oxygen. Aequorin produces blue light upon binding Ca2+. We have isolated six recombinant pBR322 plasmids which contain apoaequorin cDNA sequences. A mixed synthetic pBR322 plasmids which contain apoaequorin cDNA sequences. A mixed synthetic oligonucleotide probe was used to identify these cDNAs. An extract of an E. coli strain possessing the largest cDNA contained apoaequorin. This apoaequorin can be converted to aequorin in the presence of coelenterate luciferin, 2-mercaptoethanol, and O2. This cDNA is therefore apparently full-length.  相似文献   

9.
Due to its ability to emit light, the luciferase from Renilla reniformis (RLuc) is widely employed in molecular biology as a reporter gene in cell culture experiments and small animal imaging. To accomplish this bioluminescence, the 37-kDa enzyme catalyzes the degradation of its substrate coelenterazine in the presence of molecular oxygen, resulting in the product coelenteramide, carbon dioxide, and the desired photon of light. We successfully crystallized a stabilized variant of this important protein (RLuc8) and herein present the first structures for any coelenterazine-using luciferase. These structures are based on high-resolution data measured to 1.4 Å and demonstrate a classic α/β-hydrolase fold. We also present data of a coelenteramide-bound luciferase and reason that this structure represents a secondary conformational form following shift of the product out of the primary active site. During the course of this work, the structure of the luciferase's accessory green fluorescent protein (RrGFP) was also determined and shown to be highly similar to that of Aequorea victoria GFP.  相似文献   

10.
Green fluorescent protein (GFP) is an unusually stable fluorescent protein that belongs to a family of related auto-fluorescent proteins (AFPs). These AFPs have been generated from jellyfish GFP by mutating the amino acids in the chromophore or its vicinity. Variants that emit light in the blue region (Blue Fluorescent Protein, BFP), red region, or yellow region are readily available and are widely used in diverse applications. Previously, we had used fluorescence spectroscopy to study the effect of pH on the denaturation of GFP with SDS, urea, and heat. Surprisingly, we found that SDS, urea or heat, did not have any significant effect on the fluorescence of GFP at pH 7.5 or 8.5, however, at pH 6.5, the protein lost all fluorescence within a very short period of time. These results suggested that GFP undergoes a structural/stability shift between pH 6.5 and 7.5, with the GFP structure at pH 6.5 being very sensitive to denaturation by SDS, urea, and heat. In the present study, we wanted to explore whether the stability or structure of the closely related BFP is also pH dependent. As expected, we found heat-induced denaturation and renaturation of BFP to be pH dependent, very much like GFP. However, when exposed to other denaturants like urea/heat or SDS we found BFP to behave very differently than GFP. Unlike GFP, which at pH 8.5 and 7.5 is very resistant to SDS-induced denaturation, BFP readily lost about 20% of its fluorescence at pH 8.5 and about 60% fluorescence at pH 7.5. Also, our denaturation and renaturation studies show that under certain conditions, BFP is more stable than GFP, such that under conditions where GFP is completely denatured, BFP still retained significant fluorescence. Taken together, our preliminary results show that despite being very similar in both amino acid sequences and overall structures, there may be subtle and important structural/conformational differences between BFP and GFP.  相似文献   

11.
A hexahistidine tag was fused to the N-terminus of apoaequorin. A suitable vector encoding the fusion protein was constructed and used for transformation of Escherichia coli JM109 cells. Apoaequorin was overexpressed under the control of tac promoter. It was found, however, that most of the protein existed in the form of inclusion bodies. Inclusion bodies were solubilized with urea, followed by purification and refolding of (His)(6)-apoaequorin in a single chromatographic step by immobilized metal-ion affinity chromatography using Ni(2+)-nitrilotriacetic acid agarose. The purity, as determined by SDS-PAGE analysis, was greater than 80%. The yield was 0.7-1 mg apoaequorin from a 50 ml bacterial culture. The kinetics of light emission of purified aequorin upon addition of Ca(2+) was typical of the commercial aequorin. The luminescence of the purified aequorin was a linear function of its concentration extending over six orders of magnitude. As low as 0.5 attomoles purified aequorin gave a signal-to-noise ratio of 1.8.  相似文献   

12.
The photoprotein aequorin isolated from the jellyfish Aequorea emits blue light in the presence of Ca2+ by an intramolecular process that involves chemical transformation of the coelenterazine moiety into coelenteramide and CO2. Because of its high sensitivity to Ca2+, aequorin has widely been used as a Ca2+ indicator in various biological systems. We have replaced the coelenterazine moiety in the protein with several synthetic coelenterazine analogues, providing semi-synthetic Ca2+-sensitive photoproteins. One of the semi-synthetic photoproteins, derived from coelenterazine analogue (II) (with an extra ethano group), showed highly promising properties for the measurement of Ca2+, namely (1) the rise time of luminescence in response to Ca2+ was shortened by approx. 4-fold compared with native aequorin and (2) the luminescence spectrum showed two peaks at 405 nm and 465 nm and the ratio of their peak heights was dependent on Ca2+ concentration in the range of pCa 5-7, thus allowing the determination of [Ca2+] directly from the ratio of two peak intensities. Coelenterazine analogue (I) (with a hydroxy group replaced by an amino group) was also incorporated into apo-aequorin, yielding a Ca2+-sensitive photoprotein, which indicates that an electrostatic interaction between the phenolate group in the coelenterazine moiety and some cationic centre in apo-aequorin is not important in native aequorin, contrary to a previous suggestion.  相似文献   

13.
The Ca2+-sensitive photoprotein aequorin was injected into single frog skeletal muscle fibers, and the intracellular aequorin light intensity during muscle activation with different maneuvers was mapped with digital imaging microscopy. During 50 Hz electrical activation (tetanus), the aequorin light intensity from different locations in the muscle fiber rose with very similar time course. Caffeine (10 mM) application, on the other hand, caused aequorin light signals to show significantly different time courses, with an earlier increase in Ca2+ concentration near the surface of the fiber than near the core. The non-uniform rise of intracellular Ca2+ concentration with caffeine treatment is consistent with the slow inward diffusion of caffeine and subsequent Ca2+ release from sarcoplasmic reticulum.  相似文献   

14.
A luminescence method for monitoring gene expression in Chinese hamster ovary cells using apoaequorin as a secreted reporter enzyme is described. In this method, the cell is not disrupted prior to assay as in the earlier aequorin procedure and in the firefly method. The apoaequorin secretion vector is constructed by fusing the DNA fragment of the signal peptide sequence of human follistatin to the apoaequorin gene. Transfection of Chinese hamster ovary cells with the vector causes the apoaequorin to be secreted directly into the culture medium. Assay is carried out by removing a small aliquot of the culture medium, incubating it with coelenterazine, and adding Ca2+ to trigger light emission from the regenerated aequorin. The light intensity is measured with a photomultiplier photometer and is proportional to the amount of apoaequorin present. The method is highly specific and sensitive and can be carried out in a relatively short period of time.  相似文献   

15.
Fluorescent proteins with light wavelengths within the optical window are one of the improvements in in vivo imaging techniques. Near-infrared (NIR) fluorescent protein (iRFP) is a stable, nontoxic protein that emits fluorescence within the NIR optical window without the addition of exogenous substrate. However, studies utilizing an in vivo iRFP model have not yet been published. Here, we report the generation of transgenic iRFP mice with ubiquitous NIR fluorescence expression. iRFP expression was observed in approximately 50% of the offspring from a matings between iRFP transgenic and WT mice. The serum and blood cell indices and body weights of iRFP mice were similar to those of WT mice. Red fluorescence with an excitation wavelength of 690 nm and an emission wavelength of 713 nm was detected in both newborn and adult iRFP mice. We also detected fluorescence emission in whole organs of the iRFP mice, including the brain, heart, liver, kidney, spleen, lung, pancreas, bone, testis, thymus, and adipose tissue. Therefore, iRFP transgenic mice may therefore be a useful tool for various types of in vivo imaging.  相似文献   

16.
分别构建表达BFP与CD1 1b的C末端、YFP与CD1 8的N末端相连接的融合蛋白的表达载体 ,并将二者转染至既无内源性Mac 1的表达同时又具有某些炎症反应信号转导系统的CHO细胞株进行表达Mac 1 FP .通过荧光显微镜观察到共转染后的CHO细胞可发出蓝色荧光和黄色荧光 ,应用Western印迹方法确定CD1 1b BFP与YFP CD1 8能够形成二聚体 ,采用流式细胞术检测确定PMA刺激Mac 1 FP可由胞浆内转位至膜上 ,测定PMA刺激前后的转染CHO细胞与其配基ICAM 1粘附活性的变化 ,证明转染CHO中的Mac 1 FP表达成功并具有野生型Mac 1的形成二聚体、膜转位、和配基ICAM 1相结合等功能 ,为进一步研究白细胞表面粘附分子Mac 1的α亚基CD1 1b、β亚基CD1 8在细胞内的走向及归宿创造了条件  相似文献   

17.
Green fluorescent proteins (GFPs) and calcium-activated photoproteins of the aequorin/clytin family, now widely used as research tools, were originally isolated from the hydrozoan jellyfish Aequora victoria. It is known that bioluminescence resonance energy transfer (BRET) is possible between these proteins to generate flashes of green light, but the native function and significance of this phenomenon is unclear. Using the hydrozoan Clytia hemisphaerica, we characterized differential expression of three clytin and four GFP genes in distinct tissues at larva, medusa and polyp stages, corresponding to the major in vivo sites of bioluminescence (medusa tentacles and eggs) and fluorescence (these sites plus medusa manubrium, gonad and larval ectoderms). Potential physiological functions at these sites include UV protection of stem cells for fluorescence alone, and prey attraction and camouflaging counter-illumination for bioluminescence. Remarkably, the clytin2 and GFP2 proteins, co-expressed in eggs, show particularly efficient BRET and co-localize to mitochondria, owing to parallel acquisition by the two genes of mitochondrial targeting sequences during hydrozoan evolution. Overall, our results indicate that endogenous GFPs and photoproteins can play diverse roles even within one species and provide a striking and novel example of protein coevolution, which could have facilitated efficient or brighter BRET flashes through mitochondrial compartmentalization.  相似文献   

18.
Group II chaperonin captures an unfolded protein while in its open conformation and then mediates the folding of the protein during ATP-driven conformational change cycle. In this study, we performed kinetic analyses of the group II chaperonin from a hyperthermophilic archaeon, Thermococcus sp. KS-1 (TKS1-Cpn), by stopped-flow fluorometry and stopped-flow small-angle X-ray scattering to reveal the reaction cycle. Two TKS1-Cpn variants containing a Trp residue at position 265 or position 56 exhibit nearly the same fluorescence kinetics induced by rapid mixing with ATP. Fluorescence started to increase immediately after the start of mixing and reached a maximum at 1–2 s after mixing. Only in the presence of K+ that a gradual decrease in fluorescence was observed after the initial peak. Similar results were obtained by stopped-flow small-angle X-ray scattering. A rapid fluorescence increase, which reflects nucleotide binding, was observed for the mutant containing a Trp residue near the ATP binding site (K485W), irrespective of the presence or absence of K+. Without K+, a small, rapid fluorescence decrease followed the initial increase, and then a gradual decrease was observed. In contrast, with K+, a large, rapid fluorescence decrease occurred just after the initial increase, and then the fluorescence gradually increased. Finally, we observed ATP binding signal and also subtle conformational change in an ATPase-deficient mutant with K485W mutation. Based on these results, we propose a reaction cycle model for group II chaperonins.  相似文献   

19.
The transgenic plp-GFP mouse line expressing the green fluorescent protein (GFP) driven by the mouse myelin proteolipid protein (plp) gene promoter has been previously used to study the contribution of the plp lineage to oligodendrocyte development in the embryonic brain. Here, we show that the GFP fluorescence reflects the developmental expression of proteolipid protein during the postnatal development until adulthood in brain slices and in primary cultures of plp-GFP+ cells derived from postnatal animals. In the adult brain, plp-GFP-expressing cells are mature oligodendrocytes but not oligodendroglial progenitors. In the model of focal demyelination induced by lysolecithin (LPC) in the corpus callosum of adult plp-GFP animals, we observed an up-regulation of the morphogen Sonic Hedgehog (Shh) in the LPC-induced lesion but not in the control animals. Moreover, we show that the adenovirus-mediated transfer of Shh in the lesion results in the attenuation of the demyelination extent as evidenced by GFP fluorescence analysis in Shh-treated and control animals. Altogether these data show how plp-GFP fluorescence can be monitored to follow the oligodendrocyte lineage during demyelination and identify Shh morphogen as an important factor during repair.  相似文献   

20.
The topology of bacterial inner membrane proteins is commonly determined using topology reporters such as alkaline phosphatase and green fluorescent protein fused to a series of C-terminally truncated versions of the protein in question. Here, we report a detailed topology mapping of the Escherichia coli inner membrane H+/Cl exchange transporter ClcA. Since the 3-D structure of ClcA is known, our results provide a critical test of the reporter fusion approach and offer new insights into the ClcA folding pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号