首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.  相似文献   

2.
A thorough evaluation of hippocampal dendrites, axons and synaptic contacts has not been undertaken following prolonged periods of absence of corticosteroids despite the marked granule cell loss which occurs in the dentate gyrus of adrenalectomized rats. Thus, we have applied morphometric techniques to analyse the dendrites of granule and pyramidal cells, the mossy fiber system, and the number and morphology of synapses between the mossy fibers and the excrescences of CA3 pyramidal cells in rats submitted to different periods of adrenalectomy. In addition, to search for the presence of neuritic reorganisation in the hippocampal formation once normal corticosteroid levels were re-established, we incorporated in this study a group of rats replaced with corticosterone one month after adrenalectomy. The results obtained in adrenalectomized rats showed a striking impoverishment of the dendrites of surviving granule cells, subtle alterations in the apical dendritic arborization of CA3 pyramidal cells and no changes in the apical dendrites of CA1 pyramidal cells. In addition, in adrenalectomized rats there was a progressive reduction in the total number of synapses established between mossy fibers and CA3 pyramids, as a consequence of a reduction in the volume of the suprapyramidal part of the mossy fiber system, and profound changes in the morphology of mossy fiber terminals and CA3 dendritic excrescences. A remarkable reorganisation of neurites was found to occur following the administration of low doses of corticosterone, completely reversing the adrenalectomy-induced synaptic loss and partially restoring the morphology of hippocampal axons and dendrites. These plastic mechanisms provide a sound structural basis for the reversibility of cognitive deficits observed after corticosterone administration to adrenalectomized rats.  相似文献   

3.
4.
The present study compares the structure and function of retinal ganglion and amacrine cell dendrites. Although a superficial similarity exists between amacrine and ganglion cell dendrites, a comparison between the branching pattern of the two cell types reveals differences which can only be appreciated at the microscopic level. Whereas decremental branching is found in ganglion cells, a form of non-decremental or "trunk branching" is observed in amacrine cell dendrites. Physiological differences are also observed in amacrine vs ganglion cells in which many amacrine cells generate dendritic impulses which can be readily distinguished from those of the soma, while separate dendritic impulses in ganglion cell dendrites have not been reported. Despite these differences, both amacrine and ganglion cell dendrites appear to contain voltage-gated ion channels, including TTX-sensitive sodium channels. One way to account for separate dendritic impulses in amacrine cells is to have a higher density of sodium channels and we generally find in modeling studies that a dendritic sodium channel density that is more than about 50% of that in the soma is required for excitatory, synaptic currents to give rise to local dendritic spike activity. Under these conditions, impulses can be generated in the dendrites and propagate for some distance along the dendritic tree. When the soma generates impulse activity in amacrine cells, it can activate, antidromically, the entire dendritic tree. Although ganglion cell dendrites do not appear to generate independent impulses, the presence of voltage-gated ion channels in these structures appears to be important for their function. Modeling studies demonstrate that when dendrites lack voltage-gated ion channels, impulse activity evoked by current applied to the cell body is generated at rates that are much higher than those observed physiologically. However, by placing ion channels in the dendrites at a reduced density compared to those of amacrine cells, the firing rate of ganglion cells becomes more physiological and the relationship between frequency and current (F/I relationship) can be precisely matched with physiological data. Recent studies have demonstrated the presence of T-type calcium channels in ganglion cells and our analysis suggests that they are found in higher density in the dendrites compared to the soma. This is the first voltage-gated ion channel which appears more localized to the dendrites than other cell copartments and this difference alone cries for an interpretation. The presence of a significant T-type calcium channel density in the dendrites can influence their integrative properties in several important ways. First, excitatory synaptic currents can be augmented by the activation of T-type calcium channels, although this is more likely to occur for transient rather than sustained synaptic currents because T-type currents show strong inactivation properties. In addition, T-type calcium channels may serve to limit the electrical load which dendrites impose on the spike initiation process and thus enhance the speed with which impulses can be triggered by the impulse generation site. This role whill enhance the safety factor for impulses traveling in the orthograde direction.  相似文献   

5.
Under study was the morphology of synaptic terminations of the brain reticular formation in cats and dogs as well as that of the afferent nuclei of the cat's posterior columns. The neurons of the Goll's and Burdach's nuclei have a richly ramified dendritic network. In this connection the main mass of synapses is disposed on the dendrites and their different branchings. The dendrites of the multipolar cells of the reticular formation have the main type of branching, but the cells are distributed from the nerve cell body at a considerable distance (up to 50 mu and more). The synapses are observed at the total length of the dendrite, so the axo-dendritic contacts quantitatively prevail over axo-somatic ones. The morphological data are compared with physiological axo-somatic and axo-dendritic concepts of the role of synapses in conducting the nerve impulse.  相似文献   

6.
Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1–2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.  相似文献   

7.
Horton AC  Ehlers MD 《Neuron》2003,40(2):277-295
Among the most morphologically complex cells, neurons are masters of membrane specialization. Nowhere is this more striking than in the division of cellular labor between the axon and the dendrites. In morphology, signaling properties, cytoskeletal organization, and physiological function, axons and dendrites (or more properly, the somatodendritic compartment) are radically different. Such polarization of neurons into domains specialized for either receiving (dendrites) or transmitting (axons) cellular signals provides the underpinning for all neural circuitry. The initial specification of axonal and dendritic identity occurs early in neuronal life, persists for decades, and is manifested by the presence of very different sets of cell surface proteins. Yet, how neuronal polarity is established, how distinct axonal and somatodendritic domains are maintained, and how integral membrane proteins are directed to dendrites or accumulate in axons remain enduring and formidable questions in neuronal cell biology.  相似文献   

8.
Camiré O  Topolnik L 《Cell calcium》2012,52(5):339-346
Information processing within neural circuits depends largely on the dynamic interactions between the principal cells and inhibitory interneurons. It is further determined by the efficacy of synaptic transmission between individual circuit elements, which is in turn tightly regulated by changes in network activity to allow for numerous adaptations to occur at a single synapse. Intracellular calcium (Ca(2+)) is a crucial factor in the regulation of synaptic efficacy in neuronal networks. Evidence from high-resolution imaging studies has revealed the intricacies of how Ca(2+) signalling is organised in the dendrites of different cell types. Inhibitory interneurons exhibit a variety of postsynaptic Ca(2+) mechanisms, which are recruited by distinct activity patterns and are responsible for the formation of functionally segregated dendritic Ca(2+) microdomains. Furthermore, postsynaptic Ca(2+) signals in these cells not only contribute to the induction of synaptic plasticity but also may themselves undergo different forms of plastic modifications, depending on the activity level. This compartmentalised regulation of postsynaptic Ca(2+) signalling may have a significant impact on the induction of synaptic plasticity and on single-interneuron and network computations.  相似文献   

9.
Summary Transected ganglion cell axons from the adult retina are capable of reinnervating their central targets by growing into transplanted peripheral nerve (PN) segments. Injury of the optic nerve causes various metabolic and morphological changes in the retinal ganglion cell (RGC) perikarya and in the dendrites. The present work examined the dendritic trees of those ganglion cells surviving axotomy and of those whose severed axons re-elongated in PN grafts to reach either the superior colliculus (SC), transplanted SC, or transplanted autologous thigh muscle. The elaboration of the dendritic trees was visualized by means of the strongly fluorescent carbocyanine dye DiI, which is taken up by axons and transported to the cell bodies and from there to the dendritic branches. Alternatively, retinofugal axons regrowing through PN grafts were anterogradely filled from the eye cup with rhodamine B-isothiocyanate. The transection of the optic nerve resulted in characteristic changes in the ganglion cell dendrites, particularly in the degeneration of most of the terminal and preterminal dendritic branches. This occurred within the first 1 to 2 weeks following axotomy. The different types of ganglion cells appear to vary in their sensitivity to axotomy, as reflected by a rapid degeneration of certain cell dendrites after severance of the optic nerve. The most vulnerable cells were those with small perikarya and small dendritic fields (type II), whereas larger cells with larger dendritic fields (type I and III) were slower to respond and less dramatically affected. Regrowth of the lesioned axons in peripheral nerve grafts and reconnection of the retina with various tissues did not result in a significant immediate recovery of ganglion cell dendrites, although it did prevent some axotomized cells from further progression toward posttraumatic cell death.  相似文献   

10.
When cat retina is incubated in vitro with the fluorescent dye, 4',6-diamidino-2-phenyl-indole (DAPI), a uniform population of neurons is brightly labelled at the inner border of the inner nuclear layer. The dendritic morphology of the DAPI-labelled cells was defined by iontophoretic injection of Lucifer yellow under direct microscopic control: all the filled cells had the narrow-field bistratified morphology that is distinctive of the AII amacrine cells previously described from Golgi-stained retinae. Although the AII amacrines are principal interneurons in the rod-signal pathway, their density distribution does not follow the topography of the rod receptors, but peaks in the central area like the cone receptors and the ganglion cells. There are some 512 000 AII amacrines in the cat retina and their density ranges from 500 cells per square millimetre at the superior margin to 5300 cells per square millimetre in the centre (retinal area is 450 mm2). The isodensity contours are kite-shaped, particularly at intermediate densities, with a horizontal elongation towards nasal retina. The cell body size and the dendritic dimensions of AII amacrines increase with decreasing cell density. The lobular dendrites in sublamina a of the inner plexiform layer span a restricted field of 16-45 microns diameter, while the arboreal dendrites in sublamina b form a varicose tree of 18-95 microns diameter. The dendritic field coverage of the lobular appendages is close to 1.0 (+/- 0.2) at all eccentricities whereas the coverage of the arboreal dendrites doubles within the first 1.5 mm and then remains constant at 3.8 (+/- 0.7) throughout the periphery.  相似文献   

11.
A fundamental strategy for organising connections in the nervous system is the formation of neural maps. Map formation has been most intensively studied in sensory systems where the central arrangement of axon terminals reflects the distribution of sensory neuron cell bodies in the periphery or the sensory modality. This straightforward link between anatomy and function has facilitated tremendous progress in identifying cellular and molecular mechanisms that underpin map development. Much less is known about the way in which networks that underlie locomotion are organised. We recently showed that in the Drosophila embryo, dendrites of motorneurons form a neural map, being arranged topographically in the antero-posterior axis to represent the distribution of their target muscles in the periphery. However, the way in which a dendritic myotopic map forms has not been resolved and whether postsynaptic dendrites are involved in establishing sets of connections has been relatively little explored. In this study, we show that motorneurons also form a myotopic map in a second neuropile axis, with respect to the ventral midline, and they achieve this by targeting their dendrites to distinct medio-lateral territories. We demonstrate that this map is “hard-wired”; that is, it forms in the absence of excitatory synaptic inputs or when presynaptic terminals have been displaced. We show that the midline signalling systems Slit/Robo and Netrin/Frazzled are the main molecular mechanisms that underlie dendritic targeting with respect to the midline. Robo and Frazzled are required cell-autonomously in motorneurons and the balance of their opposite actions determines the dendritic target territory. A quantitative analysis shows that dendritic morphology emerges as guidance cue receptors determine the distribution of the available dendrites, whose total length and branching frequency are specified by other cell intrinsic programmes. Our results suggest that the formation of dendritic myotopic maps in response to midline guidance cues may be a conserved strategy for organising connections in motor systems. We further propose that sets of connections may be specified, at least to a degree, by global patterning systems that deliver pre- and postsynaptic partner terminals to common “meeting regions.”  相似文献   

12.
Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.  相似文献   

13.
One of the fundamental features of retinal ganglion cells (RGCs) is that dendrites of individual RGCs are confined to one or a few narrow strata within the inner plexiform layer (IPL), and each RGC synapses only with a small group of presynaptic bipolar and amacrine cells with axons/dendrites ramified in the same strata to process distinct visual features. The underlying mechanisms which control the development of this laminar-restricted distribution pattern of RGC dendrites have been extensively studied, and it is still an open question whether the dendritic pattern of RGCs is determined by molecular cues or by activity-dependent refinement. Accumulating evidence suggests that both molecular cues and activity-dependent refinement might regulate RGC dendrites in a cell subtype-specific manner. However, identification of morphological subtypes of RGCs before they have achieved their mature dendritic pattern is a major challenge in the study of RGC dendritic development. This problem is now being circumvented through the use of molecular markers in genetically engineered mouse lines to identify RGC subsets early during development. Another unanswered fundamental question in the study of activity-dependent refinement of RGC dendrites is how changes in synaptic activity lead to the changes in dendritic morphology. Recent studies have started to shed light on the molecular basis of activity-dependent dendritic refinement of RGCs by showing that some molecular cascades control the cytoskeleton reorganization of RGCs.  相似文献   

14.
Plasticity of dendritic excitability   总被引:3,自引:0,他引:3  
Dendrites are equipped with a plethora of voltage-gated ion channels that greatly enrich the computational and storage capacity of neurons. The excitability of dendrites and dendritic function display plasticity under diverse circumstances such as neuromodulation, adaptation, learning and memory, trauma, or disorders. This adaptability arises from alterations in the biophysical properties or the expression levels of voltage-gated ion channels-induced by the activity of neurotransmitters, neuromodulators, and second-messenger cascades. In this review we discuss how this plasticity of dendritic excitability could alter information transfer and processing within dendrites, neurons, and neural networks under physiological and pathological conditions.  相似文献   

15.
Narayanan R  Johnston D 《Neuron》2007,56(6):1061-1075
Oscillations in neural activity are a prominent feature of many brain states. Individual hippocampal neurons exhibit intrinsic membrane potential oscillations and intrinsic resonance in the theta frequency range. We found that the subthreshold resonance frequency of CA1 pyramidal neurons was location dependent, varying more than 3-fold between the soma and the distal dendrites. Furthermore, activity- and NMDA-receptor-dependent long-term plasticity increased this resonance frequency through changes in h channel properties. The increase in resonance frequency and an associated reduction in excitability were nearly identical in the soma and the first 300 mum of the apical dendrites. These spatially widespread changes accompanying long-term synaptic potentiation also reduced the neuron's ability to elicit spikes evoked through a nonpotentiated synaptic pathway. Our results suggest that the frequency response of these neurons depends on the dendritic location of their inputs and that activity can regulate their response dynamics within an oscillating neural network.  相似文献   

16.
Bieberich E 《Bio Systems》2002,66(3):145-164
The regulation of biological networks relies significantly on convergent feedback signaling loops that render a global output locally accessible. Ideally, the recurrent connectivity within these systems is self-organized by a time-dependent phase-locking mechanism. This study analyzes recurrent fractal neural networks (RFNNs), which utilize a self-similar or fractal branching structure of dendrites and downstream networks for phase-locking of reciprocal feedback loops: output from outer branch nodes of the network tree enters inner branch nodes of the dendritic tree in single neurons. This structural organization enables RFNNs to amplify re-entrant input by over-the-threshold signal summation from feedback loops with equivalent signal traveling times. The columnar organization of pyramidal neurons in the neocortical layers V and III is discussed as the structural substrate for this network architecture. RFNNs self-organize spike trains and render the entire neural network output accessible to the dendritic tree of each neuron within this network. As the result of a contraction mapping operation, the local dendritic input pattern contains a downscaled version of the network output coding structure. RFNNs perform robust, fractal data compression, thus coping with a limited number of feedback loops for signal transport in convergent neural networks. This property is discussed as a significant step toward the solution of a fundamental problem in neuroscience: how is neuronal computation in separate neurons and remote brain areas unified as an instance of experience in consciousness? RFNNs are promising candidates for engaging neural networks into a coherent activity and provide a strategy for the exchange of global and local information processing in the human brain, thereby ensuring the completeness of a transformation from neuronal computation into conscious experience.  相似文献   

17.
The objectives of the present study were to determine the cytological features of isolated follicular dendritic cells (FDC), which distinguish them from other leukocytes or dendritic cell types. Consequently, we have developed methods for the fixation, peroxidase cytochemistry, and visualization of FDC, which are applicable to cytological evaluations by Nomarski optics, scanning, and transmission electron microscopy. A functionally supported identification of FDC in vitro was made possible by utilizing, in conjunction with the dendritic morphology, the cytochemically identifiable antigen, horseradish peroxidase (HRP), and the known capacity of FDC to sequester immune complexes (i.e. HRP-anti-HRP) on their plasma membranes. The observations showed that FDC constitute a relatively pleomorphic, nonphagocytic group, distinct from other dendritic type cells such as lymphoid dendritic cells, Langerhans cells, and interdigitating cells (LDC, LC, and IDC), as well as typical leukocytes. Morphologically distinct FDC were identified as cells either with filiform dendrites or with "beaded" dendrites. FDC possessed a single or sometimes a double, lymphocyte-size cell body, which contained an irregular, lobated nucleus, Golgi apparatus, numerous small vesicles, and some mitochondria. Mitochondria were not abundant in the dendritic processes. Filiform dendrites tended to branch and anastomose near the cell body and form a radiating "sunburst"-like pattern. On the average, dendrites measured 15-20 microns in length and 0.1-0.3 micron in diameter. Occasional dendrites were extremely elongated, reached several hundred microns in length, and terminated in an enlargement measuring nearly a micron in diameter. Other filiform dendrites usually had a club-shaped terminal enlargement. The microspheres of "beaded" dendrites ranged between 0.3 and 0.6 micron in diameter. The dendritic processes were also shown to have a highly ordered pattern of immune complex attachment on their surface, suggestive of a periodic arrangement of receptor sites.  相似文献   

18.
Neurogenesis is the process of neuron generation, which occurs not only during embryonic development but also in restricted niches postnatally. One such region is called the subventricular zone (SVZ), which gives rise to new neurons in the olfactory bulb (OB). Neurons that are born postnatally migrate through more complex territories and integrate into fully functional circuits. Therefore, differences in the differentiation of embryonic and postnatally born neurons may exist. Dendritogenesis is an important process for the proper formation of future neuronal circuits. Dendritogenesis in embryonic neurons cultured in vitro was shown to depend on the mammalian target of rapamycin (mTOR). Still unknown, however, is whether mTOR could regulate the dendritic arbor morphology of SVZ‐derived postnatal OB neurons under physiological conditions in vivo. The present study used in vitro cultured and differentiated SVZ‐derived neural progenitors and found that both mTOR complex 1 and mTOR complex 2 were required for the dendritogenesis of SVZ‐derived neurons. Furthermore, using a combination of in vivo electroporation of neural stem cells in the SVZ and genetic and pharmacological inhibition of mTOR, it was found that mTOR was crucial for the growth of basal and apical dendrites in postnatally born OB neurons under physiological conditions and contributed to the stabilization of their basal dendrites. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1308–1327, 2016  相似文献   

19.
Langerhans cells (LCs) seem to play a crucial role in the immune system of the skin. Changes in their density, distribution, phenotype and/or morphology have been described in a number of skin diseases, mostly immunologically mediated. For this reason, we investigated LCs in human hypertrophic scars, since these scars are presently believed to have an immunological basis. A preliminary analysis of the histological features was carried out on vertical serial sections, stained with hematoxylin and eosin. Both epidermal and dermal components of hypertrophic scar biopsies were examined. The total epidermal thickness and the thickness of the single epidermal layers were also measured; the values obtained were similar to those of control skin and normotrophic scars. Subsequently, CDla-positive LCs, revealed by indirect immunofluorescence and immunoperoxidase techniques, were studied to determine their position among the epidermal layers and within the dermis, their dimensions, their density and their morphology. According to these observations, two main types of hypertrophic scars were identified. In the first type (7 scars), LCs were widely clustered within both the whole epidermis and the dermis. Their density was increased (about 750 cells/mm2 of epidermal area), if compared to control skin and normotrophic scars (both about 400 cells/mm2 of epidermal area; p less than 0.001). The epidermal cell profiles, nearly three times larger than those of control skin, exhibited a dense network of interconnected dendrites. Further analysis for the presence of HLA-DR molecules revealed an anomalous expression of these antigens on keratinocytes. In the second type (3 scars), LCs density within the stratum Malpighii was unchanged, relative to control skin and normal scars, while CDla-positive cell bodies remained numerous in basal position and within the subpapillary corion. Epidermal LCs, only slightly larger than those evidentiated in control skin, displayed short and retracted dendritic projections. The aberrant expression of HLA-DR antigens on keratinocytes was very weak and sparse. The present results strongly suggest an immunologically activated state of the tissues examined; they provide morphological data that support the involvement of the immune system in hypertrophic scarring.  相似文献   

20.
The retinal ganglion cells (RGCs) have diverse morphology and physiology. Although some studies show that correlations between morphological properties and physiological properties exist in cat RGCs, these properties are much less distinct and their correlations are unknown in mouse RGCs. In this study, using three-dimensional digital neuron reconstruction, we systematically analyzed twelve morphological parameters of mouse RGCs as they developed in the first four postnatal weeks. The development of these parameters fell into three different patterns and suggested that contact from bipolar cells and eye opening might play important roles in RGC morphological development. Although there has been a general impression that the morphological parameters are not independent, such as RGCs with larger dendritic fields usually have longer but sparser dendrites, there was not systematic study and statistical analysis proving it. We used Pearson''s correlation coefficients to determine the relationship among these morphological parameters and demonstrated that many morphological parameters showed high statistical correlation. In the same cells we also measured seven physiological parameters using whole-cell patch-clamp recording, focusing on intrinsic excitability. We previously reported the increase in intrinsic excitability in mouse RGCs during early postnatal development. Here we showed that strong correlations also existed among many physiological parameters that measure the intrinsic excitability. However, Pearson''s correlation coefficient revealed very limited correlation across morphological and physiological parameters. In addition, principle component analysis failed to separate RGCs into clusters using combined morphological and physiological parameters. Therefore, despite strong correlations within the morphological parameters and within the physiological parameters, postnatal mouse RGCs had only limited correlation between morphology and physiology. This may be due to developmental immaturity, or to selection of parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号