首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of murine L-M and 3T3 fibroblasts with human recombinant tumour necrosis factor (rTNF) resulted in an increase in the cytosolic free Ca2+ concentration ([Ca2+]i). In 3T3 cells rTNF also induced release and metabolization of arachidonic acid, whereas in L-M cells rTNF provoked rapid increases in the levels of inositol mono-, bis- and trisphosphates (IP1, IP2 and IP3). In these cells the Ca2+ response was also observed in Ca2+ free medium, suggesting that rTNF promotes mobilization of Ca2+ from intracellular stores. In 3T3 cells, however, Ca2+ originated from the extracellular space, since the response was abolished in medium containing 1 mM EGTA. Both rTNF-induced calcium responses were inhibited by a specific rabbit IgG antibody to rTNF but not by 1-verapamil, a blocker potential-operated calcium channels. These results suggest that increased formation of inositol phosphates, arachidonic acid release and increased cytosolic free Ca2+ are involved in the biological effects of rTNF. However, rTNF generate these signals by different mechanisms depending upon the target cell.  相似文献   

2.
The G1-S boundary of non-neoplastic cells requires extracellular Ca2+ for successful transition. Inositol 1,3,4,5-tetrakisphosphate but not inositol 1,4,5-trisphosphate can partially replace Ca2+ and stimulate the initiation of DNA synthesis of Ca2+-deprived T51B rat liver cells but only if sufficient extracellular Ca2+ (i.e., 0.075 mM) is present. The potent tumor promoter and protein kinase C activator 12-O-tetradecanoylphorbol acetate is also capable of replacing extracellular Ca2+ and partially stimulating the initiation of DNA synthesis. In addition, both inositol-1,3,4,5-tetrakisphosphate and 12-O-tetradecanoylphorbol acetate added together elicit a full DNA synthetic response.  相似文献   

3.
The metabolism of the inositol lipids and phosphatidic acid in rat lacrimal acinar cells was investigated. The muscarinic cholinergic agonist methacholine caused a rapid loss of 15% of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and a rapid increase in [32P]phosphatidic acid (PtdA). Chemical measurements indicated that the changes in 32P labelling of these lipids closely resembled changes in their total cellular content. Chelation of extracellular Ca2+ with excess EGTA caused a significant decrease in the PtdA labelling and an apparent loss of PtdIns(4,5)P2 breakdown. The calcium ionophores A23187 and ionomycin provoked a substantial breakdown of [32P]PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P); however, a decrease in [32P]PtdA was also observed. Increases in inositol phosphate, inositol bisphosphate and inositol trisphosphate were observed in methacholine-stimulated cells, and this increase was greatly amplified in the presence of 10 mM-LiCl; alpha-adrenergic stimulation also caused a substantial increase in inositol phosphates. A23187 provoked a much smaller increase in the formation of inositol phosphates than did either methacholine or adrenaline. Experiments with excess extracellular EGTA and with a protocol that eliminates intracellular Ca2+ release indicated that the labelling of inositol phosphates was partially dependent on the presence of extracellular Ca2+ and independent of intracellular Ca2+ mobilization. Thus, in the rat lacrimal gland, there appears to be a rapid phospholipase C-mediated breakdown of PtdIns(4,5)P2 and a synthesis of PtdA, in response to activation of receptors that bring about an increase in intracellular Ca2+. The results are consistent with a role for these lipids early in the stimulus-response pathway of the lacrimal acinar cell.  相似文献   

4.
Human T cell clones contain enzymes that can cleave the substrate N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT). All CTL clones tested in this study secreted BLT-serine esterase activity, whereas only one of three tested non-cytolytic T cell clones secreted this enzymatic activity upon Ag-specific activation. BLT-serine esterase secretion could also be induced by the Fc gamma+ target cell Daudi in the presence of mAb specific for the TCR/CD3 complex, CD2, or the T cell activation Ag Tp 103. In addition, anti-CD3 and a mitogenic combination of anti-CD2 mAb, induced secretion of BLT-serine esterase in the absence of target cells, whereas anti-Tp 103 failed to do so. The secreted BLT-serine esterase activity induced by the various ligands was inhibited by the serine esterase inhibitors PMSF and m-ABA, but not by N-alpha-p-tosyl-L-lysine chloromethyl ketone. Significant BLT-serine esterase activity was induced by target cells or soluble anti-CD3 in the absence of extracellular Ca2+ ions, provided that extracellular Mg2+ ions were present. The cytotoxic activities by the human CTL clones were completely blocked under these conditions. All ligands that induced BLT-serine esterase secretion in the absence of extracellular Ca2+, induced a transient rise of intracellular Ca2+. Soluble anti-CD3 mAb did not induce a transient rise in intracellular Ca2+ or secretion of BLT serine esterase in CTL preincubated for 2 h with 5 mM EGTA. These findings indicate that mobilization of intracellular Ca2+ in human CTL clones is required for induction of secretion of BLT-serine esterase.  相似文献   

5.
Changes in the intracellular concentration of calcium [( Ca2+]i) have been shown to mediate the physiological effects of certain agonists. Ca2+ mobilization occurs through multiple mechanisms which involve both influx and internal release of Ca2+. Prostaglandin F2 alpha (PGF2 alpha) caused a transient mobilization of intracellular Ca2+ in 3T3-L1 fibroblasts. This effect was characterized by fluorescence measurements of trypsin-treated cells loaded with fura-2/AM. In the absence of extracellular Ca2+, the peak amount of Ca2+ mobilized by PGF2 alpha was decreased by 70%, a lag time before the onset of [Ca2+]i increase was observed, and the rate of rise of [Ca2+]i was slowed. Addition of NaF (10 mM) to fura-2-loaded 3T3-L1 cells caused a dose-dependent increase in [Ca2+]i after a brief (approximately 10 s) lag. Maximal effects (approximately 300 nM) were observed at 5-10 mM-NaF. This effect was dependent on the presence of extracellular Ca2+ and appeared to be independent of inositol phosphate production. After reaching a peak at around 40 s after fluoride addition, [Ca2+]i returned to near-baseline within 120 s. This return of [Ca2+]i to near-baseline after fluoride stimulation and the inability of the cells to respond to a subsequent addition of fluoride indicated that the response to fluoride underwent desensitization. Similarly, the pathway used by PGF2 alpha to mobilize Ca2+ underwent desensitization. Exposure of the cells to a maximally effective concentration of fluoride and subsequent addition of PGF2 alpha produced a [Ca2+]i response to PGF2 alpha which was similar in magnitude and kinetics to that seen for PGF2 alpha in the absence of extracellular Ca2+. Conversely, prior exposure of cells to PGF2 alpha diminished the ability of fluoride to mobilize Ca2+. PGF2 alpha also increased inositol phosphate formation, with a time course and dose-response consistent with its ability to increase [Ca2+]i. Prior exposure of cells to fluoride did not change the time course or dose-response characteristics of PGF2 alpha-induced generation of inositol phosphates. These data suggest that PGF2 alpha and fluoride share a common mechanism of activating Ca2+ influx in 3T3-L1 cells.  相似文献   

6.
The calcium requirement for agonist-dependent breakdown of phosphatidylinositol and polyphosphoinositides has been examined in rat cerebral cortex. The omission of added Ca2+ from the incubation medium abolished [3H]inositol phosphate accumulation from prelabelled phospholipid induced by histamine, reduced that due to noradrenaline and 5-hydroxytryptamine, but did not affect carbachol-stimulated breakdown. EC50 values for agonists were unaltered in the absence of Ca2+. Removal of Ca2+ by preincubation with EGTA (0.5 mM) abolished all responses, but complete restoration was achieved by replacement of Ca2+. The EC50 for Ca2+ for histamine-stimulated [3H]inositol phosphate accumulation was 80 microM. Noradrenaline-stimulated breakdown was antagonised by manganese (IC50 1.7 mM), but not by the calcium channel blockers nitrendipine or nimodipine (30 microM). The calcium ionophore A23187 stimulated phosphatidylinositol/polyphosphoinositide hydrolysis with an EC50 of 2 microM, and this response was blocked by EGTA. Omission of Ca2+ or preincubation with EGTA or Mn2+ (EC50 = 230 microM) greatly enhanced the incorporation of [3H]inositol into phospholipids. The IC50 for Ca2+ in inhibiting incorporation was 25 microM. The results show that different receptors mediating phosphatidylinositol/polyphosphoinositide breakdown in rat cortex have quantitatively different Ca2+ requirements, and it is suggested that rigid opinions regarding phosphatidylinositol/polyphosphoinositide breakdown as either cause or effect of calcium mobilisation in rat cortex are inappropriate.  相似文献   

7.
By using the Ca2+-sensitive dye indo-1, an antigen-specific increase in intracellular Ca2+ in cloned cytolytic T lymphocytes (CTL) was measured under conditions that were permissive for T cell-mediated cytolysis. To synchronize lethal hit delivery in a suspension of effector and target cells, a modification of the cation pulse method in which Ca2+ is added to preformed conjugates of CTL and target cells was used. Conjugate formation was unaffected by the absence of extracellular Ca2+ under these conditions. Lytic activity of these cloned CTL was markedly reduced in the absence of extracellular Ca2+ and was restored upon Ca2+ repletion. When indo-1-loaded CTL were preincubated with target cells in the absence of extracellular Ca2+, a marked antigen-specific increase in indo-1 fluorescence, indicative of an increase in intracellular Ca2+, was observed after repletion of extracellular Ca2+. This increase in intracellular Ca2+ was shown to be due solely to changes in the CTL and not the target cell within the time course of the experiment, and results from the influx of extracellular Ca2+. Antibody to the T cell receptor for antigen also evokes a similar increase in intracellular Ca2+ in CTL under these conditions. This method provides a means for the direct examination of the response of CTL to cellular antigen as well as soluble antibody and is a versatile and valuable tool for the study of CTL function.  相似文献   

8.
9.
SPARC (secreted protein, acidic and rich in cysteine) is an extracellular, Ca(2+)-binding protein that inhibits the spreading of newly plated cells and elicits a rounded morphology in spread cells. In this study, I investigated whether the rounding effect of SPARC depends on the ability of the protein to chelate Ca2+ at the cell surface. Bovine aortic endothelial cells were plated in the presence of different concentrations of SPARC and Ca2+; control experiments were performed with 1 mM EGTA and with Mg2+. Quantitative estimates of cell rounding were calculated according to a rounding index. SPARC, at concentrations between 0.15 and 0.58 microM, elicited rounding (or prevented spreading) of cells cultured for 16-38 h in 0.5-2.0 mM Ca2+. Addition of 0.5-2.0 mM Mg2+ to cells previously rounded in the presence of SPARC did not abrogate the effect of SPARC. When the levels of extracellular Ca2+ were adjusted with 1 mM EGTA to maximum values ranging from 7.1 to 320 microM, cells displayed a rounded morphology in the presence of exogenous SPARC. Although the rounding induced by 1 mM EGTA was essentially reversed by the inclusion of 2 mM Ca2+, cultures containing these reagents together with SPARC maintained the rounded phenotype. These results do not support a mechanism that involves the abstraction of Ca2+ from proteins at the cell surface or the provision of Ca2+ from native extracellular SPARC to cells. Therefore, SPARC does not appear to act as a local chelator of extracellular Ca2+ and Mg2+ and presumably exerts its function as a modulator of cell shape via a different pathway.  相似文献   

10.
Evidence for multiple lytic pathways used by cytotoxic T lymphocytes   总被引:6,自引:0,他引:6  
Previous data generated by ourselves and others questioned the role of degranulation as a mechanism to explain CTL-mediated cytotoxicity. In this report we examine this tissue in greater depth. CTL-mediated lysis was probed with three different inhibitors. 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene inhibits degranulation in a wide range of cell types, including CTL. EGTA, through chelation of Ca2+, also inhibits degranulation processes in CTL, and would inhibit other events or processes dependent on extracellular Ca2+. We also used prolonged exposure to PMA to exhaust PKC activity in CTL. Using these inhibitors, we have defined three pathways of lysis used by CTL. One pathway requires Ca2+, is PMA sensitive, but does not depend on degranulation. The second pathway is independent of Ca2+, is not PMA sensitive, and also does not depend on degranulation. All primary CTL and cloned CTL lyse most target cells via pathway I. However, when confronted with certain target cells (which we have referred to previously as Ca2+-independent target cells), pathway II is induced. When pathway II is induced, pathway I apparently shuts down. We show here that pathway II does not depend on protein synthesis, and that it also leads to DNA solubilization in target cells. A limited number of cloned CTL use pathways I and II as just described, but use in addition, and simultaneously, a third pathway that appears to involve degranulation. This pathway is seen irregularly in most CTL clones, and may be influenced by levels of IL-2 in the culture medium.  相似文献   

11.
We examined the effects of the divalent cations Ca2+ and Mg2+ on inositol phosphate accumulation in bovine parathyroid cells prelabelled with [3H]inositol to determine whether the high extracellular Ca2+ and Mg2+-evoked transients in cytosolic Ca2+ in these cells might result from increases in cellular IP3 levels. In the presence of Li+, both Ca2+ and Mg2+ produced rapid, 2-6-fold increases in IP3 and IP2 and a linear increase in IP of 6-8-fold at 30 min. Smaller (1.5-2-fold) increases in IP2 and IP3 were evident within 7.5-15 s upon exposure to high (3 mM) Ca2+ in the absence of Li+. The relative potencies of Ca2+ and Mg2+ (Ca2+ 3-fold more potent than Mg2+) in elevating inositol phosphates were similar to those for their effects in inhibiting PTH release. Fluoride (5 and 10 mM) also produced similar increases in inositol phosphate accumulation, presumably through activation of phospholipase C by a guanine nucleotide (G) protein-dependent process. Thus, high extracellular Ca2+ and Mg2+-induced spikes in cytosolic Ca2+ in bovine parathyroid cells may be mediated by increases in IP3, perhaps through a receptor-mediated process linked to phospholipase C by a G-protein.  相似文献   

12.
Calcium uptake into bovine epididymal spermatozoa is enhanced by introducing phosphate in the suspending medium (Babcock et al. (1975) J. Biol. Chem. 250, 6488-6495). This effect of phosphate is found even at a low extracellular Ca2+ concentrations (i.e., 5 microM) suggesting that phosphate is involved in calcium transport via the plasma membrane. Bicarbonate (2 mM) cannot substitute for phosphate, and a relatively high bicarbonate concentration (20 mM) causes partial inhibition of calcium uptake in absence of Pi. In the presence of 1-2 mM phosphate, 20 mM bicarbonate enhances Ca2+ uptake. The data indicate that the plasma membrane of bovine spermatozoa contains two carriers for Ca2+ transport: a phosphate-independent Ca2+ carrier that is stimulated by bicarbonate and a phosphate-dependent Ca2+ carrier that is inhibited by bicarbonate. Higher phosphate concentrations (i.e., 10 mM) inhibit Ca2+ uptake into intact cells (compared to 1.0 mM phosphate) and this inhibition can be relieved partially by 20 mM bicarbonate. This effect of bicarbonate is inhibited by mersalyl. Calcium uptake into the cells is enhanced by adding exogenous substrates to the medium. There is no correlation between ATP levels in the cells and Ca2+ transport into the cell. ATP levels are high even without added exogenous substrate and this ATP level is almost completely reduced by oligomycin, suggesting that ATP can be synthesized in the mitochondria in the absence of exogenous substrate. Calcium transport into the sperm mitochondria (washed filipin-treated cells) is absolutely dependent upon the presence of phosphate and mitochondrial substrate. Bicarbonate cannot support Ca2+ transport into sperm mitochondria. There is good correlation between Ca2+ uptake into intact epididymal sperm and into sperm mitochondria with the various substrates used. This indicates that the rate of calcium transport into the cells is determined by the rate of mitochondrial Ca2+ uptake and respiration with the various substrates.  相似文献   

13.
The role of Ca2+ in cell-mediated cytotoxicity has been the subject of many investigations and both Ca2+-dependent and -independent pathways have been reported. TNF was suggested to play a role in NK and macrophage cell-mediated cytotoxicity. We assumed that its role in target cell lysis might take place by a Ca2+-independent mechanism. This hypothesis was investigated in assays of rTNF-mediated lysis of tumor target cells. Extracellular Ca2+ depletion by the calcium chelator EGTA (2 mM and 5 mM) and blocking of intracellular Ca2+ mobilization by 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride did not inhibit TNF-mediated tumor cell lysis. Furthermore, blocking of Ca2+ influx in the presence of the Ca2+ channel blocker Verapamil did not inhibit TNF-mediated tumor cell lysis. Previous reports showed that lysis of sensitive tumor cells by TNF is preceded by binding of TNF to TNF receptors, internalization, and DNA degradation. These events were tested in the absence of Ca2+. Treatment with Ca2+ inhibitors did not affect binding of 125I-TNF to target cells. Also TNF induced the fragmentation of cellular DNA in target cells without extracellular or intracellular Ca2+. These findings demonstrate that the mechanism of TNF-mediated tumor cell lysis does not depend on intracellular or extracellular Ca2+ and that events associated with target cell lysis can also function in the absence of Ca2+. Thus, our findings support the contention of a Ca2+-independent lytic pathway in which secreted or membrane-bound TNF may interact with the target cells and ultimately result in DNA degradation and target cell lysis.  相似文献   

14.
The effects of the beta-adrenoceptor agonist, isoprenaline, on Ca2+ mobilization and inositol phosphate formation in parotid acinar cells were examined. Isoprenaline (2 microM) failed to increase cytosolic [Ca2+] in acinar cells, as measured by Fura-2 fluorescence, even in the presence of a phosphodiesterase inhibitor. Likewise, neither the 8-bromo nor the dibutyryl derivatives of cAMP (both at 2 mM concentration) increased [Ca2+]i. However, in confirmation of results previously published, a higher concentration of isoprenaline (200 microM) increased cytosolic [Ca2+]i of rat parotid acinar cells, from 104 +/- 4 nM to 151 +/- 18 nM. The increase in [Ca2+]i in response to isoprenaline, while transient in the absence of extracellular Ca2+, was sustained in Ca2(+)-containing medium. This isoprenaline-stimulated Ca2+ signal was more potently antagonized by phentolamine than by propranolol, suggesting that the higher concentration of isoprenaline activated alpha-adrenoceptors. Furthermore, the Ca2+ signal generated in response to the alpha-adrenoceptor agonist, phenylephrine, also was blocked by the same concentrations of propranolol necessary to block the effects of isoprenaline, suggesting that propranolol may block alpha-adrenoceptors under certain experimental conditions. The high concentration of (-)isoprenaline (200 microM) also increased inositol (1,4,5) trisphosphate and inositol (1,3,4) trisphosphate formation 45% within 30 s. Analogous to the increase in intracellular Ca2+, the formation of inositol phosphates stimulated by isoprenaline was more potently antagonized by the alpha-adrenoceptor antagonist, phentolamine, than by the beta-adrenoceptor antagonist, propranolol, again suggesting that isoprenaline interacts with alpha-adrenoceptors on parotid cells. Thus, the effects of isoprenaline on [Ca2+]i do not appear to be mediated by cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The role of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-sensitive Ca2+ pools in secretion, induced by muscarinic agonists in porcine adrenal chromaffin cells, was studied. Activation of muscarinic receptors, as in other species, was found to increase inositol phosphate production including that of Ins(1,4,5)P3. Treatment of cells with thapsigargin, which is known to deplete Ins(1,4,5)P3-sensitive Ca2+ pools, eliminated the initial transient component of increases in the cytosolic free Ca2+ concentration ([Ca2+]in) induced by the muscarinic agonist, methacholine, in both the presence and the absence of extracellular Ca2+. Thapsigargin treatment also decreased methacholine-induced secretion by about 30% in the presence of extracellular Ca2+ and essentially eliminated secretion that occurred independently of extracellular Ca2+ (which was about 30% of the secretory response that occurred in the presence of extracellular Ca2+). Thapsigargin itself had no effect on inositol phosphate production. These results indicate that about 30% of muscarinic agonist-induced secretion is mediated by the release of Ca2+ from Ins(1,4,5)P3- and thapsigargin-sensitive intracellular Ca2+ pools. These results also suggest that Ca2+ influx activated by muscarinic agonists is not due to depletion of intracellular Ca2+ pools, as prior depletion of these pools had no effect on the portion of the methacholine-induced secretory response and [Ca2+]in signal that was dependent on extracellular Ca2+.  相似文献   

16.
In isotonic buffer, IgE receptor-mediated exocytosis from rat basophilic leukemia cells is dependent on extracellular Ca2+, with half-maximal degranulation requiring 0.4 mM Ca2+. No significant exocytosis occurs in the absence of extracellular Ca2+. This absolute requirement for Ca2+ is eliminated by suspending the cells in a hypotonic buffer containing 60 to 80 mM K+; Na+ cannot substitute for K+. Optimal Ca2(+)-independent exocytosis occurs in a buffer containing 20 mM dipotassium Pipes, pH 7.1, 40 mM KCl, 5 mM glucose, 7 mM Mg acetate, 0.1% BSA, and 1 mM EGTA. The cells maintain this Ca2(+)-independent exocytosis even if they are preincubated with 1 mM EGTA for 40 min at 37 degrees C before triggering. Exocytosis is eliminated as isotonicity is approached by adding sucrose, NaCl, KCl, or potassium glutamate to the buffer. Quin 2 fluorescence measurements reveal only a very small rise in [Ca2+]i when the cells are triggered in hypotonic buffer in the absence of extracellular Ca2+ and the presence of 1 mM EGTA. In isotonic buffer, degranulation does not occur under conditions that lead to such a small rise in [Ca2+]i. Sustained IgE receptor-mediated phosphatidylinositol hydrolysis, which is also Ca2+ dependent in isotonic buffer, becomes independent of Ca2+ in the hypotonic buffer. In fact, the rate of phosphatidylinositol hydrolysis in hypotonic buffer in the absence of Ca2+ (and presence of 1 mM EGTA) is twice that observed in isotonic buffer in the presence of 1 mM Ca2+. These data show that in hypotonic buffer, the requirement of IgE receptor-mediated PI hydrolysis for extracellular Ca2+ is eliminated, and degranulation proceeds with a [Ca2+]i of 0.1 microM, the baseline level of [Ca2+]i found in resting cells. These results are consistent with the hypothesis that, in isotonic buffer, the Ca2+ requirement for mast cell degranulation is for the generation of second messengers via hydrolysis of membrane phosphatidylinositols.  相似文献   

17.
The effects of caffeine on receptor-controlled Ca2+ mobilization and turnover of inositol phosphates in human neuroblastoma SK-N-SH cells were studied. Caffeine inhibited both the rise in cytosolic Ca2+ concentration ([Ca2+]i) evoked by muscarinic receptor agonists and the total production of inositol phosphates in a dose-dependent manner, but to different extents. At 10 mM, caffeine inhibited agonist-evoked generation of inositol phosphates almost completely, whereas the agonist-evoked [Ca2+]i rise remained observable after caffeine treatment, in the absence or presence of extracellular Ca2+. Raising the cytosolic cAMP concentration increased the carbachol-induced [Ca2+]i rise, and this effect was abolished in the presence of caffeine. Our data suggested that caffeine may exert two effects on receptor-controlled Ca2+ mobilization: 1) inhibition of inositol phosphate production, 2) augmentation of the size of the releasable Ca2+ pool by elevating cytosolic cAMP concentration.  相似文献   

18.
The role of Ca2+ in the generation of inositol phosphates was investigated using rat pancreatic islets after steady state labeling with myo-[2-3H]inositol. Depolarizing K+ concentrations (24 mM) evoked early (2 s) increases in inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) as measured by high performance anion-exchange chromatography. The increase in Ins-1,4,5-P3 was transient and was followed by a more pronounced rise in Ins-1,3,4-P3. These effects were dependent on the presence of extracellular Ca2+ but were not secondary to release of either neurotransmitters or metabolites of arachidonic acid. K+ also promoted the breakdown of phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) and of the other phosphoinositides. Glucose (16.7 mM) was less marked in its effects but still promoted rapid increases in Ins-1,3,4,5-P4 (2 s) and Ins-1,4,5-P3 (10 s) and a slower rise in Ins-1,3,4-P3 (30 s). The levels of all three metabolites rose steadily over 10 min stimulation. These responses to glucose could be largely, although not entirely, inhibited by depletion of extracellular Ca2+ or by Ca2+ channel blockade with verapamil (20 microM). Carbamylcholine (0.5 mM) was the most potent stimulus used evoking early rises in Ins-1,4,5-P3 and Ins-1,3,4,5-P4 (2 s) followed by Ins-1,3,4-P3 (10 s), effects which were only partially dependent on extracellular Ca2+. The results suggest that a Ca2+-mediated PtdIns-4,5-P2 hydrolysis accounts for most of the Ins-1,4,5-P3 generated in response to glucose but not carbamylcholine. In addition, glucose may exert effects on inositol phosphate metabolism which are Ca2+ independent.  相似文献   

19.
Glucose (20 mM) and 4-methyl-2-oxopentanoate (10 mM) both caused a pronounced stimulation of insulin release and of [3H]inositol phosphate production in rat pancreatic islets prelabelled with myo-[3H]inositol. Secretory responses to these nutrients were markedly impaired by lowering the Ca2+ concentration of the incubation medium to 10(-4)M or less, whereas stimulated inositol phosphate production was sensitive to Ca2+ within the range 10(-6)-10(-4)M. Inositol phosphate formation in response to carbamoylcholine was also found to be dependent on the presence of 10(-5)M-Ca2+ or above. Raising the concentration of K+ in the medium resulted in a progressive, Ca2+-dependent stimulation of inositol phosphate production in islets, although no significant stimulation of insulin release was observed. In islets prelabelled with myo[3H]inositol, then permeabilized by exposure to digitonin, [3H]inositol phosphate production could be triggered by raising the Ca2+ concentration from 10(-7) to 10(-5)M. This effect was dependent on the concentration of ATP and the presence of Li+, and involved detectable increases in the levels of InsP3 and InsP2 as well as InsP. A potentiation of inositol phosphate production by carbamoylcholine was observed in permeabilized islets at lower Ca2+ concentrations, although nutrient stimuli were ineffective. No significant effects were observed with guanine nucleotides or with neomycin, although NADH produced a modest increase and adriamycin a small inhibition of inositol phosphate production in permeabilized islets. These results strongly suggest that Ca2+ ions play an important role in the stimulation of inositol lipid metabolism in islets in response to nutrient secretagogues, and that inositide breakdown may actually be triggered by Ca2+ entry into the islet cells.  相似文献   

20.
The depletion of an inositol 1, 4,5-trisphosphate-sensitive intracellular Ca2+ pool has been proposed to be the signal for Ca2+ entry in agonist-activated cells. Consistent with this idea, thapsigargin, which releases intracellular Ca2+ without inositol phosphate formation, has been reported to activate Ca2+ entry in certain cells. We now report the effects of thapsigargin on Ca2+ entry in parotid acinar cells. In fura-2-loaded parotid acinar cells, thapsigargin caused a sustained elevation of [Ca2+], but did not increase inositol phosphate formation. In the absence of extracellular Ca2+, the increase in [Ca2+], was transient, suggesting that thapsigargin activates both the release of Ca2+ from intracellular stores and the entry of Ca2+ from the extracellular space. In the absence of extracellular Ca2+, pretreatment with methacholine, an agonist believed to mobilize Ca2+ through the production of inositol 1,4,5-trisphosphate, inhibited but did not completely block the response to thapsigargin; likewise, pretreatment with thapsigargin inhibited the response to methacholine. In permeabilized cells, thapsigargin gradually released Ca2+, whereas inositol 1,4,5-trisphosphate caused a rapid and transient discharge of Ca2+. The simultaneous addition of thapsigargin with inositol 1,4,5-trisphosphate evoked a maximum Ca2+ release similar to that for inositol 1,4,5-trisphosphate alone, but the reuptake seen with inositol 1,4,5-trisphosphate alone was abolished. In intact cells, methacholine and thapsigargin together produced a greater initial release of Ca2+ than either alone, but they were not additive in the sustained phase of Ca2+ mobilization. These results demonstrate that the mechanisms for activation of Ca2+ entry by thapsigargin and methacholine are the same and are consistent with the idea that entry is initiated by the depletion of the intracellular inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. The results also indicate that, in contrast to previously proposed models, Ca2+ entry into agonist-activated cells occurs directly across the plasma membrane to the cytoplasm rather than through a cycle of uptake and release by the intracellular Ca2+ pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号