首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

An improved procedure is described for the collection and elution of low levels of radioactive fatty acid methyl esters separated by gas-liquid chromatography. A gas chromatographic effluent splitter was employed to partition fatty acid methyl ester samples in the column effluent, Condensation of a portion of the eluted fatty acids was accomplished in borosilicate glass tubing collectors maintained at ?70°C, Quantitation of nanomolar levels of fatty acid methyl esters was accomplished by calibrating the gas chromatographic flame ionization detectors with the splitters opened or closed. The elution of condensed radioactive fatty acid methyl esters from the glass collectors was complete when benzene followed by a toluene based scintillation fluid were employed as solvents. The method described may be applicable to the analysis of cis-trans isomers of unsaturated fatty acids.  相似文献   

2.
The effectiveness of several abscisic acid (ABA) analogs as palliatives against salt stress in intact citrus plants has been tested in this work. The effect of ABA, 8-methylene ABA, 8-acetylene ABA, ABA methyl ester, 8-methylene ABA methyl ester, and 8-acetylene ABA methyl ester on citrus responses to salt stress was studied on 2-year-old grafted plants. Leaf abscission, chloride accumulation, ethylene production, and net photosynthetic rate were the parameters used to characterize the performance of plants under stress. Data indicate that 8-methylene ABA was the most effective compound in delaying the deleterious effects of high salinity on citrus plants. Its regular application reduced leaf chloride concentration, ethylene production, and leaf abscission. Furthermore, it delayed the depletion of CO2 assimilation under these adverse conditions. Abscisic acid and 8-acetylene ABA also reduced salt-stress induced injuries in citrus, although to a lower extent. Neither ABA methyl ester nor its 8-C modified analogs showed biological activity in these assays.  相似文献   

3.
Indole 3-acetic acid (IAA) was analyzed in apple, orange, and prune tissue by GC-MS by monitoring the protonated molecular ion of its methyl ester at mass to charge ratio (m/z) 190 together with the major fragment ion at m/z 130 and the corresponding ions from the methyl esters of either [2H4]IAA (m/z 194, 134) or [2H5]IAA (m/z 195, 135). Abscisic acid (ABA) was analyzed by monitoring the major fragment ions of its methyl ester at m/z 261 and m/z 247 and the corresponding ions from the methyl ester of [2H3]ABA (m/z 264, 250). Detection limits for IAA and ABA were 1 and 10 picograms, respectively using standards and 1 nanogram per gram dry weight for both phytohormones in plant tissue.  相似文献   

4.
Abscisic Acid localization and metabolism in barley aleurone layers   总被引:7,自引:6,他引:1       下载免费PDF全文
Aleurone layers of Hordeum vulgare, cv. `Himalaya' took up [14C]-abscisic acid (ABA) when incubated for various times. Radioactivity accumulated with time in a low speed, DNA-containing pellet accounting for 1.6 to 2.3% of the radioactivity recovered in subcellular fractions at 18 hours. Thin layer chromatography of ethanolic or methanolic extracts of the cytosol, which contained greater than 95% of the radioactivity taken up by layers, revealed that labeled ABA was metabolized to phaseic acid (PA) and 4′-dihydrophaseic acid (DPA) and three polar metabolites Mx1, Mx2, and Mx3. ABA was not metabolized by endosperm, incubated under conditions used for layers, indicating that metabolism was tissue-specific. Layers metabolized [3H]DPA to Mx1 and Mx2. ABA, PA, and DPA-methyl ester and epi-DPA-methyl ester inhibited synthesis of α-amylase by layers incubated for either 37 or 48 hours. These layers converted the methyl DPA and epi-methyl-DPA esters to their respective acids. DPA did not inhibit Lactuca sativa germination or root and coleoptile elongation of germinating Hordeum vulgare seeds, or coleoptile elongation of germinating Zea mays seeds.  相似文献   

5.
The biosynthetic pathways to abscisic acid (ABA) were investigated by feeding [1-(13)C]-D-glucose to cuttings from young tulip tree shoots and to two ABA-producing phytopathogenic fungi. 13C-NMR spectra of the ABA samples isolated showed that the carbons at 1, 5, 6, 4', 7' and 9' of ABA from the tulip tree were labeled with 13C, while the carbons at 2, 4, 6, 1', 3', 5', 7', 8' and 9' of ABA from the fungi were labeled with 13C. The former corresponds to C-1 and -5 of isopentenyl pyrophosphate, and the latter to C-2, -4 and -5 of isopentenyl pyrophosphate. This finding reveals that ABA was biosynthesized by the non-mevalonate pathway in the plant, and by the mevalonate pathway in the fungi. 13C-Labeled beta-carotene from the tulip tree showed that the positions of the labeled carbons were the same as those of ABA, being consistent with the biosynthesis of ABA via carotenoids. Lipiferolide of the tulip tree was also biosynthesized by the non-mevalonate pathway.  相似文献   

6.
A simple and rapid technique was developed to synthesize abscisic acid glucose ester. The free acid of abscisic acid (ABA) was combined with CsHCO3 to form the Cs salt of ABA. The Cs salt of ABA was then combined with acetobromo-α-d-glucose tetraacetate, and the tetraacetate derivative of abscisic acid glucose ester was formed. Acetate groups were selectively removed from the glucose moiety with a crude enzyme preparation derived from Helianthus annuus seeds. Abscisic acid glucose ester was purified via silica gel column chromatography and identified by micro NMR.  相似文献   

7.
The aim of the present study was to estimate the endogenous abscisic acid (ABA) content in tulip ‘Apeldoorn’ torpedo and mature somatic embryos. Moreover, the effect of exogenous ABA and/or its inhibitor fluridone on somatic embryo maturation and conversion into plantlets was investigated. Torpedo-stage somatic embryos were subcultured on media containing 5 μM of picloram and 1 μM of 6-benzyl-aminopurine (BAP)—control, and combinations of ABA (0 or 10 μM) and/or fluridone (0 or 30 μM) for 1 week. Then, the torpedo embryos were transferred to a maturation medium containing 0.25 μM of α-naphthaleneacetic acid (NAA) and 2.5 μM of BAP, without ABA and fluridone treatment, and cultivated under darkness or light for ten weeks. Endogenous ABA content (first time measured in tulip somatic embryos) was evaluated by ELISA test. The obtained results revealed that the highest level of endogenous ABA, at 17.45 nmol g?1 dry weight (DW), was recorded in torpedo-stage of tulip embryo development, only after 1 week of ABA treatment, and was nearly 10 times higher in comparison with the control. Simultaneous addition of ABA and fluridone to the medium resulted in the lowering of the ABA concentration to 9.58 nmol g?1 DW. During ten weeks of maturation of the embryos, the endogenous ABA content in mature tissue of tulip somatic embryo considerably decreased to an amount 0.87–1.33 nmol g?1 DW (irrespective of ABA and fluridone treatment) and did not differ significantly from control (0.59 nmol g?1 DW). Exogenous ABA and fluridone significantly decreased the growth value of fresh weight (FW) of the tulip torpedo-shaped and mature embryos under light conditions. Percentage of the DW of the torpedo embryos treated with exogenous ABA was significantly higher (15.43–17.02) in comparison with the control (10.87). Three to three and a half times more malformed mature embryos were noted under light conditions than in darkness, irrespective of ABA and fluridone treatment. The highest percentage of mature embryos forming shoots (conversion) was observed under light conditions in the control and after fluridone treatment (26 and 20%, respectively).  相似文献   

8.
The molds Botrytis cinerea, Cladosporium cladosporioides, and the yeast Aureobasidium pullulans, isolated from the leaves of three short-rotation Salix clones, were found to produce indole-3-acetic acid (IAA). Abscisic acid (ABA) production was detected in B. cinerea. The contents of IAA and ABA in the leaves of the Salix clones and the amounts of fungal propagules in these leaves were also measured, in order to evaluate whether the amounts of plant growth regulators produced by the fungi would make a significant contribution to the hormonal quantities of the leaves. The content of ABA, and to a lesser degree that of IAA, showed a positive correlation with the frequency of infection by the hormone-producing organisms. The amounts of hormone-producing fungi on leaves that bore visible colonies were, however, not sufficiently high to support the claim that either the fungal production of ABA or IAA would significantly contribute to the hormonal contents of the leaves of the Salix clones. It is therefore suggested that the effect of fungal IAA production on plants is limited to the rhizosphere and that B. cinerea, which is a known pathogen, induces ABA production by the mother plant as a response to physiological stress.Abbreviations ABA abscisic acid - ABA-Me abscisic acid methyl ester - GC-MS-SIM gas chromatography-selected ion monitoring-mass spectrometry - IAA indole-3-acetic acid - IAA-Me indole-3-acetic acid methyl ester Author for correspondence.  相似文献   

9.
A gas-liquid chromatographic (GLC) procedure is reported for the quantitation of the trimethylsilyl (TMS) derivatives of substituted 2-hydroxy-2H-1,4-benzoxazin-3(4H)-ones (2-hydroxy-2H-1,4-benzoxazin-3(4H)-one[HBOA]; 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one[HMBOA];2,4- dihydroxy-2H-1,4-benzoxazin-3(4H)-one[DIBOA]; 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one[DIMBOA]; and 2,4-dihydroxy-7,8-dimethoxy-2H-1,4-benzoxazin-3(4H)-one[DIM 2BOA]) found in maize (Zea mays L.) extracts. Derivatized samples were chromatographed on columns with liquid phases of 2% DC-11 and 3% OV-17 and detected by flame ionization. Internal standards were methyl palmitate and methyl stearate on DC-11 and methyl behenate on OV-17. Detector response was linear to at least 5 nanomoles for TMS2-HBOA and TMS2-DIBOA and to 19 nanomoles for TMS2-DIMBOA. Standard errors of 2% or less were obtained when four replicate samples were analyzed. For each of the 15 maize lines examined, the amount of DIMBOA determined by GLC was directly proportional to the amount of ferric chloride-reactive material determined colorimetrically.  相似文献   

10.
In young needles of the Douglas-fir (Pseudotsuga menziesii) GA9 has been shown by GC and HPLC to be the main gibberellin. As minor compounds GA7, GA3 and GA8 have been tentatively identified by HPLC. In addition to the free gibberellins small amounts of GA9 glucosyl ester and a not yet identified ester of GA20 have been isolated. From the group of endogenous inhibitors ABA has been identified by GC-MS and ABA glucosyl ester by HPLC. After enzymatic hydrolysis of the ester, ABA and glucose have been quantified by GC and GOD-POD reaction giving the ratio 1:1. Another plant growth inhibitor has been identified as the methyl ester of jasmonic acid.  相似文献   

11.
Experiments were conducted to investigate indole-3-acetic acid (IAA) and abscisic acid (ABA) metabolism associated with postanthesis senescence of ovaries from nonpollinated muskmelon (Cucumis melo L.) flowers. Flowers attached to the vine were allowed to senesce for 4 days after anthesis or were harvested at full anthesis and aged for the same time interval with or without access to water. The IAA ester, amide-linked forms of IAA, free ABA, and ABA esters increased in senescent ovaries from flowers left attached to the vine. Detaching flowers from the vine resulted in an accumulation of free and amide-linked IAA in the senescing ovary but suppressed accumulation of ester IAA. Free ABA failed to increase in ovaries detached from the vine. Subjecting detached flowers to water stress had no effect on the endogenous level of free ABA but resulted in the accumulation of ABA ester and suppression of any increase in free IAA. However, detached flowers treated with 0.1 millimolar ABA accumulated 75% less free IAA and initiated the synthesis of ester IAA. Detached flowers treated with ABA also accumulated high levels of ester ABA. These results suggest that the metabolism of free IAA in muskmelon ovary tissue is regulated in situ and not the consequence of external synthesis and importation. ABA appears to be transported into the senescing ovary from an external source and alters the IAA metabolism in such a manner as to suppress the level of free IAA while stimulating accumulation of the ester IAA.  相似文献   

12.
A number of effects on embryogenesis of the putative phytohormone jasmonic acid (JA), and its methyl ester (MeJA), were investigated in two oilseed plants, repeseed (Brassica napus) and flax (Linum usitatissimum). Results from treatments with JA and MeJA were compared with those of a known effector of several aspects of embryogenesis, abscisic acid (ABA). Jasmonic acid was identified by gas chromatography-mass spectrometry as a naturally occurring substance in both plant species during embryo development. Both JA and MeJA can prevent precocious germination of B. napus microspore embryos and of cultured zygotic embryos of both species at an exogenous concentration of >1 micromolar. This dose-response was comparable with results obtained with ABA. Inhibitory effects were also observed on seed germination with all three growth regulators in rapeseed and flax. A number of molecular aspects of embryogenesis were also investigated. Expression of the B. napus storage protein genes (napin and cruciferin) was induced in both microspore embryos and zygotic embryos by the addition of 10 micromolar JA. The level of napin and cruciferin mRNA detected was similar to that observed when 10 micromolar ABA was applied to these embryos. For MeJA only slight increases in napin or cruciferin mRNA were observed at concentrations of 30 micromolar. Several oilbody-associated proteins were found to accumulate when the embryos were incubated with either JA or ABA in both species. The MeJA had little effect on oilbody protein synthesis. The implications of JA acting as a natural regulator of gene expression in zygotic embryogenesis are discussed.  相似文献   

13.
Using a newly developed abscisic acid (ABA)-affinity chromatography technique, we showed that the magnesium-chelatase H subunit ABAR/CHLH (for putative abscisic acid receptor/chelatase H subunit) specifically binds ABA through the C-terminal half but not the N-terminal half. A set of potential agonists/antagonists to ABA, including 2-trans,4-trans-ABA, gibberellin, cytokinin-like regulator 6-benzylaminopurine, auxin indole-3-acetic acid, auxin-like substance naphthalene acetic acid, and jasmonic acid methyl ester, did not bind ABAR/CHLH. A C-terminal C370 truncated ABAR with 369 amino acid residues (631–999) was shown to bind ABA, which may be a core of the ABA-binding domain in the C-terminal half. Consistently, expression of the ABAR/CHLH C-terminal half truncated proteins fused with green fluorescent protein (GFP) in wild-type plants conferred ABA hypersensitivity in all major ABA responses, including seed germination, postgermination growth, and stomatal movement, and the expression of the same truncated proteins fused with GFP in an ABA-insensitive cch mutant of the ABAR/CHLH gene restored the ABA sensitivity of the mutant in all of the ABA responses. However, the effect of expression of the ABAR N-terminal half fused with GFP in the wild-type plants was limited to seedling growth, and the restoring effect of the ABA sensitivity of the cch mutant was limited to seed germination. In addition, we identified two new mutant alleles of ABAR/CHLH from the mutant pool in the Arabidopsis Biological Resource Center via Arabidopsis (Arabidopsis thaliana) Targeting-Induced Local Lesions in Genomes. The abar-2 mutant has a point mutation resulting in the N-terminal Leu-348→Phe, and the abar-3 mutant has a point mutation resulting in the N-terminal Ser-183→Phe. The two mutants show altered ABA-related phenotypes in seed germination and postgermination growth but not in stomatal movement. These findings support the idea that ABAR/CHLH is an ABA receptor and reveal that the C-terminal half of ABAR/CHLH plays a central role in ABA signaling, which is consistent with its ABA-binding ability, but the N-terminal half is also functionally required, likely through a regulatory action on the C-terminal half.  相似文献   

14.
A radioimmunoassay for (+)-abscisic acid (ABA) was developed and applied to the analysis of free ABA in extracts of apple (Malus pumila Mill.) and sweet pepper (Capsicum annuum L.) leaves at various stages during extract purification. Conjugates of ABA, were quantified after alkaline hydrolysis. The validity of the radioimmunoassay was tested by comparison of immunoassay estimates of ABA at different levels of extract purity with high-pressure liquid chromatography (HPLC) and combined gas chromatography-mass spectrometry. The antiserum, raised against (+)-ABA, was almost equally sensitive to (-)-ABA. Serum cross-reactivity with the methyl ester of ABA was 160% and with the glycosyl ester of ABA was 34%. Cross-reactivity with protein-ABA conjugates was very slight for C4-conjugated keyholelimpet haemocyanin, but about 1000% for C1-conjugated alkaline phosphatase. Other compounds tested showed extremely low or undetectable cross-reactivities. Further evidence for the specificity of the assay came from the agreement between the results using different assay methods for both apple and pepper extracts, and from the observation that the only zone of immunoreactivity on HPLC elution profiles corresponded with authentic (+)-ABA. The use of polyvinylpyrrolidone in the assay minimised interference by other substances in plant extracts. In pepper, free ABA levels increased rapidly during water stress and recovered to pre-stress levels within two days after rewatering. Levels of ABA conjugates were significantly lowr than free ABA in unstressed plants, and also increased rapidly with stress, although not to the same extent as free ABA, and did not recover as rapidly as did free ABA. In apple, levels of free ABA and of ABA conjugates both increased more than twofold over a two-week period of water stress. In contrast to pepper, however, immunoreactivity of the conjugate fraction was increased by hydrolysis, indicating that different ABA conjugates predominate in the two species.Abbreviations ABA abscisic acid - GC-MS combined gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography - Me-ABA methyl ester of ABA - PVP polyvinylpyrrolidone - RIA radioimmunoassay  相似文献   

15.
Abscisic acid (ABA) levels in 3-mm apical root segments of slowly droughted sunflower plants (Helianthus annuus L. cv Russian Giant) were analyzed as the methyl ester by selected ion monitoring gas chromatography-mass spectrometry using characteristic ions. An internal standard, hexadeuterated ABA (d6ABA) was used for quantitative analysis. Sunflower seedlings, grown in aeroponic chambers, were slowly droughted over a 7-day period. Drought stress increased ABA levels in the root tips at 24, 72, and 168 hour sample times. Control plants had 57 to 106 nanograms per gram ABA dry weight in the root tips (leaf water potential, −0.35 to −0.42 megapascals). The greatest increase in ABA, about 20-fold, was found after 72 hours of drought (leaf water potential, −1.34 to −1.47 megapascals). Levels of ABA also increased (about 7− to 54-fold) in 3-mm apical root segments which were excised and then allowed to dessicate for 1 hour at room temperature.  相似文献   

16.
Abscisic acid (ABA) in the stem of akamatsu (Pinus densiflora) was identified and quantified by gas chromatography-mass spectrometry-selected ion monitoring using hexadeuterated ABA as an internal standard. tert-Butyldimethylsilyl ester was used as a derivative of ABA. This derivative had high sensitivity and selectivity for ABA determination. ABA concentrations in cambial region scrapings were independent of the cessation of cambial activity.  相似文献   

17.
The incorporation of Me14COONa into aloesaponol I, laccaic acid D methyl ester and aloesaponarin I was demonstrated. The biosynthetic relation between aloesaponol I and aloesaponarin I was established, but incorporation of aloesaponol I into laccaic acid D methyl ester, or vice versa was not demonstrated and this result was confirmed by an investigation using labelled laccaic acid D methyl (14CH3) ester. It was possible to show that aloesaponol I and laccaic acid D methyl ester were biosynthesized in parallel in Aloe saponaria.  相似文献   

18.
The induction of freezing tolerance in bromegrass (Bromus inermis Leyss) cell culture was used to investigate the activity of absisic acid (ABA) analogs. Analogs were either part of an array of 32 derived from systematic alterations to four regions of the ABA molecule or related, pure optical isomers. Alterations were made to the functional group at C-1 (acid replaced with methyl ester, aldehyde, or alcohol), the configuration at C-2, C-3 (cis double bond replaced with trans double bond), the bond order at C-4, C-5 (trans double bond replaced with a triple bond), and ring saturation (C-2′, C-3′ double bond replaced with a single bond so that the C-2′ methyl and side chain were cis). All deviations in structure from ABA reduced activity. A cis C-2, C-3 double bond was the only substituent absolutely required for activity. Overall, acids and esters were more active than aldehydes and alcohols, cyclohexenones were more active than cyclohexanones, and dienoic and acetylenic analogs were equally active. The activity associated with any one substituent was, however, markedly influenced by the presence of other substituents. cis, trans analogs were more active than their corresponding acetylenic analogs unless the C-1 was an ester. Cyclohexenones were more active than cyclohexanones regardless of oxidation level at C-1. An acetylenic side chain decreased the activity of cyclohexenones but increased the activity of cyclohexanones relative to their cis, trans counterparts. Trends suggested that for activity the configuration at C-1′ has to be the same as in (S)-ABA, in dihydro analogs the C-2′-methyl and the side chain must be cis, small positional changes of the 7′-methyl are tolerable, and the C-1 has to be at the acid oxidation level.  相似文献   

19.
The mass spectra of the trimethylsilyl (TMS) derivatives of the methyl and trideuteriomethyl esters of N-acetylneuraminic acid, the methyl ester of N-glycolylneuraminic acid, the methyl ester methyl β-glycoside of N-acetylneuraminic acid, the trideuteriomethyl ester trideuteriomethyl β-glycoside of N-acetylneuraminic acid, and the methyl esters of the (2→3)- and (2→6)-linked isomers of N-acetylneuraminic acid—lactose are discussed. The characteristic fragmentation patterns of the sialic acid derivatives can be used for the identification of this type of carbohydrate. The (2→3)- and (2→6)-linked isomers of N-acetylneuraminic acid—lactose can be differentiated.  相似文献   

20.
The present study was carried out to investigate cyanobacteria as a potential source for biodiesel production isolated from fresh water bodies of Sri Lanka. Semi mass culturing and mass culturing were carried out to obtain biomass for extracting total lipids. Fatty acid methyl ester (FAME) or biodiesel was produced from extracted lipid by trans-esterification reaction. FAME component was identified using gas chromatography (GC). Atotal of 74 uni-algal cultures were obtained from Biofuel and Bioenergy laboratory of the National Institute of Fundamental Studies (NIFS), Kandy, Sri Lanka. The total lipid content was recorded highest in Oscillatoria sp. (31.9 ± 2.01% of dry biomass) followed by Synechococcus sp. (30.6 ± 2.87%), Croococcidiopsis sp. (22.7 ± 1.36%), Leptolyngbya sp. (21.15 ± 1.99%), Limnothrixsp. (20.73 ± 3.26%), Calothrix sp. (18.15 ± 4.11%) and Nostoc sp. (15.43 ± 3.89%), Cephalothrixsp. (13.95 ± 4.27%), Cephalothrix Komarekiana (13.8 ± 3.56%) and Westiellopsisprolifica (12.80 ± 1.97%). FAME analysis showed cyanobacteria contain Methyl palmitoleate, Linolelaidic acid methyl ester, Cis-8,11,14-eicosatrienoic acid methyl ester, Cis-10-heptadecanoic acid methyl ester, Methyl myristate, Methyl pentadecanoate, Methyl octanoate, Methyl decanoate, Methyl laurate, Methyl tridecanoate, Methyl palmitoleate, Methyl pentadeconoate, Methyl heptadeconoate, Linolaidic acid methyl ester, Methyl erucate, Methyl myristate, Myristoloeic acid, Methyl palmitate, Cis-9-oleic acid methyl ester, Methyl arachidate and Cis-8,11,14-ecosatrieconoic acid methyl ester. The present study revealed that cyanobacteria isolated from Sri Lanka are potential source for biodiesel industry because of their high fatty acid content. Further studies are required to optimize the mass culture conditions to increase thelipid content from cyanobacterial biomass along with the research in the value addition to the remaining biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号