首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In isolated dispersed pancreatic acini, we have characterized the interactions between cholecystokinin (CCK) and CCK receptors by simultaneously measuring CCK-33 immunoreactivity and CCK bioactivity. Incubation of acinar cells with CCK-33 at cell density of 0.2-0.3 mg acinar protein per ml resulted in stimulation of amylase release concomitant with significant and time-dependent decrease of the immunoreactive CCK. With L-364,718 (0.1 microM), a specific CCK receptor antagonist, immunoreactive CCK levels in the media were not significantly altered during incubation; however, CCK-stimulated amylase release was almost completely abolished (94% inhibition). Vasoactive intestinal peptide (1 nM) significantly potentiated CCK stimulated amylase release without affecting immunoreactive CCK in the media. Insulin (167 nM) did not affect the CCK stimulated amylase release or immunoreactive CCK in the media. Incubation of acinar cells with CCK-33 at 4 degrees C did not affect the levels of immunoreactive CCK; however, a significant change in levels of immunoreactive CCK were found at 37 degrees C at 90 min. Incubation of cell free medium with CCK-33 in the presence or absence of secreted enzymes revealed no changes in CCK immunoreactivity in the medium at 90 min. Addition of bacitracin in the incubation media did not affect the CCK immunoreactivity or bioactivity. These findings indicate that in isolated rat pancreatic acini, CCK-33 stimulates amylase release through a receptor that is specifically blocked by L-364,718. Specificity of the interactions of CCK-33 with acinar cells in the media appears to be receptor-mediated and time- and temperature-dependent.  相似文献   

2.
The binding of cholecystokinin (CCK) to its receptors on isolated rat pancreatic acini was investigated employing high specific activity, radioiodinated CCK (125I-BH-CCK), prepared by the conjugation of 125I-Bolton-Hunter reagent (125I-BH) to CCK. Binding was specific, time-dependent, reversible, and linearly related to the acinar protein concentration. After incubation for 30 min at 37 degrees C, the 125I-BH-CCK both in the incubation medium and bound to acini remained intact, as judged by gel filtration and trichloroacetic acid precipitation studies. Scatchard analysis was compatible with two classes of binding sites on acini: a very high affinity site (Kd, 64 pM) and a lower affinity site (Kd, 21 nM). 125I-BH-CCK binding to acini was competitively inhibited by CCK and four of its analogues in proportion to their biological potencies but not by unrelated hormones. Stimulation of amylase secretion by CCK and inhibition of 125I-BH-CCK binding by the same analogues carried out under identical conditions revealed a correlation (r = 0.99) between binding potency and amylase secretion. Stimulation of amylase secretion by CCK closely paralleled the occupancy of the high affinity CCK binding sites. It is concluded that the high affinity CCK binding sites most likely are the receptors mediating the stimulation of amylase secretion by CCK.  相似文献   

3.
Cholecystokinin and analogues increased the uptake of 2-deoxy-D-glucose and 3-O-methylglucose into isolated mouse pancreatic acini. This uptake was mediated by a facilitated glucose transport system that was saturable, stereospecific, and was inhibited by both phloretin and cytochalasin B. In agreement with previous studies of acinar function, caerulein was more potent and pentagastrin less potent than cholecystokinin in increasing sugar transport. The cholinergic analogue carbachol mimicked the effect of caerulein; atropine completely abolished the effects of carbachol but was without influence on the effects of the polypeptide hormones. In contrast, secretion, as well as dibutyryl cyclic AMP and dibutyryl cyclic GMP, had no effect on 2-deoxy-D-glucose uptake. Two lines of evidence suggested that hormonal stimulation of this sugar transport system was related to mobilization of cellular Ca2+. First, depletion of cellular Ca2+ by incubation of acini with ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) reduced the effect of caerulein. Second, the Ca2+ ionophore A23187 mimicked the effects of caerulein on 2-deoxy-D-glucose uptake when Ca2+ was present in the medium.  相似文献   

4.
The divalent cation ionophore A23187 has been used extensively to demonstrate the importance of Ca2+ in the control of pancreatic enzyme secretion. The relative importance, however, of the ability of the ionophore to facilitate Ca2+ movement across plasma and intracellular membranes in the stimulation of amylase release is not clear. We therefore studied these relationships in isolated pancreatic acini, a preparation in which it is possible to precisely measure both 45Ca2+ fluxes, Ca2+ content and amylase release. A23187 increased the initial rates of both 45Ca2+ uptake and washout. In addition, the content of both exchangeable 45Ca2+ and total Ca2+ were reduced. These results indicated, therefore, that A23187 increases Ca2+ fluxes across both plasma and intracellular membranes. Consistent with this observation, the initial stimulation of amylase release by A23187 was independent of extracellular Ca2+. In the absence of extracellular Ca2+, however, A23187 caused a rapid fall in acinar Ca2+ and subsequent amylase release was abolished. Depletion of intracellular Ca2+ by the ionophore also blocked the subsequent stimulation by cholecystokinin (CCK). The results indicate certain similarities in the actions of A23187 and CCK on pancreatic acini; both the agonists have striking effects on intracellular Ca2+ which in turn mediates their actions.  相似文献   

5.
The receptor binding of CCK analogues was determined in terms of the inhibition of [125I]CCK binding in isolated rat pancreatic acini. The inhibition curve produced by CCK-8 showed the same feature as that produced by synthetic human CCK-33. The relative potency values of CCK analogues to half-maximally inhibit specific CCK binding were calculated; CCK-8 was equal to human CCK-33, 3-fold stronger than natural porcine CCK-33 and 39, and 700-fold stronger than the unsulphated form of synthetic human CCK-33. Our data suggest that CCK-33, one of the longer molecular forms of CCK, is as important as CCK-8 in the mechanism of physiological actions of CCK.  相似文献   

6.
Dispersed mouse pancreatic acini prelabelled with (3H)-myoinositol generated (3H)-inositol trisphosphate (3H-IP3), (3H)-IP2 and (3H)-IP1 in response to both cholinergic and cholecystokinin analogues. The generation of (3H)-IP3 was very rapid, reaching a maximal value within 5 seconds following hormone stimulation. Stimulation with 10(-3)M carbachol increased (3H)-IP3 to a value which was 13 times that found in unstimulated acini. These results indicate that the mechanism of stimulus-secretion coupling in mouse pancreatic acini may proceed by a mechanism similar to many other systems, including rat pancreatic acini. This sequence includes hormone-stimulated phosphatidylinositol turnover and Ca2+ mobilization, i.e. secretagogue-stimulated generation of IP3 which induces the subsequent release of intracellular Ca2+. These observations differ from those recently reported by Hokin-Neaverson and Sadeghian (J. Biol. Chem. 259: 1346, 1984), in which no hormone stimulated IP3 generation was detected in mouse pancreatic acini.  相似文献   

7.
The secretion of amylase, trypsinogen, chymotrypsinogen and proelastase from isolated rat dispersed pancreatic acini was investigated in the absence (basal) and presence of two concentrations of CCK8 (50 and 500 pM), carbachol (2.5 and 7.5 microM) and secretin (10 nM and 1 microM). The unstimulated (basal) rate of release of each of the digestive enzymes was essentially the same. However, whereas both doses of CCK8 and carbachol caused a preferential release of chymotrypsinogen over that of amylase and trypsinogen, the magnitude of stimulated release of amylase, trypsinogen and chymotrypsinogen by 1 microM secretin was found to be similar for each of the enzymes. Furthermore, none of the secretagogues caused a significant enhancement in proelastase release. The present data demonstrate that whereas CCK8 and carbachol induce a greater release of chymotrypsinogen over that of amylase or trypsinogen, release of all three enzymes was equally stimulated by secretin from isolated pancreatic acini.  相似文献   

8.
When dispersed acini from mouse pancreas are first incubated with cholecystokinin octapeptide, washed and then reincubated with no additions there is significant stimulation of amylase secretion during the second incubation (residual stimulation of enzyme secretion). Cholecystokinin-induced residual stimulation of enzyme secretion is modified, but not abolished, by reducing the temperature of the first incubation from 37°C to 4°C. Measurement of binding of 125I-labeled cholecystokinin octapeptide indicated that maximal cholecystokinin induced residual stimulation of enzyme secretion occurs when 12–20% of cholecystokinin receptors are occupied by cholecystokinin octapeptide. Moreover, maximal cholecystokinin-induced residual stimulation of amylase secretion is 25% greater than maximal cholecystokinin-induced direct stimulation of amylase secretion. Cholecystokinin tetrapeptide, which causes the same maximal direct stimulation of amylase secretion as does cholecystokinin octapeptide, causes a maximal residual stimulation of enzyme secretion that is only 30% of that caused by a maximally effective concentration of cholecystokinin octapeptide. Adding dibutyryl cyclic GMP to the second incubation can reverse the residual stimulation caused by adding cholecystokinin to the first incubation. The pattern and extent of the dibutyryl cyclic GMP-induced reversal of residual stimulation varies, depending on the temperature and concentration of cholecystokinin octapeptide in the first incubation. The present results are compatible with the hypothesis that mouse pancreatic acini possess two classes of cholecystokinin receptors. One class has a relatively high affinity for cholecystokinin and produces stimulation of enzyme secretion; the other class has a relatively low affinity for cholecystokinin and produces inhibition of enzyme secretion.  相似文献   

9.
When dispersed acini from mouse pancreas are first incubated with cholecystokinin octapeptide, washed and then reincubated with no additions there is significant stimulation of amylase secretion during the second incubation (residual stimulation of enzyme secretion). Cholecystokinin-induced residual stimulation of enzyme secretion is modified, but not abolished, by reducing the temperature of the first incubation from 37 degrees C to 4 degrees C. Measurement of binding of 125I-labeled cholecystokinin octapeptide indicated that maximal cholecystokinin induced residual stimulation of enzyme secretion occurs when 12-20% of cholecystokinin receptors are occupied by cholecystokinin octapeptide. Moreover, maximal cholecystokinin-induced residual stimulation of amylase secretion is 25% greater than maximal cholecystokinin-induced direct stimulation of amylase secretion. Cholecystokinin tetrapeptide, which causes the same maximal direct stimulation of amylase secretion as does cholecystokinin octapeptide, causes a maximal residual stimulation of enzyme secretion that is only 30% of that caused by a maximally effective concentration of cholecystokinin octapeptide. Adding dibutyryl cyclic GMP to the second incubation can reverse the residual stimulation caused by adding cholecystokinin to the first incubation. The pattern and extent of the dibutyryl cyclic GMP-induced reversal of residual stimulation varies, depending on the temperature and concentration of cholecystokinin octapeptide in the first incubation. The present results are compatible with the hypothesis that mouse pancreatic acini possess two classes of cholecystokinin receptors. One class has a relatively high affinity for cholecystokinin and produces stimulation of enzyme secretion; the other class has a relatively low affinity for cholecystokinin and produces inhibition of enzyme secretion.  相似文献   

10.
In this study, we investigated the immunocytochemical distribution of NK-1 and NK-3 tachykinin receptors in guinea pig and rat isolated pancreatic acini. In dispersed acinar cells from guinea pig, immunofluorescence staining detected similar densities of NK-1 and NK-3 receptors; conversely, rat acinar cells expressed NK-1 receptors more strongly than NK-3 receptors. In line with previous functional studies, these immunocytochemical findings suggest that guinea pig NK-1 and NK-3 receptors and rat NK-1 receptors alone play a direct stimulatory role in the basal pancreatic acinar amylase release.  相似文献   

11.
A fluorimetric method for the study of intracellular Ca++ metabolism in rat pancreatic acini is described. Following previous reports on the utilization of the new intracellularly trapped fluorescent dye fura2 in human lymphocytes, the authors point out the relevance of the cellular and fura2 concentration as critical issues for an accurate evaluation of Ca++ homeostasis. A dose-response curve to both carbamoylcholine and cholecystokinin is reported, demonstrating the ability of the cells to respond to hormonal stimulation with a transient Ca++ peak. The almost complete absence of noise in the recorded traces allow to carry out an evaluation of the intracellular mechanism related to Ca++ mobilization with a very high sensitivity.  相似文献   

12.
Simultaneous investigation of protein degradation and autophagy of isolated exocrine pancreatic cells is carried out here for the first time in a systematic way by a complex biochemical, morphological and morphometrical approach. Protein degradation proceeds with a decreasing rate of 4-1.5 per cent per h over a 4-h period indicating a comparatively low degradation capacity. Cells in freshly isolated acini do not contain autophagic vacuoles but the latter appear within an hour in vitro and their quantity remains close to a steady state during the subsequent 3 h. Both traditional inhibitors of the autophagic-lysosomal pathway, e.g. vinblastine, leupeptin, and lysosomotropic amines together with the recently introduced 3-methyladenine, inhibit degradation to a similar maximal extent, offering the possibility of the estimation of the ratio of lysosomal/non-lysosomal degradation. In pancreatic acinar cells autophagic sequestration is unaffected and protein degradation is inhibited inside secondary lysosomes by leupeptin and lysosomotropic amines, while 3-methyladenine prevents the formation of autophagosomes. Vinblastine seems to act by inhibiting the fusion of autophagosomes with lysosomes and there is no evidence for the stimulation of autophagic sequestration by vinblastine in the present system. The effect of inhibitors of protein breakdown on protein synthesis is variable and does not correlate with their influence on degradation. Amino acids strongly stimulate protein synthesis, but in contrast to what is found in liver cells, they do not seem to affect protein degradation or autophagy significantly, thus indicating major regulatory differences of these processes between pancreatic acinar cells and hepatocytes.  相似文献   

13.
Isolated pancreatic acini were loaded with the calcium selective fluorescent indicator, quin-2. Measurements of cellular K+ content and lactic dehydrogenase release indicated that cell viability was not affected by quin-2 loading. The concentration of intracellular free calcium of unstimulated acinar cells was calculated to be 180 +/- 4 nM. When cells suspended in media containing millimolar calcium were exposed to the secretagogues carbachol and cholecystokinin a rapid increase in [Ca2+]i occurred. Both the amplitude and rate of rise of the concentration increase were dose dependent with [Ca2+]i reaching a maximum of 860 +/- 41 nM. The dose-response relationship coincides with the known concentration dependence of the stimulation of amylase release by these agents. In the absence of extracellular calcium, carbachol was still able to elicit a rise in [Ca2+]i. These studies indicate that pancreatic secretagogues induce an increase in [Ca2+]i of acinar cells, both in the presence or absence of extracellular calcium.  相似文献   

14.
Mode of stimulatory action of deoxycholate (DCA) on the secretagogue-induced amylase release and the phospholipase C reaction in isolated rat pancreatic acini was investigated using sodium fluoride (NaF), which is a direct activator of GTP-binding proteins (G proteins). DCA enhanced the amylase release induced by submaximal concentrations of NaF without affecting the maximal level of this reaction. Under the similar conditions, DCA enhanced the NaF-induced phospholipase C reaction. These stimulatory effects of DCA on the NaF-induced amylase release and phospholipase C reaction are comparable to those on the secretagogue-induced reactions reported previously. These results suggest that DCA acts on the coupling of a G protein(s) to the phospholipase C in the membrane transduction mechanism in isolated rat pancreatic acini.  相似文献   

15.
Proton pump inhibitors (PPIs) could inhibit the secretion of gastric acid. Meanwhile, it could also decrease the secretion of other digestive glands besides gastric parietal cell. As we know, PPIs have been widely used to treat acute pancreatitis, and it is effective in clinical practice. However, research showed the side effect of PPIs on acute pancreatitis. The direct effect of PPI on pancreatic secretion is still unknown. Our experiment investigated the direct effect of PPIs on pancreatic exocrine by isolated pancreatic acini. In our study, isolated pancreatic acini were prepared as previously described by Williams, and cerulein was added to stimulate its secretion. The amylase release in the suspension was determined after the administration of different concentrations of omeprazole and Sandostatin; and its activity was also observed in different time phases. In our in vitro study, all results suggest that omeprazole has no direct repression on amylase release from isolated pancreatic acini.  相似文献   

16.
None of six different tryptophan-modified analogues of the C-terminal octapeptide of cholecystokinin differed from the unaltered peptide in terms of their efficacies for stimulating amylase secretion from dispersed acini prepared from guinea-pig pancreas. Replacementof hydrogen with fluorine in position 5 or 6 on the indole ring of the tryptophan residue did not alter the potency with which the peptide stimulated amylase secretion; however, replacement of hydrogen by fluorine in positions 4, 5, 6, and 7 of the indole ring, of modifying or replacing the indole nitrogen caused a 30- to 300-fold decrease in potency. Changes in the ability of the peptide to stimulate amylase secretion were accompanied by corresponding changes in the ability of the peptide to inhibit binding of 125I-labeled cholecystokinin. Our findings indicate that reducing the ability of the tryptophan residue to donate electrons produced a greater decrease in the affinity of the peptide for the cholecystokinin receptors than did abolishing the ability of tryptophan to form hydrogen bonds, and modifications that altered both abilities caused a greater decrease in affinity than did modification of only one ability. Finally, in the tryptophan residues of cholecystokinin octapeptide, tetrafluorination of the indole ring or replacing the indole nitrogen by oxygen reduced the ability of the peptide to cause residual stimulation of enzyme secretion, probably by accelerating the rate at which bound peptide dissociated from its receptors when the acini were washed and resuspended in fresh incubation solution.  相似文献   

17.
18.
Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18–27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of 125I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used 125I-GRP and chemical cross-linking techniques to characterized the mouse pancreatic BN receptor. After binding of 125I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18–27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of 125I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure.  相似文献   

19.
Rab3 proteins are believed to play an important role in regulated exocytosis and previous work has demonstrated the presence of Rab3D on pancreatic zymogen granules. To further understand the function of Rab3D in acinar cell exocytosis, adenoviral constructs were prepared encoding hemagglutinin-tagged wild type Rab3D and three mutant forms, N135I and T36N (both deficient in guanine nucleotide binding) and Q81L (deficient in GTP hydrolysis), which also expressed enhanced green fluorescent protein driven by a separate promoter. When isolated mouse pancreatic acini were cultured with 5 x 10(6) pfu/ml adenovirus, nearly 100% of acini were infected as visualized by expression of green fluorescent protein. Cultured acini showed a biphasic dose-response to cholecystokinin (CCK); basal amylase secretion was 1.8 +/- 0.3%/30 min, peak release was 7.3 +/- 0.2%/30 min at 30 pm CCK and reduced secretion was observed at higher CCK concentrations. Control beta-galactosidase virus infection had no effect on either basal or CCK-induced secretion in the titer range from 0.5 to 10 x 10(6) pfu/ml. While the expression of Rab3D and Rab3D Q81L had no effect on amylase secretion, Rab3D N135I and T36N functioned as dominant negative mutants and inhibited CCK-induced amylase release by 40-50% at all points on the CCK dose-response curve from 3 to 300 pm. Inhibition was stronger during the first 5 min (71 +/- 5%) than over 30 min (36%+/-5%). Similar inhibition was found using other agonists including bombesin, carbachol, and cAMP. Localization of adenoviral expressed Rab protein showed wild type Rab3D localized to zymogen granules. The two dominant negative mutants did not localize to granules and were primarily in the basolateral region of the cell. Since both dominant negative Rab3D mutants had no effect on intracellular calcium increase induced by CCK, it is unlikely that they acted at receptors or transmembrane signaling. These results suggest that Rab3D plays an important role in regulating the terminal steps of acinar exocytosis and that this effect is greatest on the early phase of amylase release.  相似文献   

20.
The C-terminal tricosapeptide of secretin (S5-27) and two analogues, one with asparagine replacing aspartic acid in position 15 (15-Asn-S5--27) and one with lysine replacing aspartic acid in position 15 (15-Lys-S5-27) were tested for their abilities to interact with hormone receptors on pancreatic acinar cells. In interacting with the receptors which prefer vasoactive intestinal peptide (vasoactive intestinal peptide-preferring receptors), the apparent affinity of 15-Asn S5-27 was equal to that of 15-Lys-S5-27 and was greater than that of S5-27. In interacting with secretin-preferring receptors, the apparent affinity of 15-Asn-S5--27 was equal to that of S5-27 and was greater than that of 15-Lys-S5-27. In interacting with the secretin-preferring receptors each of the secretin fragments was approximately 2% as effective as secretin in causing an increase in cellular cyclic AMP. None of these fragments was able to cause a detectable increase in cyclic AMP mediated by the vasoactive intestinal peptide-preferring receptors. The dose vs. response curves for the action of secretin and vasoactive intestinal peptide on cellular cyclic AMP and on amylase secretion as well as the pattern of effects of secretin fragments on these actions indicated that the increase in amylase secretion caused by vasoactive intestinal peptide and secretin is mediated exclusively by the vasoactive intestinal peptide-preferring receptors. Furthermore, occupation of approximately 50% of the vasoactive intestinal peptide-preferring receptors is sufficient to cause maximal stimulation of amylase secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号