首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The highly structured 5' untranslated region (5' UTR) of Theiler's murine encephalomyelitis virus is involved in cap-independent translation of the viral RNA. Previously, we reported that the bicistronic mRNA chloramphenicol acetyltransferase-5' UTR-luciferase (Luc) efficiently expressed Luc both in a rabbit reticulocyte lysate and when transfected into BHK-21 cells. Insertion of 3 nucleotides at position 665 in the 5' UTR of this bicistronic mRNA resulted in greatly reduced Luc expression in BHK-21 cells but had little effect on expression of Luc in rabbit reticulocyte lysate. This mutation was also introduced into a virulent Theiler's murine encephalomyelitis virus chimera, Chi-VL. The kinetics of viral RNA and protein synthesis and virus production in BHK-21 cells were slower for the mutant chimera [Chi-VL(IN668)] than for Chi-VL; however, the final virus yields were comparable. Intracerebral inoculation of mice with the chimeras revealed that Chi-VL(IN668) was completely attenuated in neurovirulence. The reduced neurovirulence of Chi-VL(IN668) may be ascribed to its reduced growth in the central nervous system, most likely due to an impaired ability to synthesize viral proteins.  相似文献   

2.
The adenovirus tripartite leader (TPT) 5' untranslated region (5'UTR) allows translation in poliovirus-infected cells, in which the p220 subunit of eukaryotic initiation factor 4F is degraded. This p220-independent translation was investigated by measuring in vitro translation in a reticulocyte lysate of a reporter gene, chloramphenicol acetyltransferase, coupled to the TPT 5'UTR. The p220 subunit was degraded by translation of a foot-and-mouth-disease L-protease construct. Surprisingly, the TPT 5'UTR was dependent on intact p220, as are other naturally capped mRNA species. Translation of encephalomyocarditis virus RNA was p220 independent, as expected from its ability to support internal, cap-independent initiation. In vitro protein-synthesis experiments with purified initiation factors confirmed the dependence of TPT mRNA translation on eukaryotic initiation factor 4F. The relationship between adenovirus TPT-5'UTR-directed translation and poliovirus-induced host cell shut-off is discussed.  相似文献   

3.
Poliovirus mRNA contains a long 5' noncoding region of about 750 nucleotides (the exact number varies among the three virus serotypes), which contains several AUG codons upstream of the major initiator AUG. Unlike most eucaryotic mRNAs, poliovirus does not contain a m7GpppX (where X is any nucleotide) cap structure at its 5' end and is translated by a cap-independent mechanism. To study the manner by which poliovirus mRNA is expressed, we examined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. In this paper we report striking translation system-specific differences in the ability of the altered mRNAs to be translated. The results suggest the existence of an inhibitory cis-acting element(s) within the 5' noncoding region of poliovirus (between nucleotides 70 and 381) which restricts mRNA translation in reticulocyte lysate, wheat germ extract, and Xenopus oocytes, but not in HeLa cell extracts. In addition, we show that HeLa cell extracts contain a trans-acting factor(s) that overcomes this restriction.  相似文献   

4.
At the 5' and 3' end of genomic HCV RNA there are two highly conserved, untranslated regions, 5'UTR and 3'UTR. These regions are organized into spatially ordered structures and they play key functions in regulation of processes of the viral life cycle. Most nucleotides of the region located at the 5' side of the coding sequence serve as an internal ribosomal entry site, IRES, which directs cap-independent translation. The RNA fragment present at the 3' end of the genome is required for virus replication and probably contributes to translation of viral proteins. During virus replication its genomic strand is transcribed into a strand of minus polarity, the replicative strand. Its 3' terminus is responsible for initiation of synthesis of descendant genomic strands. This article summarizes our current knowledge on the structure and function of the non-coding regions of hepatitis C genomic RNA, 5'UTR and 3'UTR, and the complementary sequences of the replicative viral strand.  相似文献   

5.
6.
Conservation of RNA-protein interactions among picornaviruses.   总被引:14,自引:11,他引:3       下载免费PDF全文
Picornavirus genomes encode unique 5' noncoding regions (5' NCRs) which are approximately 600 to 1,300 nucleotides in length, contain multiple upstream AUG codons, and display the ability to form extensive secondary structures. A number of recent reports have shown that picornavirus 5' NCRs are able to facilitate cap-independent internal initiation of translation. This mechanism of translation occurs in the absence of viral gene products, suggesting that the host cell contains the necessary components for the cap-independent internal initiation of translation of picornavirus RNAs as well as cellular mRNAs. In an attempt to identify some of the perhaps novel cellular proteins involved in this newly discovered mechanism of translation, we utilized RNA mobility shifts assays to identify and characterize interactions that occur between the 5'NCR of poliovirus type 1 (PV1) and cellular proteins. In this report, we describe two separate interactions between RNA structures from the 5' NCR of PV1 and proteins present in extracts from HeLa cells as well as other cell types. We describe the interaction between nucleotides 186 to 220 (stem-loop D) and a cellular protein(s) present in HeLa cell extracts. Mutational analysis of this stem-loop structure suggests that maintenance of a base-paired structure in the lower stem is necessary to present the sequences which directly interact with the protein(s). We also describe the interaction between nucleotides 220 to 460 (stem-loop E) and a cellular protein present in HeLa cell extracts. This RNA binding activity fractionates to a specific ammonium sulfate fraction (A cut) of a ribosomal salt wash. Mutational analysis of the stem-loop E structure suggests that the preservation of an extensive RNA structure is necessary for a strong interaction with the cellular protein(s), although smaller RNAs derived from this region of the 5' NCR can interact to lesser extents. Finally, we show that both of these RNA-protein interactions are conserved among the closely related enteroviruses PV1 and coxsackievirus type B3, human rhinovirus type 14, and the more distantly related cardiovirus Theiler's murine encephalomyelitis virus, suggesting that such RNA-protein interactions serve basic functions which are conserved and utilized by each of these picornaviruses.  相似文献   

7.
The genome of Red clover necrotic mosaic virus (RCNMV) in the genus Dianthovirus is divided into two RNA molecules of RNA1 and RNA2, which have no cap structure at the 5' end and no poly(A) tail at the 3' end. The 3' untranslated region (3' UTR) of RCNMV RNA1 contains an essential RNA element (3'TE-DR1), which is required for cap-independent translation. In this study, we investigated a cap-independent translational mechanism of RNA2 using a firefly luciferase (Luc) gene expression assay system in cowpea protoplasts and a cell-free lysate (BYL) prepared from evacuolated tobacco BY2 protoplasts. We were unable to detect cis-acting RNA sequences in RNA2 that can replace the function of a cap structure, such as the 3'TE-DR1 of RNA1. However, the uncapped reporter RNA2, RNA2-Luc, in which the Luc open reading frame (ORF) was inserted between the 5' UTR and the movement protein ORF, was effectively translated in the presence of p27 and p88 in protoplasts in which RNA2-Luc was replicated. Time course experiments in protoplasts showed that the translational activity of RNA2-Luc did not reflect the amount of RNA2. Mutations in cis-acting RNA replication elements of RNA2 abolished the cap-independent translational activity of RNA2-Luc, suggesting that the translational activity of RNA2-Luc is coupled to RNA replication. Our results show that the translational mechanism differs between two segmented genomic RNAs of RCNMV. We present a model in which only RNA2 that is generated de novo through the viral RNA replication machinery functions as mRNA for translation.  相似文献   

8.
9.
10.
11.
12.
13.
Single-stranded cDNA clones complementary to the 5' end of TMV RNA have been used to explore the conditions necessary for efficient 'hybrid arrest of translation' in the reticulocyte lysate. It is shown that incubations of 20 minutes at 60 degrees in 0.1 M KCl are sufficient to give almost complete arrest of translation using a clone complementary to the 5'-non-coding region and first 171 coding nucleotides of TMV RNA. However, hybrids with DNA complementary to regions of the mRNA downstream of the first AUG gave variable and in some cases almost no arrest of translation in the reticulocyte lysate unless they were first digested with RNase H. A simple and rapid method for giving complete and highly specific arrest of translation of particular mRNAs in complex mixtures has been developed using both cDNA clones and synthetic oligodeoxynucleotides in conjunction with RNase H digestion. Evidence is presented that suggests that 'hybrid arrest of translation' in the wheat-germ cell-free system is primarily due to the action of RNase H. When a reticulocyte lysate was doped with 20 U/ml of RNase H, its ability to translate unannealed mRNA was unaffected but it translated DNA/RNA hybrids extremely poorly.  相似文献   

14.
We describe a novel experimental approach to investigate mRNA translation. Antisense 2'-O-allyl oligoribonucleotides (oligos) efficiently arrest translation of targeted mRNAs in rabbit reticulocyte lysate and wheat germ extract while displaying minimal non-specific effects on translation. Oligo/mRNA-hybrids positioned anywhere within the 5' UTR or the first approximately 20 nucleotides of the open reading frame block cap-dependent translation initiation with high specificity. The thermodynamic stability of hybrids between 2'-O-alkyl oligos and RNA permits translational inhibition with oligos as short as 10 nucleotides. This inhibition is independent of RNase H cleavage or modifications which render the mRNA untranslatable. We show that 2'-O-alkyl oligos can also be employed to interfere with cap-independent internal initiation of translation and to arrest translation elongation. The latter is accomplished by UV-crosslinking of psoralen-tagged 2'-O-methyloligoribonucleotides to the mRNA within the open reading frame. The utility of 2'-O-alkyloligoribonucleotides to arrest translation from defined positions within an mRNA provides new approaches to investigate mRNA translation.  相似文献   

15.
16.
In an attempt to elucidate the role of the 5'-terminal 7-methylguanosine residue in translation of mammalian mRNAs, vesicular stomatitis virus (VS virus), and reovirus mRNAs containing and lacking this residue, and also Qbeta RNA, were translated in cell-free extracts from reticulocytes and wheat germ under a variety of ionic conditions. Optimal translation of mRNAs lacking a 5' m7G occurred at concentrations of KOAc or KCl which were lower than those optimal for normal "capped" mRNAs. However, this salt dependence was much less marked in the mammalian reticulocyte extract and, at salt concentrations optimal for translation of normal capped mRNAs, reticulocyte lysates translated uncapped with mRNAs at 30 to 60% the normal efficiency. At low K+ concentrations, wheat germ ribosomes bound and translated appreciable amounts of uncapped VS virus mRNA; controls showed that no m7G residue is added to the 5' end of the bound RNA. Analogues of the 5' end, such as m7GpppAm, inhibited translation of both normal and uncapped VS virus RNAs in wheat germ extracts to about the same extent, but the efficiency of its action was reduced at low K+ concentrations. We conclude that there is a reduced importance of the 5' m7G residue in ribosome-mRNA recognition at low K+ concentrations, and that translation of mRNAs in reticulocyte extract is, under any reaction conditions, less dependent on the presence of a 5' "cap" than in wheat germ extracts.  相似文献   

17.
18.
Hepatitis C virus (HCV) is a positive-sense RNA virus approximately 9600 bases long. An internal ribosomal entry site (IRES) spans the 5' nontranslated region, which is the most conserved and highly structured region of the HCV genome. In this study, we demonstrate that nucleotides 428-442 of the HCV core-coding sequence anneal to nucleotides 24-38 of the 5'NTR, and that this RNA-RNA interaction modulates IRES-dependent translation in rabbit reticulocyte lysate and in HepG2 cells. The inclusion of the core-coding sequence (nucleotides 428-442) significantly suppressed the translational efficiency directed by HCV IRES in dicistronic reporter systems, and this suppression was relieved by site-directed mutations that blocked the long-range interaction between nucleotides 24-38 and 428-442. These findings suggest that the long-range interaction between the HCV 5'NTR and the core-coding nucleotide sequence down-regulate cap-independent translation via HCV IRES. The modulation of protein synthesis by long-range RNA-RNA interaction may play a role in the regulation of viral gene expression.  相似文献   

19.
J Fütterer  T Hohn 《The EMBO journal》1991,10(12):3887-3896
Polycistronic mRNAs containing an upstream beta-glucuronidase (GUS) and a downstream chloramphenicol acetyltransferase (CAT) reporter open reading frame (ORF) were expressed in transfected plant protoplasts. CAT expression could be strongly induced by coexpression of the cauliflower mosaic virus encoded translation transactivator. Transactivation was abolished when an upstream ORF overlapped the CAT ORF for a long distance. No specific sequence elements were required for transactivation but the presence of a short ORF upstream of the GUS ORF strongly enhanced the process. The inhibitory effect of additional presumed stem structures inserted into various regions of the reporter mRNAs indicates that both ORFs are translated by ribosomes that associate with the RNA at the 5' end and reach the ORFs by a linear migration mechanism.  相似文献   

20.
Translation initiation by internal ribosome binding is a recently discovered mechanism of eukaryotic viral and cellular protein synthesis in which ribosome subunits interact with the mRNAs at internal sites in the 5' untranslated RNA sequences and not with the 5' methylguanosine cap structure present at the extreme 5' ends of mRNA molecules. Uncapped poliovirus mRNAs harbor internal ribosome entry sites (IRES) in their long and highly structured 5' noncoding regions. Such IRES sequences are required for viral protein synthesis. In this study, a novel poliovirus was isolated whose genomic RNA contains two gross deletions removing approximately 100 nucleotides from the predicted IRES sequences within the 5' noncoding region. The deletions originated from previously in vivo-selected viral revertants displaying non-temperature-sensitive phenotypes. Each revertant had a different predicted stem-loop structure within the 5' noncoding region of their genomic RNAs deleted. The mutant poliovirus (Se1-5NC-delta DG) described in this study contains both stem-loop deletions in a single RNA genome, thereby creating a minimum IRES. Se1-5NC-delta DG exhibited slow growth and a pinpoint plaque phenotype following infection of HeLa cells, delayed onset of protein synthesis in vivo, and defective initiation during in vitro translation of the mutated poliovirus mRNAs. Interestingly, the peak levels of viral RNA synthesis in cells infected with Se1-5NC-delta DG occurred at slightly later times in infection than those achieved by wild-type poliovirus, but these mutant virus RNAs accumulated in the host cells during the late phases of virus infection. UV cross-linking assays with the 5' noncoding regions of wild-type and mutated RNAs were carried out in cytoplasmic extracts from HeLa cells and neuronal cells and in reticulocyte lysates to identify the cellular factors that interact with the putative IRES elements. The cellular proteins that were cross-linked to the minimum IRES may represent factors playing an essential role in internal translation initiation of poliovirus mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号