首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Y M Chen  Y Zhu    E C Lin 《Journal of bacteriology》1987,169(7):3289-3294
Mutant analysis revealed that complete utilization of L-fucose and L-rhamnose by Escherichia coli requires the activity of a common NAD-linked aldehyde dehydrogenase which converts L-lactaldehyde to L-lactate. Mutations affecting this activity mapped to the ald locus at min 31, well apart from the fuc genes (min 60) encoding the trunk pathway for L-fucose dissimilation (as well as L-1,2-propanediol oxidoreductase) and the rha genes (min 88) encoding the trunk pathway for L-rhamnose dissimilation. Mutants that grow on L-1,2-propanediol as a carbon and energy source also depend on the ald gene product for the conversion of L-lactaldehyde to L-lactate.  相似文献   

2.
3.
Wild-type strains of Escherichia coli are unable to use L-1,2-propanediol as a carbon and energy source. A series of mutants, able to grow on this compound at progressively faster rates, had been isolated by repeated transfers to a medium containing 20 mM L-1,2-propanediol. These strains synthesize at high constitutive levels a propanediolmicotinamide adenine dinucleotide oxidoreductase, an enzyme serving as a lactaldehyde during L-fucose fermentation by wild type cells. In this study, a mutant that can grow rapidly on the novel carbon source was subjected to further selection in a medium containing L-1,2-propanediol never exceeding 0.5 mM to obtain a derivative that has an increased power to extract the substrate from the medium. The emerging mutant exhibited four changes at the enzymatic level: (i) fuculose 1-phosphate aldolase activity is lost; (ii) the constitutive propanediol oxidoreductase activity is increased in its level; (iii) lactaldehyde dehydrogenase becomes constitutive and shows an elevated specific activity in crude extracts; and (iv) at low concentrations of propanediol, the facilitated diffusion across the cell membrane is enhanced. Changes two to four seem to act in concert in the trapping of propanediol by hastening its rate of entry and conversion to an ionized metabolite, lactate.  相似文献   

4.
Escherichia coli are capable of growing anaerobically on L-rhamnose as a sole source of carbon and energy and without any exogenous hydrogen acceptor. When grown under such condition, synthesis of a nicotinamide adenine dinucleotide-linked L-lactaldehydepropanediol oxidoreductase is induced. The functioning of this enzyme results in the regeneration of nicotinamide adenine dinucleotide. The enzyme was purified to electrophoretic homogeneity. It has a molecular weight of 76,000, with two subunits that are indistinguishable by electrophoretic mobility. The enzyme reduces L-lactaldehyde to L-1,2-propanediol with reduced nicotinamide adenine dinucleotide as a cofactor. The Km were 0.035 mM L-lactaldehyde and 1.25 mM L-1,2-propanediol, at pH 7.0 and 9.5, respectively. The enzyme acts only on the L-isomers. Strong substrate inhibition was observed with L-1,2-propanediol (above 25 mM) in the dehydrogenase reaction. The enzyme has a pH optimum of 6.5 for the reduction of L-lactaldehyde and of 9.5 for the dehydrogenation of L-1,2-propanediol. The enzyme is, according to the parameters presented in this report, indistinguishable from the propanediol oxidoreductase induced by anaerobic growth on fucose.  相似文献   

5.
L-Lactaldehyde is a branching point in the metabolic pathway of L-fucose and L-rhamnose utilization. Under aerobic conditions, L-lactaldehyde is oxidized to L-lactate by the enzyme lactaldehyde dehydrogenase, while under anaerobic conditions, L-lactaldehyde is reduced to L-1,2-propanediol by the enzyme propanediol oxidoreductase. Aerobic growth on either of the methyl pentoses induces a lactaldehyde dehydrogenase enzyme which is inhibited by NADH and is very stable under anaerobic conditions. In the absence of oxygen, the cell shifts from the oxidation of L-lactaldehyde to its reduction, owing to both the induction of propanediol oxidoreductase activity and the decrease in the NAD/NADH ratio. The oxidation of L-lactaldehyde to L-lactate is again restored upon a change to aerobic conditions. In this case, only the NAD/NADH ratio may be invoked as a regulatory mechanism, since both enzymes remain active after this change. Experimental evidence in the presence of rhamnose with mutants unable to produce L-lactaldehyde and mutants capable of producing but not further metabolizing it points toward L-lactaldehyde as the effector molecule in the induction of lactaldehyde dehydrogenase. Analysis of a temperature-sensitive mutation affecting the synthesis of lactaldehyde dehydrogenase permitted us to locate an apparently single regulator gene linked to the ald locus at 31 min and probably acting as a positive control element on the expression of the structural gene.  相似文献   

6.
Escherichia coli is capable of growing on L-fucose or L-rhamnose as a sole source of carbon and energy. When grown under anaerobic conditions on either sugar, a nicotinamide adenine dinucleotide-linked L-lactaldehyde:propanediol oxidoreductase activity is induced. The functioning of this enzyme results in the regeneration of oxidized nicotinamide adenine dinucleotide. Conditions of induction of the enzyme activity were studied and were found to display different characteristics on each sugar. In the rhamnose-grown cells, the increase in enzyme activity detected under inducing conditions was accompanied by the synthesis of propanediol oxidoreductase, as measured by the appearance in the extracts of a protein that reacts with propanediol oxidoreductase antibodies. In contrast, in fucose-grown cells, the level of propanediol oxidoreductase as measured by enzyme antibody-reacting material was high under noninducing and inducing conditions. Thus, the increase in enzyme activity detected in going from noninducing to inducing conditions in fucose-grown cells did not depend on the appearance of the specific protein but on the activation of the propanediol oxidoreductase already present in the cells in an inactive form. The propanediol oxidoreductase of both homologous systems should consequently be regulated by different control mechanisms.  相似文献   

7.
Dissimilation of L-fucose as a carbon and energy source by Escherichia coli involves a permease, an isomerase, a kinase, and an aldolase encoded by the fuc regulon at minute 60.2. Utilization of L-rhamnose involves a similar set of proteins encoded by the rha operon at minute 87.7. Both pathways lead to the formation of L-lactaldehyde and dihydroxyacetone phosphate. A common NAD-linked oxidoreductase encoded by fucO serves to reduce L-lactaldehyde to L-1,2-propanediol under anaerobic growth conditions, irrespective of whether the aldehyde is derived from fucose or rhamnose. In this study it was shown that anaerobic growth on rhamnose induces expression of not only the fucO gene but also the entire fuc regulon. Rhamnose is unable to induce the fuc genes in mutants defective in rhaA (encoding L-rhamnose isomerase), rhaB (encoding L-rhamnulose kinase), rhaD (encoding L-rhamnulose 1-phosphate aldolase), rhaR (encoding the positive regulator for the rha structural genes), or fucR (encoding the positive for the fuc regulon). Thus, cross-induction of the L-fucose enzymes by rhamnose requires formation of L-lactaldehyde; either the aldehyde itself or the L-fuculose 1-phosphate (known to be an effector) formed from it then interacts with the fucR-encoded protein to induce the fuc regulon.  相似文献   

8.
Aerobic excretion of 1,2-propanediol by Salmonella typhimurium.   总被引:1,自引:1,他引:0       下载免费PDF全文
Salmonella typhimurium excreted the rhamnose fermentation product 1,2-propanediol not only under anaerobic conditions, but also under aerobic conditions. The absence of an aldehyde dehydrogenase enzymatic activity that oxidizes to lactate the lactaldehyde formed in the dissimilation of rhamnose raised the intracellular concentration of the aldehyde which was alternatively reduced to the excretable 1,2-propanediol by a residual propanediol oxidoreductase activity.  相似文献   

9.
Catabolism of the six-carbon compound L-fucose results in formation of dihydroxyacetone phosphate (C-1-to-C-3 fragment) and L-lactaldehyde (C-4-to-C-6 fragment) as intermediates. The fate of lactaldehyde depends on the respiratory growth conditions. Aerobically, lactaldehyde is oxidized to L-lactate by an NAD-linked dehydrogenase (ald product). L-Lactate, in turn, is converted to pyruvate, which enters the general metabolic pool. Anaerobically, lactaldehyde is reduced to L-1,2-propanediol by an NADH-linked oxidoreductase (fucO product). L-1,2-Propanediol is excreted as a terminal fermentation product. In a previous study, we showed that retention of the C-4-to-C-6 fragment of fucose depended on the competition for lactaldehyde by aldehyde dehydrogenase and propanediol oxidoreductase (Y. Zhu and E.C.C. Lin, J. Bacteriol. 169:785-789, 1987). In this study, we compared the wild-type strain and isogenic mutant strains defective in ald, fucO, or both for ability to accumulate radioactivity when incubated with fucose labeled at either the C-1 or the C-6 position. The results showed that although blocking the oxidation of lactaldehyde prevented its assimilation, rapid exit of the 3-carbon unit occurred only when the compound was reduced to propanediol. Moreover, growth experiments on fucose indicated that a double ald fucO mutant accumulated inhibiting concentrations of lactaldehyde. The inner cell membrane therefore appears to be much more permeable to the 3-carbon alcohol than to the 3-carbon aldehyde. The almost instantaneous exit of propanediol appears to be a facilitated process.  相似文献   

10.
Wild-type Escherichia coli cannot grow on L-1,2-propanediol; mutants that can do so have increased basal activity of an NAD-linked L-1,2-propanediol oxidoreductase. This enzyme belongs to the L-fucose system and functions normally as L-lactaldehyde reductase during fermentation of the methylpentose. In wild-type cells, the activity of this enzyme is fully induced only anaerobically. Continued aerobic selection for mutants with an improved growth rate on L-1,2-propanediol inevitably leads to full constitutive expression of the oxidoreductase activity. When this occurs, L-fuculose 1-phosphate aldolase concomitantly becomes constitutive, whereas L-fucose permease, L-fucose isomerase, and L-fuculose kinase become noninducible. It is shown in this study that the noninducibility of the three proteins can be changed by two different kinds of suppressor mutations: one mapping external to and the other within the fuc gene cluster. Both mutations result in constitutive synthesis of the permease, the isomerase, and the kinase, without affecting synthesis of the oxidoreductase and the aldolase. Since expression of the fuc structural genes is activated by a protein specified by the regulator gene fucR, and since all the known genes of the fuc system are clustered at minute 60.2 of the chromosome, the external gene in which the suppressor mutation can occur probably has an unrelated function in the wild-type strain. The internal suppressor mutation might be either in fucR or in the promoter region of the genes encoding the permease, the isomerase, and the kinase, if these genes belong to the same operon.  相似文献   

11.
Wild-type strains of Escherichia coli are unable to use L-1,2-propanediol as a carbon and energy source. Strain 3, a mutant selected for the ability to grow on this compound at progressively more rapid rates, synthesizes constitutively a nicotinamide adenine dinucleotide-linked propanediol oxidoreductase. This enzyme is normally synthesized during anaerobic growth on L-fucose when it functions as a lactaldehyde reductase. Propanediol, the end product of this fermentation process, escapes irretrievably into the medium. The propanediol-utilizing mutant can no longer grow on fucose in either the presence or absence of molecular oxygen. In the present study nine independent lines of propanediol-positive mutants were characterized. One mutant, strain 418, attained a propanediol growth rate close to that of strain 3 without loss of the ability to grow on fucose. In all cases examined, however, prolonged selection on propanediol did result in the emergence of fucose-negative mutants. All of these mutants had enzyme patterns similar to that of strain 3; namely, fucose permease, fucose isomerase, and fuculose kinase were noninducible, whereas fuculose 1-phosphate aldolase was constitutive. In strain 418 and in the fucose-positive predecessors of the other mutants, the first four enzymes in the pathway remained inducible, as in the wild-type strain. Improvements in the growth rate on propanediol appeared to reflect principally the increased activity level of the oxidoreductase during the early stages of evolution. According to transductional analysis, the mutations affecting the ability to grow on propanediol and those that affect the expression of the first enzymes in the fucose pathway were very closely linked. The loss of the ability to grow on fucose is thought to be a mechanistic consequence incidental to the remodeling of the regulatory system in favor of the utilization of the novel carbon source.  相似文献   

12.
Escherichia coli K-12 converts L-fucose to dihydroxyacetone phosphate (C-1 to C-3) and L-lactaldehyde (C-4 to C-6) by a pathway specified by the fuc regulon. Aerobically, L-lactaldehyde serves as a carbon and energy source by the action of an aldehyde dehydrogenase of broad specificity; the product, L-lactate, is then converted to pyruvate. Anaerobically, L-lactaldehyde serves as an electron acceptor to regenerate NAD from NADH by the action of an oxidoreductase; the reduced product, L-12-propanediol, is excreted. A strain selected for growth on L-galactose (a structural analog of L-fucose) acquired a broadened inducer specificity because of an altered fucR gene encoding the activator protein for the fuc regulon (Y. Zhu and E. C. C. Lin, J. Mol. Evol. 23:259-266, 1986). In this study, a second mutation that abolished aldehyde dehydrogenase activity was discovered. The L-fucose pathway converts L-galactose to dihydroxyacetone phosphate and L-glyceraldehyde. Aldehyde dehydrogenase then converts L-glyceraldehyde to L-glycerate, which is toxic. Loss of the dehydrogenase averts the toxicity during growth on L-galactose, but reduces by one-half the aerobic growth yield on L-fucose. When mutant cells induced in the L-fucose system were incubated with radioactive L-fucose, accumulation of radioactivity occurred if the substrate was labeled at C-1 but not if it was labeled C-6. Complete aerobic utilization of carbons 4 through 6 of L-fucose depends not only on an adequate activity of aldehyde dehydrogenase to trap L-lactaldehyde as its anionic acid but also on the lack of L-1,2-propanediol oxidoreductase activity, which converts L-lactaldehyde to a readily excreted alcohol.  相似文献   

13.
In Escherichia coli, L-fucose is dissimilated via an inducible pathway mediated by L-fucose permease, L-fucose isomerase, L-fucose kinase, and L-fuculose 1-phosphate aldolase. The last enzyme cleaves the six-carbon substrate into dihydroxyacetone phosphate and L-lactaldehyde. Aerobically, lactaldehyde is oxidized to L-lactate by a nicotinamide adenine dinucleotide (NAD)-linked dehydrogenase. Anaerobically, lactaldehyde is reduced by an NADH-COUPLED REDUCTASE TO L-1,2-propanediol, which is lost into the medium irretrievably, even when oxygen is subsequently introduced. Propanediol excretion is thus the end result of a dismutation that permits further anaerobic metabolism of dihydroxy-acetone phosphate. A mutant selected for its ability to grow aerobically on propanediol as a carbon and energy source was reported to produce lactaldehyde reductase constitutively and at high levels, even aerobically. Under the new situation, this enzyme serves as a propanediol dehydrogenase. It was also reported that the mutant had lost the ability to grow on fucose. In the present study, it is shown that in wild-type cells the full synthesis of lactaldehyde dehydrogenase requires the presence of both molecular oxygen and a small molecule effector, and the full synthesis of lactaldehyde reductase requires anaerobiosis and the presence of a small molecule effector. The failure of mutant cells to grow on fucose reflects the impairment of a regulatory element in the fucose system that prevents the induction of the permease, the isomerase, and the kinase. The aldolase, on the other hand, is constitutively synthesized. Three independent fucose-utilizing revertants of the mutant all produce the permease, the isomerase, the kinase, as well as the aldolase, constitutively. These strains grow less well than the parental mutant on propanediol.  相似文献   

14.
A model for the study of experimental evolution is provided by the novel metabolic system responsible for the progressive utilization of l-1,2-propanediol by mutants of Escherichia coli (strains 3 and 430). In these mutant strains, propanediol oxidoreductase, which serves as l-lactaldehyde reductase in fucose fermentation by wild-type cells, became a key enzyme for aerobic catabolism of propanediol. In the wild-type strain (strain 1), the enzyme is inducible only anaerobically; in strains 3 and 430, the enzyme is synthesized constitutively even in the presence of air. The propanediol oxidoreductase from all three strains was purified to homogeneity by the same procedure. The enzyme of strain 3 clearly differed from that of strain 1 in several respects: Km and V in both directions of the reaction, energy of activation, thermal stability, pH optimum and substrate specificity. However, no difference in any of the above characteristics was found between the enzymes of strains 3 and 430. All three enzymes presented the same electrophoretic mobility. According to immunological data, all three strains differed in their intracellular enzyme level.  相似文献   

15.
在5 L发酵罐进行甘油脉冲流加发酵,分析了不同pH值对克雷伯氏肺炎杆菌发酵特性的影响,pH 6.5为菌体最佳生长条件,克雷伯氏肺炎杆菌合成1,3-丙二醇的产量最高。在1,3-丙二醇合成速率较大的对数中前期,进行甘油脉冲流加发酵,提高甘油浓度促进甘油脱水酶、1,3-丙二醇氧化还原酶和甘油脱氢酶活性。不同pH值的脉冲试验表明,甘油脱水酶,2,3-丁二醇脱氢酶比酶活随着pH值的升高而升高,1,3-丙二醇氧化还原酶,乳酸脱氢酶比酶活在pH6.5最高,因此偏酸性的发酵条件和对数期维持一定的甘油浓度能够促进1,3-丙二醇的合成。  相似文献   

16.
17.
Small-angle X-ray scattering was used to probe the structure of actin in the presence of cryosolvents: 1,2-propanediol, glycerol, or a mixture of both solvents. In media devoid of polymerizing salts, a radius of gyration of 23 Å is measured, as expected from the literature. In the presence of 1,2-propanediol alone, the scattering pattern begins to exhibit the characteristic slope of elongated objects with a non-negligible thickness, such as actin filaments polymerized in 40 mM KCl and 1 mM MgCl2. However, only short fragments (radius of gyration 40 Å) are generated. We infer that in a medium of low ionic strength containing 15% 1,2-propanediol, actin assumes a structure closer to that of filamentous actin. 1,2-propanediol apparently induces nucleation of oligomers, as with polymerizing salts, but no propagation occurs. Glycerol and/or propanediol induce no alteration in the structure of individual salt-polymerized actin filaments. Aggregation occurs with propanediol, even in the presence of glycerol. Glycerol alone has no such effect. No shortening is detected within the scale covered, with either solvent, although 1,2-propanediol is known to shorten actin filaments. We suggest that in the absence of salts, 1,2-propanediol induces a conformational change in monomeric actin that is necessary for nucleation. This could correlate with a conformational change of actin protomers within microfilaments observed in the presence of 1,2-propanediol by other authors using different techniques.Abbreviations SAXS small-angle X-ray scattering - G-actin globular monomeric actin - F-actin filamentous polymerized actin Correspondence to: E. Pajot-Augy  相似文献   

18.
It is documented that deficient fucosylation may play an important role in the pathogenesis of cancer. Since the supplementation of L-fucose could restore fucosylation in both in vitro and in vivo conditions, our intent was to examine the effect of intraperitoneal administration of L-fucose and L-rhamnose (a similar deoxysaccharide) on tumour growth, mitotic activity and metastatic setting of a solid form of Ehrlich carcinoma as well as on the survival rate of tumour bearing mice. Both L-fucose and L-rhamnose exerted a significant suppressive effect on tumour growth (P<0.05). After 10 days of therapy, the greatest inhibition of tumour growth expressed as a percentage of controls was observed in L-rhamnose at a dose of 3 g/kg/day (by 62%) and L-fucose at a dose of 5 g/kg/day (by 47%). Moreover, the mitotic index decreased with increasing doses of L-fucose and L-rhamnose. Prolonged survival of tumour bearing mice was observed after 14 consecutive days of daily administering L-rhamnose. Its optimal dose was estimated to be 3.64 g/kg/day. L-Fucose, however, displayed only a slight effect on the survival of the mice. Our results suggest that L-fucose and especially L-rhamnose have anticancer potential. This study is the first to demonstrate the tumour-inhibitory effect of L-rhamnose.  相似文献   

19.
The enzyme propanediol oxidoreductase, which converts the lactaldehyde formed in the metabolism of fucose and rhamnose into propane-1,2-diol under anaerobic conditions, was investigated in Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. Structural analysis indicated that the enzymes of E. coli and K. pneumoniae have the same Mr and pI, whereas that of Salm. typhimurium also has the same Mr but a slightly different pI. One-dimensional peptide mapping showed identity between the E. coli and K. pneumoniae enzymes when digested with alpha-chymotrypsin, Staphylococcus aureus V8 proteinase or subtilisin. In the case of Salm. typhimurium, this held only for the subtilisin-digested enzymes, indicating that the hydrophobic regions were preserved to a considerable extent. Anaerobically, the three species induced an active propanediol oxidoreductase when grown on fucose or rhamnose. An inactive propanediol oxidoreductase was induced in Salm. typhimurium by either fucose or rhamnose under aerobic conditions, and this was activated once anaerobiosis was established. An inactive propanediol oxidoreductase was also induced in E. coli under aerobic conditions, but only by growth on fucose. The inactive enzyme was not induced by either of the sugars in K. pneumoniae.  相似文献   

20.
When grown anaerobically on L-rhamnose, Salmonella typhimurium excreted 1,2-propanediol as a fermentation product. Upon exhaustion of the methyl pentose, 1,2-propanediol was recaptured and further metabolized, provided the culture was kept under anaerobic conditions. n-Propanol and propionate were found in the medium as end products of this process at concentrations one-half that of 1,2-propanediol. As in Klebsiella pneumoniae (T. Toraya, S. Honda, and S. Fukui, J. Bacteriol. 139:39-47, 1979), a diol dehydratase which transforms 1,2-propanediol to propionaldehyde and the enzymes involved in a dismutation that converts propionaldehyde to n-propanol and propionate were induced in S. typhimurium cultures able to transform 1,2-propanediol anaerobically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号