首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
Birk RZ  Regan KS  Brannon PM 《Life sciences》2003,73(21):2761-2767
Leptin expression exhibits developmental and dietary regulation, but it is unknown whether there is an interaction of the regulation by dietary fat and postnatal development. The purpose of this study was to test the effect of different levels of dietary polyunsaturated fat on circulating leptin levels at different post-natal developmental stages. Pregnant (Sprague-Dawley) rats consumed from day 15 of pregnancy through day 9 of lactation a low fat, (11% of energy; LF) polyunsaturated safflower oil diet. From day 9 of lactation, dams and their respective pups were fed low, moderate (40% of energy; MF) or high (67% of energy; HF) polyunsaturated safflower oil diets to full maturation (56 days). Diets were iso-energetic and iso-nitrogenous. Milk fatty acid content reflected the mothers and pups diet, with 15 to 100 fold less C10:0 and 2.6 to 3.3 fold more C18:2 in MF and HF groups compared to LF diet. In newborn rats through post-natal day 56, levels of polyunsaturated fat in mothers' milk and mothers/pups diet had no effect on the levels of circulating leptin. The post-natal development period significantly affected circulating leptin levels (p < 0.001, 15 days = 56 days > 21 days > 28 days). In summary, the developmental postnatal stage regulates leptin levels, independently of the polyunsaturated fat levels in the diet.  相似文献   

2.
Urinary and fecal estrogen excretion were studied in male rats fed a non-fiber wheat starch diet (dietary fiber less than 1%; NF group; n = 4), a low-fiber wheat flour diet (dietary fiber 2%; LF group; n = 4) or a high-fiber wheat bran diet (dietary fiber 11.6%; HF group; n = 3). Short-term effects of the experimental diet on estrogen excretion were studied after i.v. injection of 5 microCi (0.185 MBq) of [14C]estradiol-17 beta (E2) into the tail vein of the rats fed the diets for 2 days. After 3 weeks on the experimental diets, the long-term effects were studied after injection of 5 microCi of [14C]E2 and 10 microCi of [3H]estrone-3-glucuronide (E1-gluc). The diet was found to affect estrogen excretion. The short-term effect indicated that rats fed the HF diet excreted a relatively large amount of labeled compounds in the feces during the first day after injection, while rats fed the NF or the LF diets excreted about half that amount over the same period. On the other hand, urinary excretion of labeled compounds was significantly higher in the NF and LF rats. The long-term effect resulted in steeper slopes (P less than 0.05) of the fecal excretion profiles of rats fed the HF diet as compared with rats fed the NF and LF diets, indicating an accelerated fecal excretion of labeled compounds in the HF rats. The kinetic profiles of 14C and 3H radioactivity in blood plasma indicated a fast decrease (t1/2 of less than 2 min) for both [14C]E2 and [3H]E1-gluc. It was concluded that, owing to the short-term effect of wheat bran intake, during the first 24 h after i.v. administration relatively large amounts of radioactively labeled compounds are excreted in feces of rats fed the HF diet. In contrast, excretion is lower in urine of these rats. When the microflora is adapted to the experimental diet the wheat bran diet still results in an accelerated fecal excretion of labeled compounds, which might be attributed to an interruption of the enterohepatic circulation of estrogens. This might result in lowered plasma and/or tissue estrogen levels and hence a decreased exposure of estrogen-sensitive tissue to estrogens, which might decrease risk on mammary (breast) cancer development.  相似文献   

3.
The chronic influence of dietary fat composition on obesity and insulin action is not well understood. We examined the effect of amount (20% vs 60% of total calories) and type (saturated vs polyunsaturated) of fat on insulin action and body composition in mature male rats. Six months of feeding a high fat (HF) diet led to obesity and impaired insulin action (determined by a euglycemic-hyperinsulinemic clamp), neither of which were reversed by a subsequent 6 months of feeding a low fat (LF) diet. Within HF fed rats, type of fat did not affect body composition or insulin action. Six months of feeding a low fat diet led to only a slight decline in insulin action, with no difference due to type of dietary fat. From 6–9 months, insulin action became more impaired in LF rats fed the saturated diet than in LF rats fed the polyunsaturated diet. By 12 months, all groups were obese and had a similar impairment in insulin action. The amount and type of fat in the diet did not influence the overall degree of impairment in insulin action but did affect the time course. Both feeding a high fat diet and feeding a low fat saturated diet accelerated the impairment in insulin action relative to rats fed a low fat polyunsaturated fat diet.  相似文献   

4.
The purpose of this study was to characterize the impact of a low-fat (LF; 1% fat) diet, a high-fat (HF; 25% fat) diet, and a standard (SD; 5% fat) diet on immune and oxidative parameters in a 20% body surface area burn animal model fed ad libitum for 10 days postinjury. Although the mechanisms are poorly understood, the amount of dietary lipid in nutritional support has been shown to have immunomodulatory effects after burn injury. Burned mice fed the LF diet showed a normal response in activated splenocyte proliferation compared to burned animals that received the SD or HF diet. Animals fed the SD and HF diets presented increased production of nitric oxide and prostaglandin E2 response after burn injury, which is associated with inhibited splenocyte proliferation. The total thiol concentration in spleen cells from burned animals kept on the HF diet was significantly higher than that in unburned animals, while no increase in these oxidative parameters was observed in LF-fed burned animals. Moreover, the LF diet significantly reduced hepatic lipid peroxidation, as measured by malonaldehyde concentration, compared to the other two diets. These results suggest that the administration of a LF diet in mice after a burn injury prevents inhibition of in vitro splenocyte proliferation and reduces the intensity of oxidative stress.  相似文献   

5.
The fructose analog 2,5-anhydro-D-mannitol (2,5-AM) stimulates feeding in rats by reducing ATP content in the liver. These behavioral and metabolic effects occur with rats fed a high-carbohydrate/low-fat (HC/LF) diet, but they are prevented or attenuated when the animals eat high-fat/low-carbohydrate (HF/LC) food. To examine the metabolic bases for this effect of diet, we assessed the actions of 2,5-AM on ATP content, oxygen consumption, and substrate oxidation in isolated hepatocytes from rats fed one of the two diets. Compared with cells from rats fed the HC/LF diet ("HC/LF" cells), cells from rats fed the HF/LC diet ("HF/LC" cells) had similar ATP contents but lower oxygen consumption, decreased fructose, and increased palmitate oxidation. 2,5-AM did not decrease ATP content or oxygen consumption in HF/LC cells as much as it did in HC/LF hepatocytes, and it only affected fructose and palmitate oxidation in HC/LF cells. 31P-NMR spectroscopy indicated that differences in phosphate trapping accounted for differences in depletion of ATP by 2,5-AM. These results suggest that intake of the HF/LC diet prevents the eating response and attenuates the decline in liver ATP by shifting hepatocyte metabolism to favor fat over carbohydrate as an energy-yielding substrate.  相似文献   

6.
Macronutrient composition of diets can influence body-weight development and energy balance. We studied the short-term effects of high-protein (HP) and/or high-fat (HF) diets on energy expenditure (EE) and uncoupling protein (UCP1-3) gene expression. Adult male rats were fed ad libitum with diets containing different protein-fat ratios: adequate protein-normal fat (AP-NF): 20% casein, 5% fat; adequate protein-high fat (AP-HF): 20% casein, 17% fat; high protein-normal fat (HP-NF): 60% casein, 5% fat; high protein-high fat (HP-HF): 60% casein, 17% fat. Wheat starch was used for adjustment of energy content. After 4 days, overnight EE and oxygen consumption, as measured by indirect calorimetry, were higher and body-weight gain was lower in rats fed with HP diets as compared with rats fed diets with adequate protein content (P<.05). Exchanging carbohydrates by protein increased fat oxidation in HF diet fed groups. The UCP1 mRNA expression in brown adipose tissue was not significantly different in HP diet fed groups as compared with AP diet fed groups. Expression of different homologues of UCPs positively correlated with nighttime oxygen consumption and EE. Moreover, dietary protein and fat distinctly influenced liver UCP2 and skeletal muscle UCP3 mRNA expressions. These findings demonstrated that a 4-day ad libitum high dietary protein exposure influences energy balance in rats. A function of UCPs in energy balance and dissipating food energy was suggested. Future experiments are focused on the regulation of UCP gene expression by dietary protein, which could be important for body-weight management.  相似文献   

7.
The interaction of dietary protein type and fat level on the body fat-reducing activity of conjugated linoleic acid (CLA) was studied in male rats fed diets containing casein (CAS) or soy protein (SOY) as a protein source with low fat (LF, 6.0% soybean oil) or high fat (HF, 13.0% soybean oil) combinations for 4 weeks. CLA was added at the 1.0% level to all diets. The weight of perirenal adipose tissue tended to be lower in the SOY groups than in the corresponding CAS groups, and the difference between the LF diets was significant. The weight of epididymal adipose tissue showed a similar but insignificant trend. The weight of brown adipose tissue was heaviest on the SOY-HF diet and lowest on two CAS diets, the SOY-LF diet being intermediate. The concentration of serum leptin was lowest on the SOY-LF diet and was significantly lower than that of the corresponding CAS group, but this difference disappeared when the dietary fat level increased. The serum cholesterol-lowering activity of SOY in relation to CAS was reproduced even when CLA was given. Thus the body fat-reducing activity of CLA was most marked when rats were fed the SOY-LF diet. Although the CAS-HF diet increased body fat deposition, the magnitude of the reduction by lowering dietary fat level was more marked than in the case of SOY. These results indicate a complicated interaction of dietary manipulations with the body fat-reducing effect of CLA, but the combination of CLA with the SOY-LF diet appears to be an appropriate approach.  相似文献   

8.
The interaction of dietary protein type and fat level on the body fat-reducing activity of conjugated linoleic acid (CLA) was studied in male rats fed diets containing casein (CAS) or soy protein (SOY) as a protein source with low fat (LF, 6.0% soybean oil) or high fat (HF, 13.0% soybean oil) combinations for 4 weeks. CLA was added at the 1.0% level to all diets. The weight of perirenal adipose tissue tended to be lower in the SOY groups than in the corresponding CAS groups, and the difference between the LF diets was significant. The weight of epididymal adipose tissue showed a similar but insignificant trend. The weight of brown adipose tissue was heaviest on the SOY-HF diet and lowest on two CAS diets, the SOY-LF diet being intermediate. The concentration of serum leptin was lowest on the SOY-LF diet and was significantly lower than that of the corresponding CAS group, but this difference disappeared when the dietary fat level increased. The serum cholesterol-lowering activity of SOY in relation to CAS was reproduced even when CLA was given. Thus the body fat-reducing activity of CLA was most marked when rats were fed the SOY-LF diet. Although the CAS-HF diet increased body fat deposition, the magnitude of the reduction by lowering dietary fat level was more marked than in the case of SOY. These results indicate a complicated interaction of dietary manipulations with the body fat-reducing effect of CLA, but the combination of CLA with the SOY-LF diet appears to be an appropriate approach.  相似文献   

9.
Objective: We used a rodent model of dietary obesity to evaluate effects of caloric restriction‐induced weight loss on mortality rate. Research Measures and Procedures: In a randomized parallel‐groups design, 312 outbred Sprague‐Dawley rats (one‐half males) were assigned at age 10 weeks to one of three diets: low fat (LF; 18.7% calories as fat) with caloric intake adjusted to maintain body weight 10% below that for ad libitum (AL)‐fed rat food, high fat (HF; 45% calories as fat) fed at the same level, or HF fed AL. At age 46 weeks, the lightest one‐third of the AL group was discarded to ensure a more obese group; the remaining animals were randomly assigned to one of three diets: HF‐AL, HF with energy restricted to produce body weights of animals restricted on the HF diet throughout life, or LF with energy restricted to produce the body weights of animals restricted on the LF diet throughout life. Life span, body weight, and leptin levels were measured. Results: Animals restricted throughout life lived the longest (p < 0.001). Life span was not different among animals that had been obese and then lost weight and animals that had been nonobese throughout life (p = 0.18). Animals that were obese and lost weight lived substantially longer than animals that remained obese throughout life (p = 0.002). Diet composition had no effect on life span (p = 0.52). Discussion: Weight loss after the onset of obesity during adulthood leads to a substantial increase in longevity in rats.  相似文献   

10.
We previously reported an exaggerated endocrine and weight loss response to stress in rats fed a high-fat (HF) diet for 5 days. Others report blunted stress-induced anxiety in rats made obese on a HF diet. Experiments described here tested whether sensitivity to stress-related peptides was changed in obese and nonobese HF-fed rats. Third ventricle infusion of corticotropin-releasing factor (CRF) in rats made obese on HF diet (40% kcal fat) produced an exaggerated hypophagia, which is thought to be mediated by CRF(2) receptors. Obese rats responded to a lower dose of CRF for a longer time than rats fed a low-fat (LF) diet (12% kcal fat). CRF-induced release of corticosterone, which is thought to be mediated by CRF(1) receptors, was not exaggerated in obese HF-fed rats. In contrast, rats fed HF diet for 5 days showed the same food intake and corticosterone response to CRF as LF-fed rats. CRF mRNA expression in the paraventricular nucleus of the hypothalamus was stimulated by mild stress (ip saline injection and placement in a novel cage) in LF-fed rats but not in rats fed HF diet for 5 days because of a nonsignificant increase in expression in nonstressed HF-fed rats. In addition, nonstressed levels of urocortin (UCN) I mRNA expression in the Edinger-Westphal nucleus were significantly inhibited in HF-fed rats. These data suggest that rats that have become obese on a HF diet show a change in responsiveness to stress peptides, whereas the increased stress response in nonobese HF-fed rats may be associated with changes in basal CRF and UCN I mRNA expression.  相似文献   

11.
Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet.  相似文献   

12.
Small changes in lipogenic enzyme activity induced by dietary fats of different composition may, over the long term, have significant impact on the development of obesity. We have investigated the effect of high fat diets (45% of calories as fat) on abundance of mRNA encoding fatty acid synthetase (FAS) and glycerophosphate dehydrogenase (GPDH) in male Sprague-Dawley rats. When caloric intake was equal, the relative amount of hepatic FAS mRNA was greater in rats fed a saturated compared to a polyunsaturated fat diet. This difference could not be attributed to diet-induced changes in plasma insulin concentration. However, both fat diets suppressed hepatic FAS mRNA compared to a sucrose diet. Close correlation between FAS specific activity and the relative amount of mRNA suggested that regulation was mainly at a pre-translational level. Adipose tissue FAS mRNA was suppressed by the two fat diets equally while GPDH mRNA was unaffected by dietary composition. Retroperitoneal fat pads were significantly larger in rats fed saturated compared to those fed polyunsaturated fat for 26 weeks. We concluded that dietary saturated fats fail to suppress hepatic de novo lipogenesis as effectively as polyunsaturated fats, which may have implications for the prevention of obesity in humans.  相似文献   

13.
The current experiment with 3 trials aimed to study the effect of two levels of dietary fibre – high fibre (HF; 323 g aNDFom/kg) and low fibre (LF; 248 g aNDFom/kg) – and the effect of mannanoligosaccharides (MOS) addition (1 g/kg) to the LF diet (LFM) on the performances and health status of growing rabbits, digestibility and caecal fermentative characteristics. In the growth trial 132 rabbits of both sexes were used (11 cages with 4 rabbits per treatment) from weaning (32 days of age) to slaughter (67 days of age). Rabbits fed HF diet showed a significantly higher weight gain and live weight at 67 days than rabbits fed LF diet (2032 g vs. 1935 g) (P<0.05). Feed and digestible energy intake increased with dietary fibre level (P<0.05). During the growing period rabbits fed HF diet had a feed intake 26% higher than those fed LF diet. Feed efficiency ratio was worse in HF animals (0.334 vs. 0.385; P<0.05). Addition of MOS to LF diet did not affect growth performance parameters (P>0.05). Mortality and morbidity rate were not affected by treatments. In the digestibility 24 rabbits from 46 to 51 days of age trial were used. The HF diet resulted in a significant (P<0.05) decrease in digestibility of dry matter, organic matter and protein while the aNDFom digestibility was not significantly different between diets (P>0.05). Supplementation with MOS had no effects on digestibility (P>0.05). In the 3rd trial the caecal traits were measured in 30 rabbits with 46 days of age that received the experimental diets in the previous 14 days. Caecal production of total volatile fatty acids (VFA), acetate and propionate were significantly higher (P>0.05) on rabbits fed HF diets than on rabbits fed LF diets. The total VFA concentration increased 64% (from 5.01 to 8.20 mmol/100 ml) and acetate increased 73% (from 3.73 to 6.44 mmol/100 ml). Butyrate production was not different between diets (P>0.05). Fibre level did not affect proportions of VFA and caecal contents and caecal weights. Addition of MOS to LF diet did not affect any caecal trait (P>0.05). It was concluded that the reduction of dietary fibre level increases feed digestibility but worsens rabbit growth performances. Supplementation of low fibre diet with 1 g MOS/kg is not enough to reduce its negative effects on growth performances.  相似文献   

14.
In our animal experiments the hypothesis was tested that a high-fiber (HF) diet reduces tumor promotion by interruption of the enterohepatic circulation resulting in lowered estrogen exposure of the estrogen-sensitive tissue. In the first experiment the development of N-nitrosomethylurea (NMU) induced mammary tumors was investigated. One group of rats (HF) was fed a HF diet (11% fiber, based on wheat bran), the other group (LF) fed a low-fiber diet (0.5% fiber, based on white wheat flour). Tumor incidence (90 and 80%, respectively) and latency (121 and 128 days, respectively) were similar in the HF and LF groups. Compared to the LF group, HF rats had lower tumor weights (0.16 vs 0.55 g; P less than 0.01) and a slightly lower tumor multiplicity (1.8 vs 2.8 tumors per tumor-bearing rat). These differences were reduced after adjustment for body weight. In a second experiment rats, not treated with the carcinogen, were kept on the same HF and LF diets. From these rats 24-h urine and feces and orbital blood samples were collected for analysis of (un)conjugated estrogens. The excretion of both free and conjugated estrogens in fecal samples was about 3-fold higher in HF rats than in LF rats. During the basal period of the cycle urinary excretion of estrone was lower in HF rats (mean 9.7 ng/day) than in LF rats (mean 13.0 ng/day; P less than 0.05). It is concluded that wheat bran interrupts the enterohepatic circulation of estrogens, but plasma levels are not affected. Whether the development of mammary tumors is reduced by the introduction of specific components of wheat bran, or by a reduced body weight due to a lower (effective) energy intake remains to be determined.  相似文献   

15.
Improper eating habits such as high-fat or high-carbohydrate diets are responsible for metabolic changes resulting in impaired glucose tolerance, hyperinsulinemia, insulin resistance, and ultimately diabetes. Although the essentiality of trivalent chromium for humans has been recently questioned by researchers, pharmacological dosages of this element can improve insulin sensitivity in experimental animals and diabetic subjects. The aim of the study was to assess the preventive potential of the supplementary chromium(III) propionate complex (CrProp) in rats fed a high-fat diet. The experiment was conducted on 32 male Wistar rats divided into four groups and fed the following diets: the control (C, AIN-93G), high-fat diets (HF, 40 % energy from fat), and a high-fat diet supplemented with CrProp at dosages of 10 and 50 mg Cr/kg diet (HF?+?Cr10 and HF?+?Cr50, respectively). After 8 weeks, high-fat feeding led to an increased body mass, hyperinsulinemia, insulin resistance, a decreased serum urea concentration, accumulation of lipid droplets in hepatocytes, and increased renal Fe and splenic Cu contents. Supplementary CrProp in both dosages did not alleviate these changes but increased renal Cr content and normalized splenic Cu content in high-fat-fed rats. Supplementary CrProp does not prevent the development of insulin resistance in rats fed a high-fat diet.  相似文献   

16.
It has been suggested that high-fat (HF) diet exaggerates the stress-induced release of glucocorticoids due to activation of the hypothalamic-pituitary-adrenal (HPA) axis. In an initial experiment, in which rats were fed HF diet for 4 days, we found that HF-fed controls stopped gaining weight, indicating that they were hyperresponsive to the mild stress of tail bleeding but responded the same as low-fat (LF)-fed rats to the more severe stress of restraint. A second experiment confirmed these results when rats fed a HF diet for 4 days showed an exaggerated corticosterone release in response to an intraperitoneal injection of saline and movement to a novel cage, compared with LF-fed rats. Experiment 3 tested the same parameters as experiment 2 but interchanged the diets. This allowed us to differentiate between the effects of the dietary fat and the novelty of the diet. Additionally, this experiment determined whether hyperresponsiveness to mild stress in HF-fed rats was sustained during a prolonged exposure to diet. The results confirmed that a HF diet, not novelty, exaggerated the endocrine stress response after 9 days on the diet but that the effect was no longer present after 23 days on the diet. The hyperresponsiveness of the HPA axis in HF-fed rats is similar to that observed in animals that have been exposed to a significant chronic or acute stress, suggesting that the HF diet may initially be perceived as a stressor.  相似文献   

17.
18.
The aim of this study was determine whether the introduction of a high-fat diet during the peripubertal phase induces significant changes in body weight control, glucose homeostasis and the parasympathetic tonus compared with the administration of this diet to adult rats. High-fat diet was offered to male Wistar rats at weaning or during adulthood. A group of rats received high-fat diet for 60 days, from weaning to 81-day-old (HF81) or from 60 to 120-day-old (HF120), whereas 2 other groups received a normal-fat diet (i. e., NF81 and NF120). We analyzed adiposity, glucose homeostasis, insulin sensitivity, and vagal nerve activity. High-fat diet increased the accumulation of adipose tissue in all of the rats, but the difference was greater in the rats that were fed the high-fat diet since weaning (p<0.001). The HF rats showed glucose intolerance with high levels of insulin secretion during the glucose tolerance test (p<0.01). Rats that were fed the high-fat diet presented severe insulin resistance, indicated by a low K itt (p<0.01). Interestingly, the HF81 rats exhibited greater insulin resistance compared with the HF120 rats (p<0.05). The recordings of vagus nerve activity showed that the HF rats had higher parasympathetic activity than the NF rats irrespective of age (p<0.01). Our results show that a high-fat diet offered to rats just after weaning or in adulthood both cause impairment of glycemic homeostasis and imbalance in parasympathetic activity. Importantly, the consumption of high-fat diet immediately after weaning has more drastic consequences compared with the consumption of the same diet during adulthood.  相似文献   

19.
Total fatty acids and the proportions of methyl esters of individual fatty acids were measured in mouse milk. Pregnant mice were fed either a high fat (HF) diet or a low fat (LF) diet from 14 days of gestation. After parturition, each dam was milked once a day for a period of 18 days. The mean total fatty acid concentration over the entire study period was 110 mg/g of milk (approximately 11.7% fat as triglyceride) for both dietary treatment groups. During days 2 to 6 postpartum, the mean total fatty acid concentration for dams fed HF diet was lower than for the LF group. Although the concentration of total fatty acids of mouse milk was not affected by the level of dietary fat fed to the dam, several variations in the proportions of individual fatty acids were observed.  相似文献   

20.
This work was performed to elucidate whether growth hormone (GH)-mediated loss of adipose tissue and responses in plasma insulin and leptin are modulated by diet composition. 12-month-old rats were first fed a high-fat (HF) diet or a low-fat (LF) diet for 14 weeks. After that, GH or saline was administered to rat groups that were maintained on either HF or LF diets or that were switched from the HF to the LF diet. All 6 groups had free access to food. One additional saline group was pair-fed with the GH group that was switched from the HF to the LF diet. The caloric consumption of this latter group was also translated to yet another GH group receiving restricted amounts of the HF diet. GH was given in a total dose of 4 mg/kg/d for three weeks. After sacrifice, blood was collected and tissues were excised. In groups injected with saline, the weight of excised adipose tissue was 60 +/- 4.7, 41 +/- 3.8 and 50 +/- 4.5 g in animals that continued with the HF diet, LF diet, or that were switched from HF to LF, respectively. Corresponding figures after GH treatment were significantly (p < 0.05) decreased to 38 +/- 2.7, 30 +/- 2.3, and 31 +/- 2.7 g, respectively. Pair-feeding had no effect, whereas only 26 +/- 3.0 g of adipose tissue was retrieved in rats fed restricted amounts of HF diet while receiving GH. In this group, plasma insulin and leptin were also significantly (p < 0.05) depressed compared with other GH groups, especially to the group fed the unrestricted HF diet (203 +/- 35 vs. 1345 +/- 160 pmol/l and 9.3 +/- 1.2 vs. 31 +/- 4.4 micro g/l). In conclusion, this study shows that GH mediates breakdown of adipose tissue under a variety of dietary conditions, and that induction of hyperinsulinemia can be prevented if GH treatment is combined with restricted feeding of a diet which is relatively low in carbohydrates and rich in fat. This will also promote a fall of plasma leptin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号