首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 836 毫秒
1.
Thioredoxin is a small redox protein that functions as a reducing agent and modulator of enzyme activity. A gene for an unusual thioredoxin was previously isolated from the cyanobacterium Anabaena sp. strain PCC 7120 and cloned and expressed in Escherichia coli. However, the protein could not be detected in Anabaena cells (J. Alam, S. Curtis, F. K. Gleason, M. Gerami-Nejad, and J. A. Fuchs, J. Bacteriol. 171:162-171, 1989). Polyclonal antibodies to the atypical thioredoxin were prepared, and the protein was detected by Western immunoblotting. It occurs at very low levels in extracts of Anabaena sp. and other cyanobacteria. No antibody cross-reaction was observed in extracts of eukaryotic algae, plants, or eubacteria. The anti-Anabaena thioredoxin antibodies did react with another unusual thioredoxin-glutaredoxin produced by bacteriophage T4. Like the T4 protein and other glutaredoxins, the unusual cyanobacterial thioredoxin can be reduced by glutathione. The Anabaena protein can also activate enzymes of carbon metabolism and has some functional similarity to spinach chloroplast thioredoxin f. However, it shows only 23% amino acid sequence identity to the spinach chloroplast protein and appears to be distantly related to other thioredoxins. The data indicate that cyanobacteria, like plant chloroplasts, have two dissimilar thioredoxins. One is related to the more common protein found in other prokaryotes, and the other is an unusual thioredoxin that can be reduced by glutathione and may function in glucose catabolism.  相似文献   

2.
A procedure has been developed for the simultaneous purification to apparent homogeneity of chloroplast thioredoxins f and m, and nonchloroplast thioredoxin h, from the green alga Acetabularia mediterranea. In the chloroplast fraction, three thioredoxins were isolated: one f type thioredoxin (Mr 13.4 kDa) and two m type thioredoxin forms (Mr of 12.9 and 13.8 kDa). A Western blot analysis of crude and purified chloroplast thioredoxin preparations revealed that Acetabularia thioredoxin m was immunologically related to its higher-plant counterparts whereas thioredoxin f was not. In the nonchloroplast fraction, a single form of thioredoxin h (Mr 13.4 kDa) and its associated enzyme NADP-thioredoxin reductase (NTR) were evidenced. Acetabularia NTR was partially purified and shown to be an holoenzyme composed of two 33.0-kDa subunits as is the case for other plant and bacterial NTRs. Similarity was confirmed by immunological tests: the algal enzyme was recognized by antibodies to spinach and Escherichia coli NTRs. Acetabularia thioredoxin h seemed to be more distant from higher-plant type h thioredoxins as recognition by antibodies to thioredoxin h from spinach and wheat was weak. The algal thioredoxin h was also slightly active with spinach and E. coli NTRs. These results suggest that in green algae as in the green tissues of higher plants the NADP and chloroplast thioredoxin systems are present simultaneously, and might play an important regulatory role in their respective cellular compartments.  相似文献   

3.
Procedures are described for the purification to homogeneity of chloroplast thioredoxins f and m from leaves of corn (Zea mays, a C4 plant) and spinach (Spinacea oleracea, a C3 plant). The C3 and C4f thioredoxins were similar immunologically and biochemically, but differed in certain of their physiochemical properties. The f thioredoxins from the two species were capable of activating both NADP-malate dehydrogenase (EC 1.1.1.37) and fructose-1,6-bisphosphatase (EC 3.1.3.11) when tested in standard thioredoxin assays. Relative to its spinach counterpart, corn thioredoxin f showed a greater molecular mass (15.0-16.0 kDa vs 10.5 kDa), lower isoelectric point (ca. 5.2 vs 6.0), and lower ability to form a stable noncovalent complex with its target fructose bisphosphatase enzyme. The C3 and C4 m thioredoxins were similar in their specificity (ability to activate NADP-malate dehydrogenase, and not fructose-1,6-bisphosphatase) and isoelectric points (ca. 4.8), but differed slightly in molecular mass (13.0 kDa for spinach vs 13.5 kDa for corn) and substantially in their immunological properties. Results obtained in conjunction with these studies demonstrated that the thioredoxin m-linked activation of NADP-malate dehydrogenase in selectively enhanced by the presence of halide ions (e.g., chloride) and by an organic solvent (e.g., 2-propanol). The results suggest that in vivo NADP-malate dehydrogenase interacts with thylakoid membranes and is regulated to a greater extent by thioredoxin m than thioredoxin f.  相似文献   

4.
The interaction of D-fructose-1,6-bisphosphate 1-phosphohydrolase (Fru-P2-ase, EC 3.1.3.11), with bovine serum albumin (BSA) results in the fluorescence quenching of BSA. BSA increases fluorescence anisotropy of Fru-P2-ase modified with o-phthaldialdehyde. A program in Fortran, to simulate the experimental titration curves of BSA with Fru-P2-ase and o-phthaldialdehyde modified Fru-P2-ase with BSA, was written. For fluorescence quenching experiments the best fit was obtained for a model where one subunit of native Fru-P2-ase binds up two molecules of BSA. The determined dissociation constants at 5, 15, 25 and 35 degrees C were 2.2, 1.6, 0.83 and 0.03 microM, respectively.  相似文献   

5.
Two thioredoxins (named Ch1 and Ch2 in reference to their elution pattern on an anion-exchange column) have been purified to homogeneity from the green alga, Chlamydomonas reinhardtii. In this paper, we described the properties and the sequence of the most abundant form, Ch2. Its activity in various enzymatic assays has been compared with those of Escherichia coli and spinach thioredoxins. C. reinhardtii thioredoxin Ch2 can serve as a substrate for E. coli thioredoxin reductase with a lower efficiency when compared to the homologous system. In the presence of dithiothreitol (DTT), the protein is able to catalyze the reduction of porcine insulin. Thioredoxin Ch2 is as efficient as its spinach counterpart in the DTT or light activation of corn NADP-malate dehydrogenase, but it only activates spinach fructose-1, 6-bisphosphatase at very high concentrations. The complete primary structure of the C. reinhardtii thioredoxin Ch2 was determined by automated Edman degradation of the intact protein and of peptides derived from trypsin, chymotrypsin, clostripain, and SV8 protease digestions. It consists of a polypeptide of 106 amino acids (MW 11,808) and contains the well-conserved active site sequence Trp-Cys-Gly-Pro-Cys. The sequence of the algal thioredoxin Ch2 has been compared to that of thioredoxins from other sources and has the greatest similarity (67%) with the thioredoxin from Anabaena 7119.  相似文献   

6.
A thioredoxin-like chloroplast protein of the fructosebisphosphatase-stimulating f-type, but with an unusually high molecular mass of 28 kDa has previously been identified and purified to homogeneity in a fractionation scheme for resolution of the acid- and heat-stable, regular-size (12kDa) thioredoxins of the unicellular green algae, Scenedesmus obliquus. An apparently analogous protein of 26 kDa was described in a cyanobacterium, Anabaena sp., but no such large thioredoxin species f exists in the thioredoxin profiles of higher plants. The structure of the 28 kDa protein, which had been envisaged to represent a precursor, or fusion product of the two more specialized, common chloroplast thioredoxins f and m has now been determined by amino acid sequencing. Although it exhibits virtually all the properties and enzyme-modulating activities of a thioredoxin proper this algal protein, surprisingly, does not belong to the thioredoxin family of small redox proteins but is identical with OEE (oxygen evolving enhancer) protein 1, an auxiliary component of the photosystem II manganese cluster. Extracts of Chlorella vulgaris and Chlamydomonas reinhardtii also contain heat-stable protein fractions of 23-26 kDa capable of specifically stimulating chloroplast fructosebisphosphatase in vitro. In contrast, OEE protein 1 from spinach is not able to modulate FbPase or NADP malate dehydrogenase from spinach chloroplasts. A dual function of the OEE protein in algal photosynthesis is envisaged.  相似文献   

7.
Isomers in thioredoxins of spinach chloroplasts   总被引:7,自引:0,他引:7  
We have developed a method for the concomitant purification of several components of the ferredoxin/thioredoxin system of spinach chloroplasts. By applying this method to spinach-leaf extract or spinach-chloroplast extract we separated and purified three thioredoxins indigenous to chloroplasts. The three thioredoxins, when reduced, will activate certain chloroplast enzymes such as fructose-1,6-bisphosphatase and NADP-dependent malate dehydrogenase. Fructose-1,6-bisphosphatase is activated by thioredoxin f exclusively. Malate dehydrogenase is activated by thioredoxin mb and thioredoxin mc in a similar way, and it is also activated by thioredoxin f but with different kinetics. All three thioredoxins have very similar relative molecular masses of about 12,000 but distinct isoelectric points of 6.1 (thioredoxin f), 5.2 (thioredoxin mb) and 5.0 (thioredoxin mc). The amino acid composition as well as the C-terminal and N-terminal sequences have been determined for each thioredoxin. Thioredoxin f exhibits clear differences in amino acid composition and terminal sequences when compared with the m-type thioredoxins. Thioredoxin mb and thioredoxin mc, however, are very similar, the only difference being an additional lysine residue at the N-terminus of thioredoxin mb. Amino acid analyses, terminal sequences, immunological tests and the activation properties of the thioredoxins support our conclusion that thioredoxins mb and mc are N-terminal redundant isomers coming from one gene whereas thioredoxin f is a different protein coded by a different gene.  相似文献   

8.
Redox regulation based on disulfide-dithiol conversion catalyzed by thioredoxins is an important component of chloroplast function. The reducing power is provided by ferredoxin reduced by the photosynthetic electron transport chain. In addition, chloroplasts are equipped with a peculiar NADPH-dependent thioredoxin reductase, termed NTRC, with a joint thioredoxin domain at the carboxyl terminus. Because NADPH can be produced by the oxidative pentose phosphate pathway during the night, NTRC is important to maintain the chloroplast redox homeostasis under light limitation. NTRC is exclusive for photosynthetic organisms such as plants, algae, and some, but not all, cyanobacteria. Phylogenetic analysis suggests that chloroplast NTRC originated from an ancestral cyanobacterial enzyme. While the biochemical properties of plant NTRC are well documented, little is known about the cyanobacterial enzyme. With the aim of comparing cyanobacterial and plant NTRCs, we have expressed the full-length enzyme from the cyanobacterium Anabaena species PCC 7120 as well as site-directed mutant variants and truncated polypeptides containing the NTR or the thioredoxin domains of the protein. Immunological and kinetic analysis showed a high similarity between NTRCs from plants and cyanobacteria. Both enzymes efficiently reduced 2-Cys peroxiredoxins from plants and from Anabaena but not from the cyanobacterium Synechocystis. Arabidopsis (Arabidopsis thaliana) NTRC knockout plants were transformed with the Anabaena NTRC gene. Despite a lower content of NTRC than in wild-type plants, the transgenic plants showed significant recovery of growth and pigmentation. Therefore, the Anabaena enzyme fulfills functions of the plant enzyme in vivo, further emphasizing the similarity between cyanobacterial and plant NTRCs.  相似文献   

9.
A second thioredoxin, Ch1, distinct from the one recently reported [Decottignies, P., Schmitter, J.M., Jacquot, J. P., Dutka, S., Picaud, A. & Gadal, P. (1990) Arch, Biochem. Biophys. 280, 112-121] has been purified from the green alga, Chlamydomonas reinhardtii, and its functional and structural properties investigated. Its activity in various enzymatic assays has been compared with the activities of different plant thioredoxins (Ch2 from C. reinhardtii and spinach m and f). Ch1 cannot serve as a substrate for Escherichia coli thioredoxin reductase, but can be reduced by spinach ferredoxin-thioredoxin reductase. It is less efficient than its spinach counterpart in the activation of corn leaf NADP-dependent malate dehydrogenase by light or dithiothreitol, and it only activates spinach fructose-1,6-bisphosphatase at very high concentrations. The complete primary structure of C. reinhardtii thioredoxin Ch1 was determined by automated Edman degradation of the intact protein and of peptides derived from trypsin, chymotrypsin and Staphylococcus aureus V8 protease digestions. When needed, peptide masses were verified by plasma desorption mass spectrometry. Ch1 consists of a polypeptide of 111 amino acids (11634 Da) and contains the well-conserved active site sequence Trp-Cys-Gly-Pro-Cys. Compared to thioredoxins from other sources, the algal thioredoxin Ch1 displays few sequence similarities with all the thioredoxins sequenced so far. Preliminary evidence indicates that Ch1 may be an h-type thioredoxin.  相似文献   

10.
The complete primary structure of m-type thioredoxin from spinach chloroplasts has been sequenced by conventional sequencing including fragmentation, Edman degradation and carboxypeptidase digestion. As already reported [Tsugita, A., Maeda, K. & Schürmann, P. (1983) Biochem. Biophys. Res. Commun. 115, 1-7] these thioredoxins contain the same active-site sequence as thioredoxins from other sources. Based on the amino acid sequence thioredoxin mc contains 103 residues, has a relative molecular mass of 11425 and a molar absorption coefficient at 280 nm of 19 300 M-1 cm-1. The spinach thioredoxin mc has an overall homology of 44% with the thioredoxin from Escherichia coli mainly due to differences in the N-terminal and C-terminal regions.  相似文献   

11.
An NADP/thioredoxin system, consisting of NADPH, NADP-thioredoxin reductase (NTR), and its thioredoxin, thioredoxin h, has been previously described for heterotrophic plant tissues, i.e., wheat seeds and cultured carrot cells. Until now there was no evidence for this system in green leaves. Here, we report the identification of protein components of the NADP/thioredoxin system in leaves of several species. Thioredoxin h and NTR, which were both recovered in the extrachloroplastic fraction, were purified to apparent homogeneity from spinach leaves. This represents the first time that NTR has been characterized from a plant source. Similar to that from bacterial and mammalian sources, spinach leaf NTR was a flavoprotein (Mr 68,000) composed of two subunits of identical molecular mass (Mr 33,000) that resembled Escherichia coli NTR immunologically. Spinach thioredoxin h existed in two forms (Mr of 13,500 and 12,000) and was highly specific for plant NTR. Thioredoxin h and NTR partially purified from spinach roots showed properties similar to their counterparts from leaves. Spinach cytosolic thioredoxin h differed from chloroplast thioredoxin m or f from the same source but was similar to thioredoxin h from wheat seed in immunological properties.  相似文献   

12.
Oxidation-reduction midpoint potentials were determined, as a function of pH, for the disulfide/dithiol couples of spinach and pea thioredoxins f, for spinach and Chlamydomonas reinhardtii thioredoxins m, for spinach ferredoxin:thioredoxin reductase (FTR), and for two enzymes regulated by thioredoxin f, spinach phosphoribulokinase (PRK) and the fructose-1,6-bisphosphatases (FBPase) from pea and spinach. Midpoint oxidation-reduction potential (Em) values at pH 7.0 of -290 mV for both spinach and pea thioredoxin f, -300 mV for both C. reinhardtii and spinach thioredoxin m, -320 mV for spinach FTR, -290 mV for spinach PRK, -315 mV for pea FBPase, and -330 mV for spinach FBPase were obtained. With the exception of spinach FBPase, titrations showed a single two-electron component at all pH values tested. Spinach FBPase exhibited a more complicated behavior, with a single two-electron component being observed at pH values >/= 7.0, but with two components being present at pH values <7.0. The slopes of plots of Em versus pH were close to the -60 mV/pH unit value expected for a process that involves the uptake of two protons per two electrons (i. e., the reduction of a disulfide to two fully protonated thiols) for thioredoxins f and m, for FTR, and for pea FBPase. The slope of the Em versus pH profile for PRK shows three regions, consistent with the presence of pKa values for the two regulatory cysteines in the region between pH 7.5 and 9.0.  相似文献   

13.
We have taken advantage of the transformation properties of the cyanobacterium Anacystis nidulans R2 to investigate the importance of thioredoxin for photosynthetic growth. The gene encoding thioredoxin m, designated trxM, was cloned from A. nidulans using a synthetic oligonucleotide probe. Based on the nucleotide sequence, thioredoxin m of A. nidulans is composed of 107 amino acids and shares 84, 48, and 48% sequence identity with thioredoxins from Anabaena, spinach, and Escherichia coli, respectively. The trxM gene is single copy and is transcribed on a 510-nucleotide mRNA. We demonstrate that disruption of the trxM gene with a kanamycin resistance gene cartridge is a lethal mutation. Although dispensable in E. coli, thioredoxin is essential for the photosynthetic growth of A. nidulans.  相似文献   

14.
Two sequences with homology to a thioredoxin oligonucleotide probe were detected by Southern blot analysis of Anabaena sp. strain PCC 7120 genomic DNA. One of the sequences was shown to code for a protein with 37% amino acid identity to thioredoxins from Escherichia coli and Anabaena sp. strain PCC 7119. This is in contrast to the usual 50% homology observed among most procaryotic thioredoxins. One gene was identified in a library and was subcloned into a pUC vector and used to transform E. coli strains lacking functional thioredoxin. The Anabaena strain 7120 thioredoxin gene did not complement the trxA mutation in E. coli. Transformed cells were not able to use methionine sulfoxide as a methionine source or support replication of T7 bacteriophage or the filamentous viruses M13 and f1. Sequence analysis of a 720-base-pair TaqI fragment indicated an open reading frame of 115 amino acids. The Anabaena strain 7120 thioredoxin gene was expressed in E. coli, and the protein was purified by assaying for protein disulfide reductase activity, using insulin as a substrate. The Anabaena strain 7120 thioredoxin exhibited the properties of a conventional thioredoxin. It is a small heat-stable redox protein and an efficient protein disulfide reductase. It is not a substrate for E. coli thioredoxin reductase. Chemically reduced Anabaena strain 7120 thioredoxin was able to serve as reducing agent for both E. coli and Anabaena strain 7119 ribonucleotide reductases, although with less efficiency than the homologous counterparts. The Anabaena strain 7120 thioredoxin cross-reacted with polyclonal antibodies to Anabaena strain 7119 thioredoxin. However, this unusual thioredoxin was not detected in extracts of Anabaena strain 7120, and its physiological function is unknown.  相似文献   

15.
Characterization of Escherichia coli-Anabaena sp. hybrid thioredoxins   总被引:2,自引:0,他引:2  
Thioredoxin is a small redox protein with an active-site disulfide/dithiol. The protein from Escherichia coli has been well characterized. The genes encoding thioredoxin in E. coli and in the filamentous cyanobacterium Anabaena PCC 7119 have been cloned and sequenced. Anabaena thioredoxin exhibits 50% amino acid identity with the E. coli protein and interacts with E. coli enzymes. The genes encoding Anabaena and E. coli thioredoxin were fused via a common restriction site in the nucleotide sequence coding for the active site of the proteins to generate hybrid genes, coding for two chimeric thioredoxins. These proteins are designated Anabaena-E. coli (A-E) thioredoxin for the construct with the Anabaena sequence from the N-terminus to the middle of the active site and the E. coli sequence to the C-terminus, and E. coli-Anabaena (E-A) for the opposite construct. The gene encoding the A-E thioredoxin complements all phenotypes of an E. coli thioredoxin-deficient strain, whereas the gene encoding E-A thioredoxin is only partially effective. Purified E-A thioredoxin exhibits a much lower catalytic efficiency with E. coli thioredoxin reductase and ribonucleotide reductase than either E. coli or Anabaena thioredoxin. In contrast, the A-E thioredoxin has a higher catalytic efficiency in these reactions than either parental protein. Reaction with antibodies to E. coli and Anabaena thioredoxins shows that the antigenic determinants for thioredoxin are located in the C-terminal part of the molecule and retain the native conformation in the hybrid proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Thioredoxin h has been purified to electrophoretic homogeneity from spinach roots using a procedure devised for leaves. The root thioredoxin (h2 form) differed from chloroplast and animal thioredoxins in showing an atypical active site (Cys-Ala-Pro-Cys) but otherwise resembled animal thioredoxin in structure. Sequence data for a total of 72 residues of spinach root thioredoxin h2 (about 69% of the primary structure) showed 43-44% identity with rabbit and rat thioredoxin. Analysis of cell fractions from the endosperm of germinating castor beans revealed that thioredoxin h occurs in the cytosol, endoplasmic reticulum, and mitochondria. The present findings demonstrate a similarity between plant thioredoxin h and animal thioredoxins in structure and intracellular location and raise the question of whether these proteins have similar functions.  相似文献   

17.
Chromatium vinosum, an anaerobic photosynthetic purple sulfur bacterium, resembles aerobic bacterial cells in that it has an NADP-thioredoxin system composed of a single thioredoxin which is reduced by NADPH via NADP-thioredoxin reductase. Both protein components were purified to homogeneity, and some of their properties were determined. Chromatium vinosum thioredoxin was slightly larger than other bacterial thioredoxins (13 versus 12 kilodaltons) but was similar in its specificity (ability to activate chloroplast NADP-malate dehydrogenase more effectively than chloroplast fructose-1,6-bisphosphatase) and immunological properties. As in other bacteria, Chromatium vinosum NADP-thioredoxin reductase was an arsenite-sensitive flavoprotein composed of two 33.5-kilodalton subunits, that required thioredoxin for the NADPH-linked reduction of 5,5'-dithiobis(2-nitrobenzoic acid). Chromatium vinosum NADP-thioredoxin reductase very effectively reduced several different bacterial-type thioredoxins (Escherichia coli, Chlorobium thiosulfatophilum (this name has not been approved by the International Committee of Systematic Bacteriology), Rhizobium meliloti) but not others (Clostridium pasteurianum, spinach chloroplast thioredoxin m). The results show that Chromatium vinosum contains an NADP-thioredoxin system typical of evolutionarily more advanced microorganisms.  相似文献   

18.
Contrasting evolutionary histories of chloroplast thioredoxins f and m   总被引:3,自引:0,他引:3  
Fourteen thioredoxin sequences were used to construct a minimal phylogenetic tree by using parsimony. The bacterial thioredoxins clustered into three groups: one containing the photosynthetic purple bacteria, Escherichia and Corynebacterium; a second containing the photosynthetic green bacterium, Chlorobium; and a third containing cyanobacteria. These groupings are similar to those generated from earlier 16s RNA analyses. Animal thioredoxins formed a fourth group. The two thioredoxins of chloroplasts (f and m) showed contrasting phylogenetic patterns. As predicted from prior studies, spinach chloroplast thioredoxin m grouped with its counterparts from cyanobacteria and eukaryotic algae, but, unexpectedly, thioredoxin f grouped with the animal thioredoxins. The results indicate that, during evolution, thioredoxin m of contemporary photosynthetic eukaryotic cells was derived from a prokaryotic symbiont, whereas thioredoxin f descended from an ancestral eukaryote common to plants and animals. The findings illustrate the potential of thioredoxin as a phylogenetic marker and suggest a relationship between the animal and f-type thioredoxins.   相似文献   

19.
A new method of purification of chloroplastic thioredoxins has been presented. This method is based on affinity chromatography on fructose-bisphosphatase--Sepharose columns. Two thioredoxin, fA and fB, may be extracted and purified to homogeneity from the same leaf extract. Whereas fA is monomeric and has an Mr of 11 400 +/- 500, fB is dimeric with an Mr of 18 000 +/- 600. The dimer dissociates in two halves in the ultracentrifuge under the effect of high pressures. Raising the ionic strength results in the same effect. Thioredoxins fA and fB activate to similar extents chloroplastic fructose bisphosphatase and NADP--malate dehydrogenase. Chloroplastic sedoheptulose bisphosphatase is activated by thioredoxin fB but not by thioredoxin fA.  相似文献   

20.
Thioredoxin from Anabaena sp. has been purified 800-fold with an assay based on the reduction of insulin disulfides by NADPH and the heterologous calf thymus thioredoxin reductase. The final material was homogeneous on polyacrylamide gel electrophoresis and had a molecular weight of 12,000; the NH2-terminal residue was serine and the COOH-terminal was leucine. Anabaena thioredoxin-(SH)2 is a hydrogen donor for the adenosylcobalamin-dependent anabaena ribonucleotide reductase and is equally active with the iron-containing ribonucleotide reductase from Escherichia coli. Anabaena thioredoxin-S2 is a good substrate for E. coli thioredoxin reductase. We have compared the structure of Anabaena and E. coli thioredoxins. Clear structural differences between the proteins, compatible with the large evolutionary distance between the organisms, were seen with respect to total amino acid composition, isoelectric point, tryptic peptide maps, and a low immunochemical cross-reactivity. However, both thioredoxins contain a single oxidation-reduction active disulfide bridge with the amino acid sequence: Cys-Gly-Pro-Cys-Lys. The tryptophan fluorescence emission of Anabaena thioredoxin-S2 increases more than 3-fold on reduction to thioredoxin-(SH)2. This behavior is identical with that of E. coli thioredoxin, suggesting a very similar overall folding of homologous molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号