首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cobalamin-dependent methionine synthase catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine, forming tetrahydrofolate and methionine. The Escherichia coli enzyme, like its mammalian homologue, is occasionally inactivated by oxidation of the cofactor to cob(II)alamin. To return to the catalytic cycle, the cob(II)alamin forms of both the bacterial and mammalian enzymes must be reductively remethylated. Reduced flavodoxin donates an electron for this reaction in E. coli, and S-adenosylmethionine serves as the methyl donor. In humans, the electron is thought to be provided by methionine synthase reductase, a protein containing a domain with a significant degree of homology to flavodoxin. Because of this homology, studies of the interactions between E. coli flavodoxin and methionine synthase provide a model for the mammalian system. To characterize the binding interface between E. coli flavodoxin and methionine synthase, we have employed site-directed mutagenesis and chemical cross-linking using carbodiimide and N-hydroxysuccinimide. Glutamate 61 of flavodoxin is identified as a cross-linked residue, and lysine 959 of the C-terminal activation domain of methionine synthase is assigned as its partner. The mutation of lysine 959 to threonine results in a diminished level of cross-linking, but has only a small effect on the affinity of methionine synthase for flavodoxin. Identification of these cross-linked residues provides evidence in support of a docking model that will be useful in predicting the effects of mutations observed in mammalian homologues of E. coli flavodoxin and methionine synthase.  相似文献   

2.
Mechanism of mammalian cobalamin-dependent methionine biosynthesis   总被引:2,自引:0,他引:2  
G T Burke  J H Mangum  J D Brodie 《Biochemistry》1971,10(16):3079-3085
  相似文献   

3.
The apparent Mn2+ binding constant for L-alpha-dipalmitoylphosphatidylcholine (DPPC) bilayers dispersed in monovalent salt and MnCl2 dispersions was determined as a function temperature using electron paramagnetic resonance (ERP). Reproducibility in the data sets requires the use of a standard salt solution and dual cavity techniques. Changes in the binding constant at different phase states and temperatures were observed and correlated to the influence of monovalent salts on the thermal properties of DPPC. The turning points (i.e. changes in slope) in the curves of the apparent Mn2+ binding constant versus temperature can be understood in terms of differences in ion binding to headgroups with different bilayer surface areas. The influence of Li+ and SCN- on Mn2+ binding is viewed as a function of their presence in the ionic media in contact with the bilayer rather than as a competitive event. Other monovalent ions studied appear to have little effect on the measured apparent Mn2+ binding constants for DPPC headgroups.  相似文献   

4.
The cobalamin-dependent cytosolic enzyme, methionine synthase (EC.2.1.1.13), catalyzes the remethylation of homocysteine to methionine using 5-methyltetrahydrofolate as the methyl donor. The products of this remethylation--methionine and tetrahydrofolate--participate in the active methionine and folate pathways. Impaired methionine synthase activity has been implicated in the pathogenesis of anaemias, cancer and neurological disorders. Although the need for potent and specific inhibitors of methionine synthase has been recognized, there is a lack of such agents. In this study, we designed, synthesized and evaluated the inhibitory activity of a series of substituted benzimidazoles and small benzothiadiazoles. Kinetic analysis revealed that the benzimidazoles act as competitive inhibitors of the rat liver methionine synthase, whilst the most active benzothiadiazole (IC(50) = 80 microm) exhibited characteristics of uncompetitive inhibition. A model of the methyltetrahydrofolate-binding site of the rat liver methionine synthase was constructed; docking experiments were designed to elucidate, in greater detail, the binding mode and reveal structural requirements for the design of inhibitors of methionine synthase. Our results indicate that the potency of the tested compounds is related to a planar region of the inhibitor that can be positioned in the centre of the active site, the presence of a nitro functional group and two or three probable hydrogen-bonding interactions.  相似文献   

5.
Olteanu H  Munson T  Banerjee R 《Biochemistry》2002,41(45):13378-13385
Methionine synthase reductase (MSR) catalyzes the conversion of the inactive form of human methionine synthase to the active state of the enzyme. This reaction is of paramount physiological importance since methionine synthase is an essential enzyme that plays a key role in the methionine and folate cycles. A common polymorphism in human MSR has been identified (66A --> G) that leads to replacement of isoleucine with methionine at residue 22 and has an allele frequency of 0.5. Another polymorphism is 524C --> T, which leads to the substitution of serine 175 with leucine, but its allele frequency is not known. The I22M polymorphism is a genetic determinant for mild hyperhomocysteinemia, a risk factor for cardiovascular disease. In this study, we have examined the kinetic properties of the M22/S175 and I22/S175 and the I22/L175 and I22/S175 pairs of variants. EPR spectra of the semiquinone forms of variants I22/S175 and M22/S175 are indistinguishable and exhibit an isotropic signal at g = 2.00. In addition, the electronic absorption and reduction stoichiometries with NADPH are identical in these variants. Significantly, the variants activate methionine synthase with the same V(max); however, a 3-4-fold higher ratio of MSR to methionine synthase is required to elicit maximal activity with the M22/S175 and I22/L175 variant versus the I22/S175 enzyme. Differences are also observed between the variants in the efficacies of reduction of the artificial electron acceptors: ferricyanide, 2,6-dichloroindophenol, 3-acetylpyridine adenine dinucleotide phosphate, menadione, and the anticancer drug doxorubicin. These results reveal differences in the interactions between the natural and artificial electron acceptors and MSR variants in vitro, which are predicted to result in less efficient reductive repair of methionine synthase in vivo.  相似文献   

6.
In this paper we describe an anaerobic titrator made virtually from glass with a small amount of high vacuum epoxy mounted directly to a quartz EPR tube. A complete titration may be carried out with as little as 600 microliters of sample. This cell features the anaerobic manipulation of an electrochemically poised solution from an electrochemical pouch to an EPR tube. The cell uses a gold foil working electrode and Ag/AgCl reference and counter electrodes. The reference and counter electrodes are isolated from the sample by leached Vycor glass. In the work reported here, we used this cell to determine the equilibrium redox potential of methyl viologen in an EPR titration. With methyl viologen as an indicator we found that the cell has a residual oxygen level of 1.5 microM with a leak rate of 0.005 nmol/min. After moving the solution into the EPR tube, freezing, performing EPR, and thawing, the potential of the methyl viologen solution drifted only 2 mV. During the titration, the poised potentials were stable, drifting only 1 mV/min. Formal potentials as low as -630 mV in a vitamin B12-type protein have been determined with this cell (S. R. Harder, W.-P. Lu, B. A. Feinberg, and S. W. Ragsdale (1989) Biochemistry, in press).  相似文献   

7.
Smith AE  Matthews RG 《Biochemistry》2000,39(45):13880-13890
N5-Methyltetrahydrofolate (CH(3)-H(4)folate) donates a methyl group to the cob(I)alamin cofactor in the reaction catalyzed by cobalamin-dependent methionine synthase (MetH, EC 2.1.1.3). Nucleophilic displacement of a methyl group attached to a tertiary amine is a reaction without an obvious precedent in bioorganic chemistry. Activation of CH(3)-H(4)folate by protonation prior to transfer of the methyl group has been the favored mechanism. Protonation at N5 would lead to formation of an aminium cation, and quaternary amines such as 5,5-dimethyltetrahydropterin have been shown to transfer methyl groups to cob(I)alamin. Because CH(3)-H(4)folate is an enamine, protonation could occur either at N5 to form an aminium cation or on a conjugated carbon with formation of an iminium cation. We used (13)C distortionless enhancement by polarization transfer (DEPT) NMR spectroscopy to infer that CH(3)-H(4)folate in aqueous solution protonates at N5, not on carbon. CH(3)-H(4)folate must eventually protonate at N5 to form the product H(4)folate; however, this protonation could occur either upon formation of the binary enzyme-CH(3)-H(4)folate complex or later in the reaction mechanism. Protonation at N5 is accompanied by substantial changes in the visible absorbance spectrum of CH(3)-H(4)folate. We have measured the spectral changes associated with binding of CH(3)-H(4)folate to a catalytically competent fragment of MetH over the pH range from 5.5 to 8.5. These studies indicate that CH(3)-H(4)folate is bound in the unprotonated form throughout this pH range and that protonated CH(3)-H(4)folate does not bind to the enzyme. Our observations are rationalized by sequence homologies between the folate-binding region of MetH and dihydropteroate synthase, which suggest that the pterin ring is bound in the hydrophobic core of an alpha(8)beta(8) barrel in both enzymes. The results from these studies are difficult to reconcile with an S(N)2 mechanism for methyl transfer and suggest that the presence of the cobalamin cofactor is important for CH(3)-H(4)folate activation. We propose that protonation of N5 occurs after carbon-nitrogen bond cleavage, and we invoke a mechanism involving oxidative addition of Co(1+) to the N5-methyl bond to rationalize our results.  相似文献   

8.
Cobalamin-dependent methionine synthase (MetH) of Escherichia coli is a 136 kDa, modular enzyme that undergoes large conformational changes as it uses a cobalamin cofactor as a donor or acceptor in three separate methyl transfer reactions. At different points during the reaction cycle, the coordination to the cobalt of the cobalamin changes; most notably, the imidazole side chain of His759 that coordinates to the cobalamin in the "His-on" state can dissociate to produce a "His-off" state. Here, two distinct species of the cob(II)alamin-bound His759Gly variant have been identified and separated. Limited proteolysis with trypsin was employed to demonstrate that the two species differ in protein conformation. Magnetic circular dichroism and electron paramagnetic resonance spectroscopies were used to show that the two species also differ with respect to the axial coordination to the central cobalt ion of the cobalamin cofactor. One form appears to be in a conformation poised for reductive methylation with adenosylmethionine; this form was readily reduced to cob(I)alamin and subsequently methylated [albeit yielding a unique, five-coordinate methylcob(III)alamin species]. Our spectroscopic data revealed that this form contains a five-coordinate cob(II)alamin species, with a water molecule as an axial ligand to the cobalt. The other form appears to be in a catalytic conformation and could not be reduced to cob(I)alamin under any of the conditions tested, which precluded conversion to the methylcob(III)alamin state. This form was found to possess an effectively four-coordinate cob(II)alamin species that has neither water nor histidine coordinated to the cobalt center. The formation of this four-coordinate cob(II)alamin "dead-end" species in the His759Gly variant illustrates the importance of the His759 residue in governing the equilibria between the different conformations of MetH.  相似文献   

9.
10.
11.
Cobalamin-dependent methionine synthase (5-methyltetrahydrofolate-homocysteine methyltransferase, EC 2.1.1.13) has been isolated from Escherichia coli B in homogeneous form. The enzyme is isolated in an inactive form with the visible absorbance properties of cob(II)alamin. The inactive enzyme exhibits an electron paramagnetic resonance (EPR) spectrum at 38 K that is characteristic of cob(II)alamin at acid pH, where the protonated dimethylbenzimidazole substituent is not coordinated with the cobalt nucleus (base-off cobalamin). An additional, variable component of the EPR spectrum of the inactive enzyme has the characteristics of a cob(III)alamin-superoxide complex. Previous work by others [Taylor, R.T., & Weissbach, H. (1969) Arch. Biochem. Biophys. 129, 745-766. Fujii, K., & Huennekens, F.M. (1979) in Biochemical Aspects of Nutrition (Yagi, K., Ed.) pp 173-183, Japan Scientific Societies, Tokyo] has demonstrated that the enzyme can be activated by reductive methylation using adenosylmethionine as the methyl donor. We present data indicating that the conversion of inactive to methylated enzyme is correlated with the disappearance of the EPR spectrum as expected for the conversion of paramagnetic cob(II)alamin to diamagnetic methylcobalamin. When the methyl group is transferred from the methylated enzyme to homocysteine under aerobic conditions, cob(II)alamin/cob(III)alamin-superoxide enzyme is regenerated as indicated by the return of the visible absorbance properties of the initially isolated enzyme and partial return of the EPR spectrum. Our enzyme preparations contain copper in approximately 1:1 stoichiometry with cobalt as determined by atomic absorption spectroscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The relationship between molecular mobility (tauR) of the polar spin probe 3-carboxy-proxyl and water content and temperature was established in pea axes by electron paramagnetic resonance (EPR) and saturation transfer EPR. At room temperature, tauR increased during drying from 10(-11) s at 2.0 g water/g dry weight to 10(-4) s in the dry state. At water contents below 0.07 g water/g dry weight, tauR remained constant upon further drying. At the glass transition temperature, tauR was constant at approximately 10(-4) s for all water contents studied. Above Tg, isomobility lines were found that were approximately parallel to the Tg curve. The temperature dependence of tauR at all water contents studied followed Arrhenius behavior, with a break at Tg. Above Tg the activation energy for rotational motion was approximately 25 kJ/mol compared to 10 kJ/mol below Tg. The temperature dependence of tauR could also be described by the WLF equation, using constants deviating considerably from the universal constants. The temperature effect on tauR above Tg was much smaller in pea axes, as found previously for sugar and polymer glasses. Thus, although glasses are present in seeds, the melting of the glass by raising the temperature will cause only a moderate increase in molecular mobility in the cytoplasm as compared to a huge increase in amorphous sugars.  相似文献   

14.
An electron paramagnetic resonance study was performed on cell lines of the following strains: HeLa, 37RC, L, FLC, NRK/RSV, 3T3/SV40.Unsynchronized and synchronized HeLa cells were studied with particular attention paid to the relation between growth and free radical concentration. Free radical levels were shown to be a function of the growth stage and different phases of the cell cycle.  相似文献   

15.
16.
J S Vincent  H Kon  I W Levin 《Biochemistry》1987,26(8):2312-2314
The electron paramagnetic resonance spectrum of the ferricytochrome c complex with cardiolipin was observed at temperatures below 20 K. For the low-spin iron(III) heme system complexed with the negatively charged lipid, the tetragonal and rhombic ligand field parameters (delta/lambda = 3.58, V/lambda = 1.82) differ significantly from those (delta/lambda = 2.53, V/lambda = 1.49) of the free ferricytochrome c sample. The g values of the complex (gx = 1.54 +/- 0.02, gy = 2.26 +/- 0.01, gz = 3.02 +/- 0.01) are compared to the values for free ferricytochrome c (gx = 1.25 +/- 0.02, gy = 2.25 +/- 0.01, gz = 3.04 +/- 0.01). Spectral alterations are interpreted in terms of the ligand field changes induced within the heme group by association with the negatively charged phosphoglyceride.  相似文献   

17.
alpha-lactalbumin has at least three distinct cation binding regions: a Ca(II)-Gd(III) site, a Cu(II)-Zn(II) site and a VO2+ site as observed from electron paramagnetic resonance (EPR) studies of complexes with the bovine protein. Gadolinium, which bound to the calcium site of the protein with a subnanomolar dissociation constant, yielded EPR spectra at 9.5 GHz (X-band) that exhibited features from g = 8 to g = 2. At 35 GHz (Q-band) the central fine structure transition (Ms = 1/2----Ms = -1/2) gave a well-defined powder pattern. The zero-field splitting was large, as reflected in the second-order splitting of the central fine structure transition of about 1 kG. There was also evidence for additional, low affinity binding site(s) for Gd(III). Addition of either Zn(II) or Al(III) did not affect the amplitudes or positions of the bound Gd(III) EPR spectrum. The Cu(II)-alpha-lactalbumin complex gave a typical axially symmetric spectrum (g parallel = 2.260, g perpendicular = 2.056, A parallel = 171 G) with a partially resolved superhyperfine interaction attributable to at least one directly coordinated nitrogen ligand. Addition of Cu(II) to Gd(III)-alpha-lactalbumin gave an EPR spectrum that was a superposition of signals from the individual Gd(III)- and Cu(II)-alpha-LA spectra. The absence of any magnetic interactions in the Gd(III)-Cu(II)-alpha-lactalbumin species indicated that the two cation sites were more than 10 A apart. On the other hand, addition of Zn(II) to Cu(II)-alpha-lactalbumin gave a set of EPR lines due to free or loosely bound Cu(II), confirming that the Cu(II) was displaced by zinc.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The electron paramagnetic resonance of metalloproteins   总被引:6,自引:0,他引:6  
  相似文献   

19.
An electron paramagnetic resonance study of free radicals in cells.   总被引:1,自引:0,他引:1  
An electron paramagnetic resonance study was performed on cell lines of the following strains: HeLa, 37RC, L, FLC, NRK/RSV, 3T3/SV40. Unsynchronized and synchronized HeLa cells were studied with particular attention paid to the relation between growth and free radical concentration. Free radical levels were shown to be a function of the growth stage and different phases of the cell cycle.  相似文献   

20.
A rat model for human minimal change nephropathy was obtained by the intravenous injection of adriamycin (ADR) at 5 mg/kg. By using an in vivo electron paramagnetic resonance (EPR) spectrometer operating at 700 MHz, the temporal changes in signal intensities of a nitroxide radical, 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), in the kidneys of rats with ADR nephropathy were investigated. The decay rate of the EPR signal intensity obtained in the kidney is indicative of the renal reducing ability. It was found that the reducing ability in the kidney declined on the 7th day after ADR administration and recovered after the 14th day. Impairment of the reducing ability occurred before the appearance of continuous urinary protein. The in vitro EPR study showed that this impairment of in vivo renal reducing ability is related to impairment of the reducing ability in the mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号