首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used site-directed mutagenesis to change amino acid side chains that have been shown crystallographically to be in close proximity to a DNA 3' terminus bound at the 3'-5' exonuclease active site of Klenow fragment. Exonuclease assays of the resulting mutant proteins indicate that the largest effects on exonuclease activity result from mutations in a group of carboxylate side chains (Asp355, Asp424 and Asp501) anchoring two divalent metal ions that are essential for exonuclease activity. Another carboxylate (Glu357) within this cluster seems to be less important as a metal ligand, but may play a separate role in catalysis of the exonuclease reaction. A second group of residues (Leu361, Phe473 and Tyr497), located around the terminal base and ribose positions, plays a secondary role, ensuring correct positioning of the substrate in the active site and perhaps also facilitating melting of a duplex DNA substrate by interacting with the frayed 3' terminus. The pH-dependence of the 3'-5' exonuclease reaction is consistent with a mechanism in which nucleophilic attack on the terminal phosphodiester bond is initiated by a hydroxide ion coordinated to one of the enzyme-bound metal ions.  相似文献   

2.
The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.  相似文献   

3.
Upon associating with a proofreading polymerase, the nascent 3' end of a DNA primer/template has two possible fates. Depending upon its suitability as a substrate for template-directed extension or postsynthetic repair, it will bind either to the 5'-3' polymerase active site, yielding a polymerizing complex, or to the 3'-5' exonuclease site, yielding an editing complex. In this investigation, we use a combination of biochemical and biophysical techniques to probe the stoichiometry, thermodynamic, and kinetic stability of the polymerizing and editing complexes. We use the Klenow fragment of Escherichia coli DNA polymerase I (KF) as a model proofreading polymerase and oligodeoxyribonucleotide primer/templates as model DNA substrates. Polymerizing complexes are produced by mixing KF with correctly base paired (matched) primer/templates, whereas editing complexes are produced by mixing KF with multiply mismatched primer/templates. Electrophoretic mobility shift titrations carried out with matched and multiply mismatched primer/templates give rise to markedly different electrophoretic patterns. In the case of the matched primer/template, the KF.DNA complex is represented by a slow moving band. However, in the case of the multiply mismatched primer/template, the complex is predominantly represented by a fast moving band. Analytical ultracentrifugation measurements indicate that the fast and slow moving bands correspond to 1:1 and 2:1 KF.DNA complexes, respectively. Fluorescence anisotropy titrations reveal that KF binds with a higher degree of cooperativity to the matched primer/template. Taken together, these results indicate that KF is able to dimerize on a DNA primer/template and that dimerization is favored when the first molecule is bound in the polymerizing mode, but disfavored when it is bound in the editing mode. We suggest that self-association of the polymerase may play an important and as yet unexplored role in coordinating high-fidelity DNA replication.  相似文献   

4.
Frameshift mutagenesis occurs through the misalignment of primer and template strands during DNA synthesis and involves DNA intermediates that contain one or more extrahelical bases in either strand of the DNA substrate. To investigate whether these DNA structures are recognized by the proofreading apparatus of DNA polymerases, time-resolved fluorescence spectroscopy was used to examine the interaction between the Klenow fragment of DNA polymerase I and synthetic DNA primer-templates containing extrahelical bases at defined positions within the template strand. A dansyl probe attached to the DNA was used to measure the fractional occupancies of the polymerase and 3'-5' exonuclease sites of the enzyme for DNA substrates with and without the extrahelical bases. The presence of an extrahelical base at the first position from the primer 3' terminus increased the level of partitioning of the DNA substrates into the 3'-5' exonuclease site by 3-7-fold, relative to the perfectly base-paired primer-template, depending on the identity of the extrahelical base. The ability of different extrahelical bases to promote partitioning of DNA into the 3'-5' exonuclease site decreased in the following order: G > A approximately T > C. The results of partitioning measurements for DNA substrates containing a bulged adenine base at different positions within the template showed that an extrahelical base is recognized up to five bases from the primer 3' terminus. The largest effects were observed for the extrahelical base at the third or fourth positions from the primer terminus, which increased the level of partitioning of DNA into the 3'-5' exonuclease site by 8- and 18-fold, respectively, relative to that of the perfectly base-paired substrate. Steady-state fluorescence measurements of analogous primer-templates containing 2-aminopurine (AP) at the primer 3' terminus indicate that extrahelical bases increase the degree of terminus unwinding, especially when close to the terminus. In addition, steady-state kinetic measurements of removal of AP from the primer-templates indicate that the exonucleolytic cleavage activity of Klenow fragment is correlated with the increased level of partitioning of bulged DNA substrates to the 3'-5' exonuclease site relative to that of properly base-paired DNA. The results of this study indicate that misalignment of primer and template strands to generate an extrahelical base strongly promotes transfer of a DNA substrate to the 3'-5' exonuclease site, suggesting that the premutational intermediates in frameshift mutagenesis are subject to proofreading by the polymerase.  相似文献   

5.
DNA polymerases with intrinsic proofreading activity interact with DNA primer/templates in two distinct modes, corresponding to the complexes formed during the 5'-3' polymerization or 3'-5' editing of a nascent DNA chain. Thermodynamic measurements designed to quantify the energetic contributions of individual DNA-protein contacts in either the polymerizing or editing complexes are complicated by the fact that both species exist in solution and are not resolved in conventional DNA-protein binding assays. To overcome this problem, we have developed a new binding analysis that combines information from steady-state and time-resolved fluorescence experiments and uses the Klenow fragment of Escherichia coli DNA polymerase I (KF) and fluorescently labeled primer/template oligonucleotides as a model polymerase-DNA system. Steady-state fluorescence titrations are used to evaluate the overall affinity of KF for the primer/template, while time-resolved fluorescence anisotropy is used to quantify the equilibrium fractions of the primer/template bound in the polymerizing and editing modes. From a combined analysis of both data, the equilibrium constant and hence standard free energy change associated with each binding mode can be obtained unequivocally. This method is initially used to determine the equilibrium constants describing binding of a correctly base-paired primer/template to the 5'-3' polymerase and 3'-5' exonuclease sites of KF. It is then extended to quantify the extent to which these parameters are affected by the introduction of mismatches into the primer/template, and by rearrangement of specific side-chains in the exonuclease domain of the protein. While these perturbants were originally designed to demonstrate the utility of our new approach, they are also relevant in their own right since they have helped identify some hitherto unknown determinants of polymerase fidelity.  相似文献   

6.
Wang CX  Zakharova E  Li J  Joyce CM  Wang J  Konigsberg W 《Biochemistry》2004,43(13):3853-3861
DNA polymerases from the A and B families with 3'-5' exonucleolytic activity have exonuclease domains with similar three-dimensional structures that require two divalent metal ions for catalysis. B family DNA polymerases that are part of a replicase generally have a more potent 3'-5' exonuclease (exo) activity than A family DNA polymerases that mainly function in DNA repair. To investigate the basis for these differences, we determined pH-activity profiles for the exonuclease reactions of T4, RB69, and phi29 DNA polymerases as representatives of B family replicative DNA polymerases and the Klenow fragment (KF) as an example of a repair DNA polymerase in the A family. We performed exo assays under single-turnover conditions and found that excision rates exhibited by the B family DNA polymerases were essentially independent of pH between pH 6.5 and 8.5, whereas the exo activity of KF increased 10-fold for each unit increase in pH. Three exo domain mutants of RB69 polymerase had much lower exo activities than the wild-type enzyme and exhibited pH-activity profiles similar to that of KF. On the basis of pH versus activity data and elemental effects obtained using short double-stranded DNA substrates terminating in phosphorothioate linkages, we suggest that the rate of the chemical step is reduced to the point where it becomes limiting with RB69 pol mutants K302A, Y323F, and E116A, in contrast to the wild-type enzyme where chemistry is faster than the rate-determining step that precedes it.  相似文献   

7.
Xia S  Wang M  Blaha G  Konigsberg WH  Wang J 《Biochemistry》2011,50(42):9114-9124
We have captured a preinsertion ternary complex of RB69 DNA polymerase (RB69pol) containing the 3' hydroxyl group at the terminus of an extendable primer (ptO3') and a nonhydrolyzable 2'-deoxyuridine 5'-α,β-substituted triphosphate, dUpXpp, where X is either NH or CH(2), opposite a complementary templating dA nucleotide residue. Here we report four structures of these complexes formed by three different RB69pol variants with catalytically inert Ca(2+) and four other structures with catalytically competent Mn(2+) or Mg(2+). These structures provide new insights into why the complete divalent metal-ion coordination complexes at the A and B sites are required for nucleotidyl transfer. They show that the metal ion in the A site brings ptO3' close to the α-phosphorus atom (Pα) of the incoming dNTP to enable phosphodiester bond formation through simultaneous coordination of both ptO3' and the nonbridging Sp oxygen of the dNTP's α-phosphate. The coordination bond length of metal ion A as well as its ionic radius determines how close ptO3' can approach Pα. These variables are expected to affect the rate of bond formation. The metal ion in the B site brings the pyrophosphate product close enough to Pα to enable pyrophosphorolysis and assist in the departure of the pyrophosphate. In these dUpXpp-containing complexes, ptO3' occupies the vertex of a distorted metal ion A coordination octahedron. When ptO3' is placed at the vertex of an undistorted, idealized metal ion A octahedron, it is within bond formation distance to Pα. This geometric relationship appears to be conserved among DNA polymerases of known structure.  相似文献   

8.
Nowotny M  Yang W 《The EMBO journal》2006,25(9):1924-1933
In two-metal catalysis, metal ion A has been proposed to activate the nucleophile and metal ion B to stabilize the transition state. We recently reported crystal structures of RNase H-RNA/DNA substrate complexes obtained at 1.5-2.2 Angstroms. We have now determined and report here structures of reaction intermediate and product complexes of RNase H at 1.65-1.85 Angstroms. The movement of the two metal ions suggests how they may facilitate RNA hydrolysis during the catalytic process. Firstly, metal ion A may assist nucleophilic attack by moving towards metal ion B and bringing the nucleophile close to the scissile phosphate. Secondly, metal ion B transforms from an irregular coordination in the substrate complex to a more regular geometry in the product complex. The exquisite sensitivity of Mg(2+) to the coordination environment likely destabilizes the enzyme-substrate complex and reduces the energy barrier to form product. Lastly, product release probably requires dissociation of metal ion A, which is inhibited by either high concentrations of divalent cations or mutation of an assisting protein residue.  相似文献   

9.
The mechanism of the 3'-5' exonuclease activity of the Klenow fragment of DNA polymerase I has been investigated with a combination of biochemical and spectroscopic techniques. Site-directed mutagenesis was used to make alanine substitutions of side chains that interact with the DNA substrate on the 5' side of the scissile phosphodiester bond. Kinetic parameters for 3'-5' exonuclease cleavage of single- and double-stranded DNA substrates were determined for each mutant protein in order to probe the role of the selected side chains in the exonuclease reaction. The results indicate that side chains that interact with the penultimate nucleotide (Q419, N420, and Y423) are important for anchoring the DNA substrate at the active site or ensuring proper geometry of the scissile phosphate. In contrast, side chains that interact with the third nucleotide from the DNA terminus (K422 and R455) do not participate directly in exonuclease cleavage of single-stranded DNA. Alanine substitutions of Q419, Y423, and R455 have markedly different effects on the cleavage of single- and double-stranded DNA, causing a much greater loss of activity in the case of a duplex substrate. Time-resolved fluorescence anisotropy decay measurements with a dansyl-labeled primer/template indicate that the Q419A, Y423A, and R455A mutations disrupted the ability of the Klenow fragment to melt duplex DNA and bind the frayed terminus at the exonuclease site. In contrast, the N420A mutation stabilized binding of a duplex terminus to the exonuclease site, suggesting that the N420 side chain facilitates the 3'-5' exonuclease reaction by introducing strain into the bound DNA substrate. Together, these results demonstrate that protein side chains that interact with the second or third nucleotides from the terminus can participate in both the chemical step of the exonuclease reaction, by anchoring the substrate in the active site or by ensuring proper geometry of the scissile phosphate, and in the prechemical steps of double-stranded DNA hydrolysis, by facilitating duplex melting.  相似文献   

10.
Prior to undergoing postsynthetic 3'-5' editing (proofreading), a defective DNA primer terminus must be transferred from the 5'-3' polymerase active site to a remote 3'-5' exonuclease site. To elucidate the mechanisms by which this occurs, we have used time-resolved fluorescence spectroscopy to study the interaction of dansyl-labeled DNA primer/templates with the Klenow fragment of Escherichia coli DNA polymerase I. The dansyl probe is positioned such that when the DNA substrate occupies the polymerase active site, the probe is solvent-exposed and possesses a short average fluorescence lifetime (4.7 ns) and extensive angular diffusion (42.5 degrees). Conversely, when the DNA substrate occupies the exonuclease active site, the probe becomes buried within the protein, resulting in an increase in the average lifetime (14.1 ns) and a decrease in the degree of angular diffusion (14.4 degrees ). If both polymerase and exonuclease binding modes are populated (lower limit approximately 5%), their markedly different fluorescence properties cause the anisotropy to decay with a characteristic "dip and rise" shape. Nonlinear least-squares analysis of these data recovers the ground-state mole fractions of exposed (x(e)) and buried (x(b)) probes, which are equivalent to the equilibrium proportions of the DNA substrate bound at the polymerase and exonuclease sites, respectively. The distribution between the polymerase and exonuclease binding modes is given by the equilibrium partitioning constant K(pe) (equal to x(b)/x(e)). The important determinants of the proofreading process can therefore be identified by changes made to either the protein or DNA that perturb the partitioning equilibrium and hence alter the magnitude of K(pe).  相似文献   

11.
The Klenow fragment of Escherichia coli DNA polymerase I houses catalytic centers for both polymerase and 3'-5' exonuclease activities that are separated by about 35 A. Upon the incorporation of a mismatched nucleotide, the primer terminus is transferred from the polymerase site to an exonuclease site designed for excision of the mismatched nucleotides. The structural comparison of the binary complexes of DNA polymerases in the polymerase and the exonuclease modes, together with a molecular modeling of the template strand overhang in Klenow fragment, indicated its binding in the region spanning residues 821-824. Since these residues are conserved in the "A" family DNA polymerases, we have designated this region as the RRRY motif. The alanine substitution of individual amino acid residues of this motif did not change the polymerase activity; however, the 3'-5' exonuclease activity was reduced 2-29-fold, depending upon the site of mutation. The R821A and R822A/Y824A mutant enzymes showed maximum cleavage defect with single-stranded DNA, mainly due to a large decrease in the ssDNA binding affinity of these enzymes. Mismatch removal by these enzymes was only moderately affected. However, data from the exonuclease-polymerase balance assays with mismatched template-primer suggest that the mutant enzymes are defective in switching mismatched primer from the polymerase to the exonuclease site. Thus, the RRRY motif provides a binding track for substrate ssDNA and for nonsubstrate single-stranded template overhang, in a polarity-dependent manner. This binding then facilitates cleavage of the substrate at the exonuclease site.  相似文献   

12.
Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolX(Bs)), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolX(Bs) possesses an intrinsic 3'-5' exonuclease activity specialized in resecting unannealed 3'-termini in a gapped DNA substrate. Biochemical analysis of a PolX(Bs) deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3'-5' exonuclease activity of PolX(Bs) resides in its PHP domain. Furthermore, site-directed mutagenesis of PolX(Bs) His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3'-termini resection by the 3'-5' exonuclease activity of PolX(Bs) in the DNA repair context are discussed.  相似文献   

13.
The 3' --> 5' exonuclease activity of proofreading DNA polymerases requires two divalent metal ions, metal ions A and B. Mutational studies of the 3' --> 5' exonuclease active center of the bacteriophage T4 DNA polymerase indicate that residue Asp-324, which binds metal ion A, is the single most important residue for the hydrolysis reaction. In the absence of a nonenzymatic source of hydroxide ions, an alanine substitution for residue Asp-324 reduced exonuclease activity 10-100-fold more than alanine substitutions for the other metal-binding residues, Asp-112 and Asp-219. Thus, exonuclease activity is reduced 10(5)-fold for the D324A-DNA polymerase compared with the wild-type enzyme, while decreases of 10(3)- to 10(4)-fold are detected for the D219A- and D112A/E114A-DNA polymerases, respectively. Our results are consistent with the proposal that a water molecule, coordinated by metal ion A, forms a metal-hydroxide ion that is oriented to attack the phosphodiester bond at the site of cleavage. Residues Glu-114 and Lys-299 may assist the reaction by lowering the pK(a) of the metal ion-A coordinated water molecule, whereas residue Tyr-320 may help to reorient the DNA from the binding conformation to the catalytically active conformation.  相似文献   

14.
M de Vega  J M Lazaro  M Salas    L Blanco 《The EMBO journal》1996,15(5):1182-1192
By site-directed mutagenesis in phi29 DNA polymerase, we have analyzed the functional importance of two evolutionarily conserved residues belonging to the 3'-5' exonuclease domain of DNA-dependent DNA polymerases. In Escherichia coli DNA polymerase I, these residues are Thr358 and Asn420, shown by crystallographic analysis to be directly acting as single-stranded DNA (ssDNA) ligands at the 3'-5' exonuclease active site. On the basis of these structural data, single substitution of the corresponding residues of phi29 DNA polymerase, Thr15 and Asn62, produced enzymes with a very reduced or altered capacity to bind ssDNA. Analysis of the residual 3'-5' exonuclease activity of these mutant derivatives on ssDNA substrates allowed us to conclude that these two residues do not play a direct role in the catalysis of the reaction. On the other hand, analysis of the 3'-5' exonuclease activity on either matched or mismatched primer/template structures showed a critical role of these two highly conserved residues in exonucleolysis under polymerization conditions, i.e. in the proofreading of DNA polymerization errors, an evolutionary advantage of most DNA-dependent DNA polymerases. Moreover, in contrast to the dual role in 3'-5' exonucleolysis and strand displacement previously observed for phi29 DNA polymerase residues acting as metal ligands, the contribution of residues Thr15 and Asn62 appears to be restricted to the proofreading function, by stabilization of the frayed primer-terminus at the 3'-5' exonuclease active site.  相似文献   

15.
Werner syndrome is a rare autosomal recessive disease characterized by a premature aging phenotype, genomic instability, and a dramatically increased incidence of cancer and heart disease. Mutations in a single gene encoding a 1432-amino acid helicase/exonuclease (hWRN) have been shown to be responsible for the development of this disease. We have cloned, overexpressed, and purified a minimal, 171-amino acid fragment of hWRN that functions as an exonuclease. This fragment, encompassing residues 70-240 of hWRN (hWRN-N(70-240)), exhibits the same level of 3'-5' exonuclease activity as the previously described exonuclease fragment encompassing residues 1-333 of the full-length protein. The fragment also contains a 5'-protruding DNA strand endonuclease activity at a single-strand-double-strand DNA junction and within single-stranded DNA, as well as a 3'-5' exonuclease activity on single-stranded DNA. We find hWRN-N(70-240) is in a trimer-hexamer equilibrium in the absence of DNA when examined by gel filtration chromatography and atomic force microscopy. Upon addition of DNA substrate, hWRN-N(70-240) forms a hexamer and interacts with the recessed 3'-end of the DNA. Moreover, we find that the interaction of hWRN-N(70-240) with the replication protein PCNA also causes this minimal, 171-amino acid exonuclease region to form a hexamer. Thus, the active form of this minimal exonuclease fragment of human WRN appears to be a hexamer. The implications these results have on our understanding of hWRN's roles in DNA replication and repair are discussed.  相似文献   

16.
The integrase protein of human immunodeficiency virus type 1 removes two nucleotides from the 3' ends of reverse-transcribed human immunodeficiency virus type 1 DNA (3' processing) and covalently inserts the processed ends into a target DNA (DNA strand transfer). Mutant integrase proteins that lack the amino-and/or carboxyl-terminal domains are incapable of catalyzing 3' processing and DNA strand transfer but are competent for an apparent reversal of the DNA strand transfer reaction (disintegration) in vitro. Here, we investigate the binding of integrase to DNA by UV cross-linking. Cross-linked complexes form with a variety of DNA substrates independent of the presence of divalent metal ion. Analysis with amino- and carboxyl-terminal deletion mutant proteins shows that residues 213 to 266 of the 288-residue protein are required for efficient cross-linking in the absence of divalent metal ion. Carboxyl-terminal deletion mutants that lack this region efficiently cross-link only to the branched disintegration DNA substrate, and this reaction is dependent on the presence of metal ion. Both the core and C-terminal domains of integrase therefore contribute to nonspecific DNA binding.  相似文献   

17.
The Klenow fragment of Escherichia coli DNA polymerase I catalyzes template-directed synthesis of DNA and uses a separate 3'-5' exonuclease activity to edit misincorporated bases. The polymerase and exonuclease activities are contained in separate structural domains. In this study, nine Klenow fragment derivatives containing mutations within the polymerase domain were examined for their interaction with model primer-template duplexes. The partitioning of the DNA primer terminus between the polymerase and 3'-5' exonuclease active sites of the mutant proteins was assessed by time-resolved fluorescence anisotropy, utilizing a dansyl fluorophore attached to the DNA. Mutation of N845 or R668 disrupted favorable interactions between the Klenow fragment and a duplex containing a matched terminal base pair but had little effect when the terminus was mismatched. Thus, N845 and R668 are required for recognition of correct terminal base pairs in the DNA substrate. Mutation of N675, R835, R836, or R841 resulted in tighter polymerase site binding of DNA, suggesting that the side chains of these residues induce strain in the DNA and/or protein backbone. A double mutant (N675A/R841A) showed an even greater polymerase site partitioning than was displayed by either single mutation, indicating that such strain is additive. In both groups of mutant proteins, the ability to discriminate between duplexes containing matched or mismatched base pairs was impaired. In contrast, mutation of K758 or Q849 had no effect on partitioning relative to wild type, regardless of DNA mismatch character. These results demonstrate that DNA mismatch recognition is dependent on specific amino acid residues within the polymerase domain and is not governed solely by thermodynamic differences between correct and mismatched base pairs. Moreover, this study suggests a mechanism whereby the Klenow fragment is able to recognize polymerase errors following a misincorporation event, leading to their eventual removal by the 3'-5' exonuclease activity.  相似文献   

18.
V Bailly  W G Verly 《FEBS letters》1984,178(2):223-227
The 3' AP endonucleases (class I) are said to hydrolyze the phosphodiester bond 3' to AP sites yielding 3'-OH and 5'-phosphate ends; on the other hand, the resulting 3' terminal AP site is not removed by the 3'-5' exonuclease activity of the Klenow fragment [1]. We show that AP sites in DNA are easily removed by the 3'-5' exonuclease activity of the Klenow fragment and that they are excised as deoxyribose-5-phosphate. It is suggested that the 3' AP endonucleases are perhaps not the hydrolases they are supposed to be.  相似文献   

19.
Previous characterization of Escherichia coli endonuclease IV has shown that the enzyme specifically cleaves the DNA backbone at apurinic/apyrimidinic sites and removes 3' DNA blocking groups. By contrast, and unlike the major apurinic/apyrimidinic endonuclease exonuclease III, negligible exonuclease activity has been associated with endonuclease IV. Here we report that endonuclease IV does possess an intrinsic 3'-5' exonuclease activity. The activity was detected in purified preparations of the endonuclease IV protein from E. coli and from the distantly related thermophile Thermotoga maritima; it co-eluted with both enzymes under different chromatographic conditions. Induction of either endonuclease IV in an E. coli overexpression system resulted in induction of the exonuclease activity, and the E. coli exonuclease activity had similar heat stability to the endonuclease IV AP endonuclease activity. Characterization of the exonuclease activity showed that its progression on substrate is sensitive to ionic strength, metal ions, EDTA, and reducing conditions. Substrates with 3' recessed ends were preferred substrates for the 3'-5' exonuclease activity. Comparison of the relative apurinic/apyrimidinic endonuclease and exonuclease activity of endonuclease IV shows that the relative exonuclease activity is high and is likely to be significant in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号