首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In Madin-Darby canine kidney (MDCK) cells, the effect of 2-O-methyl PAF, an inactive analogue of platelet activating factor (PAF), on intracellular Ca2+ concentration ([Ca2+]i) was measured by using the Ca2+-sensitive fluorescent dye fura-2. 2-O-methyl PAF (> or = 15 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. 2-O-methyl PAF-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. 2-O-methyl PAF-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. The 2-O-methyl PAF-induced Ca2+ influx was blocked by nifedipine, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which 2-O-methyl PAF failed to increase [Ca2+]i; also, pretreatment with 2-O-methyl PAF depleted thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not 2-O-methyl PAF)-induced [Ca2+]i rise. These findings suggest that 2-O-methyl PAF evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release.  相似文献   

2.
Platelet-activating factor (PAF) is an autocrine trophic/survival factor for the preimplantation embryo. PAF induced an increase in intracellular calcium concentration ([Ca2+]i) in the 2-cell embryo that had an absolute requirement for external calcium. L-type calcium channel blockers (diltiazem, verapamil, and nimodipine) significantly inhibited PAF-induced Ca2+ transients, but inhibitors of P/Q type (omega-agatoxin; omega-conotoxin MVIIC), N-type (omega-conotoxin GVIA), T-type (pimozide), and store-operated channels (SKF 96365 and econazole) did not block the transient. mRNA and protein for the alpha1-C subunit of L-type channels was expressed in the 2-cell embryo. The L-type calcium channel agonist (+/-) BAY K 8644 induced [Ca2+]i transients and, PAF and BAY K 8644 each caused mutual heterologous desensitization of each other's responses. Depolarization of the embryo (75 mM KCl) induced a [Ca2+]i transient that was inhibited by diltiazem and verapamil. Whole-cell patch-clamp measurements detected a voltage-gated channel (blocked by diltiazem, verapamil, and nifedipine) that was desensitized by prior responses of embryos to exogenous or embryo-derived PAF. Replacement of media Ca2+ with Mn2+ allowed Mn2+ influx to be observed directly; activation of a diltiazem-sensitive influx channel was an early response to PAF. The activation of a voltage-gated L-type calcium channel in the 2-cell embryo is required for normal signal transduction to an embryonic trophic factor.  相似文献   

3.
Platelet-derived growth factor (PDGF) and angiotensin II (AII) are thought to mediate their biological effects in vascular smooth muscle cells (VSMCs) by causing alterations in cytosolic free calcium ([ Ca2+]i). In this study we examine the pathways by which PDGF and AII alter [Ca2+]i in VSMCs. Addition of PDGF resulted in a rapid, transient, concentration-dependent increase in [Ca2+]i; this rise in [Ca2+]i was blocked completely by preincubation of cells with ethylene glycol-bis (beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) or CoCl2, by the voltage-sensitive Ca2+-channel antagonists verapamil or nifedipine, by 12-O-tetradecanoylphorbol-13-acetate (TPA), or by pertussis toxin. AII also caused an increase in [Ca2+]i; however, AII-stimulated alterations in [Ca2+]i displayed different kinetics compared with those caused by PDGF. Pretreatment of cells with 8-(diethylamine)-octyl-3,4,5-trimethyoxybenzoate hydrochloride (TMB-8), almost totally inhibited AII-induced increases in [Ca2+]i. EGTA or CoCl2 only slightly diminished AII-stimulated increases in [Ca2+]i. Nifedipine, verapamil, TPA, and pertussis toxin pretreatment were without effect on AII-induced increases in [Ca2+]i. PDGF and AII both stimulated increases in total inositol phosphate accumulation, although the one-half maximal concentration (ED50) for alterations in [Ca2+]i and phosphoinisitide hydrolysis differed by a factor of 10 for PDGF (3 X 10(-10) M for Ca2+ vs. 2.5 X 10(-9) M for phosphoinositide hydrolysis), but they were essentially identical for AII (7.5 X 10(-9) M for Ca2+ vs. 5.0 X 10(-9) M for phosphoinositide hydrolysis). PDGF stimulated mitogenesis (as measured by [3H]-thymidine incorporation into DNA) in VSMCs with an ED50 similar to that for PDGF-induced alterations in phosphoinositide hydrolysis. PDGF-stimulated mitogenesis was blocked by pretreatment of cells with voltage-sensitive Ca2+ channel blockers, TPA, or pertussis toxin. These results suggest that PDGF and AII cause alterations in [Ca2+]i in VSMCs by at least quantitatively distinct mechanisms. PDGF binding activates a pertussis-toxin-sensitive Ca2+ influx into cells via voltage-sensitive Ca2+ channels (blocked by EGTA, verapamil, and nifedipine), as well as stimulating phosphoinositide hydrolysis leading to release of Ca2+ from intracellular stores. AII-induced alterations in [Ca2+]i are mainly the result of phosphoinositide hydrolysis and consequent entry of Ca2+ into the cytoplasm from intracellular stores. Our data also suggest that changes in [Ca2+]i caused by PDGF are required for PDGF-stimulated mitogenesis.  相似文献   

4.
We invented a simultaneous measuring instrument of fluorescence and chemiluminescence, realizing the analysis of chronological correlation between change in intracellular Ca2+ concentration ([Ca2+]i) and superoxide generation. A human monocytic cell line, THP-1, differentiated to be neutrophil-like cells generated superoxide with increase in intracellular Ca2+ concentration when stimulated with formyl-methionyl-leucyl-phenylalanine (fMLP) whereas PMA, phorbol ester-stimulated superoxide response occurred without change in [Ca2+]i. The cells treated with TMB-8, an intracellular Ca2+ antagonist, generated superoxide rapidly as well as transiently with transient [Ca2+]i elevation after stimulation with fMLP, whereas EGTA-treated cells generated superoxide slowly as well as persistently with transient [Ca2+]i elevation after the stimulation. These results suggest that the rapid and transient contents of superoxide generation are specific for Ca2+ influx from the extracellular domain. Verapamil, voltage-dependent Ca2+ channel blocker, dose-dependently inhibited fMLP-stimulated extracellular Ca2+ influx and superoxide generation without affecting PMA-stimulated superoxide generation. Other channel blockers tested, nifedipine and diltiazem, similarly inhibited these fMLP-stimulated responses. Numerical analysis of the values of the response curves elucidated that TMB-8 or the channel blocker reveals or eliminates the same contents of superoxide generation by the antagonism of intracellular Ca2+ release or extracellular Ca2+ influx, respectively. Taking these results together, the characteristic extracellular Ca2+ influx essential for superoxide generation was first revealed by the simultaneous measurement of superoxide generation and change in [Ca2+]i.  相似文献   

5.
Hypoxic pulmonary vasoconstriction (HPV) requires influx of extracellular Ca2+ in pulmonary arterial smooth muscle cells (PASMCs). To determine whether capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCCs) contributes to this influx, we used fluorescent microscopy and the Ca2+-sensitive dye fura-2 to measure effects of 4% O2 on intracellular [Ca2+] ([Ca2+]i) and CCE in primary cultures of PASMCs from rat distal pulmonary arteries. In PASMCs perfused with Ca2+-free Krebs Ringer bicarbonate solution (KRBS) containing cyclopiazonic acid to deplete Ca2+ stores in sarcoplasmic reticulum and nifedipine to prevent Ca2+ entry through L-type voltage-operated Ca2+ channels (VOCCs), hypoxia markedly enhanced both the increase in [Ca2+]i caused by restoration of extracellular [Ca2+] and the rate at which extracellular Mn2+ quenched fura-2 fluorescence. These effects, as well as the increased [Ca2+]i caused by hypoxia in PASMCs perfused with normal salt solutions, were blocked by the SOCC antagonists SKF-96365, NiCl2, and LaCl3 at concentrations that inhibited CCE >80% but did not alter [Ca2+]i responses to 60 mM KCl. In contrast, the VOCC antagonist nifedipine inhibited [Ca2+]i responses to hypoxia by only 50% at concentrations that completely blocked responses to KCl. The increased [Ca2+]i caused by hypoxia was completely reversed by perfusion with Ca2+-free KRBS. LaCl3 increased basal [Ca2+]i during normoxia, indicating effects other than inhibition of SOCCs. Our results suggest that acute hypoxia enhances CCE through SOCCs in distal PASMCs, leading to depolarization, secondary activation of VOCCs, and increased [Ca2+]i. SOCCs and CCE may play important roles in HPV.  相似文献   

6.
Using laser image cytometry and Indo-1 fluorescence, we investigated the intracellular free Ca2+ concentration ([Ca2+]i) of confluent A172 human glioblastoma cells stimulated by the BB homodimer of platelet-derived growth factor (PDGF-BB). The shape of the calcium transients and the delay time between stimulation and the beginning of the transient varied considerably. The percentage of responsive cells, the peak [Ca2+]i and the duration of the response were directly related to PDGF-BB dose, while the delay time was inversely related; the maximal response occurred at a PDGF-BB concentration of 20 ng/ml. Studies with EGTA and inorganic calcium-channel blockers (Ni2+, La3+) showed that the increase of [Ca2+]i resulted from initial release of intracellular stores and subsequent calcium influx across the plasma membrane. Opening of calcium channels in the plasma membrane, monitored directly by studying Mn2+ quenching of Indo-1 fluorescence, was stimulated by PDGF-BB and blocked by La3+; the opening occurred 55 +/- 10 s after the initial increase in [Ca2+]i. Therefore, in these tumor cells, intracellular release always occurs before channel opening in the plasma membrane. Depolarization of cells with high extracellular [K+] did not generally induce calcium transients but did decrease calcium influx. L-type calcium-channel blockers (verapamil, nifedipine, and diltiazem) had little or no effect on the calcium influx induced by PDGF-BB. These results indicate that PDGF-BB induces calcium influx by a mechanism independent of voltage-sensitive calcium channels in A172 human glioblastoma cells.  相似文献   

7.
In order to analyze the complex activities of histamine H2 receptor activation on neutrophils, human HL-60 promyelocytic leukemia cells were differentiated into neutrophils by incubation with dimethyl sufoxide, loaded with the Ca2+-sensitive indicator dyes, indo-1 or fura-2, and the levels of intracellular Ca2+ ([Ca2+]i) measured in a fluorescent-activated cell sorter and fluorimeter, respectively. Histamine increased [Ca2+]i in a dose-dependent manner with a half-maximal concentration (EC50) of approximately 10(-6) to 10(-5) M, which exhibited H2 receptor specificity. Prostaglandin E2 and isoproterenol also induced [Ca2+]i mobilization in HL-60 cells, whereas the cell permeable form of cAMP and forskolin failed to increase [Ca2+]i. Since H2-receptor mediated [Ca2+]i mobilization was not inhibited by reducing the concentration of extracellular Ca2+ nor by the addition of Ca2+ channel antagonists, LaCl3 and nifedipine, [Ca2+]i mobilization is due to the release of Ca2+ from intracellular stores. Furthermore, both 10(-4) M histamine and 10(-6) M fMet-Leu-Phe increased the levels of 1,4,5-inositol trisphosphate. However, histamine-induced mobilization of [Ca2+]i was inhibited by cholera toxin but not by pertussis toxin, whereas the action of fMet-Leu-Phe was inhibited by pertussis toxin but not by cholera toxin. These data suggest that H2 receptors on HL-60 cells are coupled to two different cholera toxin-sensitive G-proteins and activate adenylate cyclase and phospholipase C simultaneously.  相似文献   

8.
Nifedipine and verapamil have been shown previously to protect against renal function alterations induced by shock wave lithotripsy (SWL) in humans and rats; however, the mechanism is unclear. This study was aimed to examine whether these drugs could protect cultured kidney cells following shock wave exposure (SWE). The effect of nifedipine, verapamil and diltiazem on Madin Darby canine kidney (MDCK) cells following SWE was examined by determining the release of glutamate oxalactate transferase (GOT) and lactate dehydrogenase (LDH) in cell suspensions; and also cytosolic Ca2+ concentration ([Ca2+]i). Immediately after SWE, there was a transient release of GOT and LDH (16% and 4 fold, respectively). In contrast, [Ca2+]i measured within 1-6 hr after SWE gradually increased by 15-156%. The Ca2+ entry blockers (1 or 10 microM) failed to inhibit the enzyme release; however, they abolished the progressive rises in [Ca2+]i. The Ca2+ entry blockers may protect the cells from damage of SWE via maintaining a low resting [Ca2+]i.  相似文献   

9.
J Wang  M Ren  J Han 《Peptides》1992,13(5):947-951
In enzymatically dissociated brain cells prepared from neonatal rats, KCl produced a significant increase in [Ca2+]i and this increase could be prevented by verapamil or nifedipine, known to block voltage-sensitive calcium channels. The opioid receptor agonists ohmefentanyl (OMF, mu agonist), [D-Pen2,D-Pen5]enkephalin (DPDPE, delta agonist), and 66A-078 (kappa agonist) produced a marked suppression of the Ca2+ influx induced by high K+ depolarization. The suppressive effect of OMF, DPDPE, and 66A-078 on the high K(+)-induced increase in [Ca2+]i was markedly reversed by their respective antagonists beta-funaltrexamine (beta-FNA), ICI174864, and nor-binaltorphimine (nor-BNI). Cholecystokinin octapeptide (CCK-8), at concentrations of 0.3, 3.0, and 30 nM, dose-dependently mobilized Ca2+ from intracellular stores. While CCK-8 30 nM did not affect significantly the increase of [Ca2+]i following high K+, it did reverse the suppression of the high K(+)-induced increase in [Ca2+]i by the mu agonist OMF and the kappa agonist 66A-078, but not that by the delta agonist DPDPE. The results suggested that while opioid ligands suppress [Ca2+]i by blocking voltage-operated Ca2+ influx, the antiopioid effect of CCK-8 seems to be operated via mobilization of Ca2+ from intracellular stores.  相似文献   

10.
We made use of quin2 microfluorometry to determine the effects of endothelin (ET) on cytosolic free Ca2+ concentrations [Ca2+]i) in rat aortic smooth muscle cells in primary culture. In Ca2+-containing medium, ET induced a rapid and sustained elevation of [Ca2+]i. In the latter component, in particular, the elevation of [Ca2+]i was inhibited by diltiazem. In Ca2+-free medium, ET induced a rapid and transient [Ca2+]i elevation, which was not inhibited by diltiazem. When the caffeine-sensitive intracellular Ca2+ store was practically depleted by repeated treatment with caffeine in Ca2+-free media, ET did not elevate [Ca2+]i. Thus, it was suggested that ET induces [Ca2+]i elevation not only by extracellular Ca2+-dependent, mechanisms but also by releasing Ca2+ from the intracellular store, and that the ET-sensitive Ca2+ store may overlap with the caffeine-sensitive one, in cultured vascular smooth muscle cells.  相似文献   

11.
Calcium is an important regulator of cell function, and may be influenced by the intracellular sodium content. In the present study, the Na(+)-ionophore, monensin, was used to investigate the interrelationship between changes in intracellular Na+ concentration ([Na+]i) and elevation of cytosolic Ca2+ concentration ([Ca2+]i) in FRTL-5 thyroid cells. Cytoplasmic Ca2+ levels were measured using the fluorescent dye, indo-1. Monensin induced a dose-dependent increase in [Ca2+]i in FRTL-5 cells. Inhibitors of intracellular Ca2+ release, TMB-8 and ryanodine, were unable to prevent the monensin effect on [Ca2+]i. The alpha 1-receptor antagonist, prazosin, did not block the monensin-stimulated increase in [Ca2+]i. In the absence of extracellular calcium there was a marked diminution in the monensin effect on [Ca2+]i, yet calcium channel antagonists (nifedipine, diltiazem and verapamil) did not inhibit the response. Replacement of Na+ by choline chloride in the medium depressed the monensin-evoked rise in [Ca2+]i by up to 84%. Furthermore, addition of the Na(+)-channel agonist, veratridine, elicited an increase in [Ca2+]i, even though less dramatic than that caused by monensin. Ouabain increased the resting cytosolic Ca2+ concentration as well as the magnitude of the monensin effect on [Ca2+]i. The absence of any effect on the Na(+)-ionophore evoked increase in [Ca2+]i upon addition of tetrodotoxin (TTX) excluded a possible involvement of TTX-sensitive Na+ channels. These data show that the rise in [Ca2+]i induced by increasing [Na+]i is largely dependent on both external Na+ and Ca2+. Calcium entry appears not to involve voltage-dependent or alpha 1-receptor sensitive Ca2+ channels, but may result from activation of an Na(+)-Ca2+ exchange system.  相似文献   

12.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

13.
In human prostate cancer PC3 cells, the effect of Y-24180, a presumed specific platelet activation factor (PAF) receptor antagonist, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2 as a Ca2+-sensitive fluorescent probe. Y-24180 (1-10 microM) caused a rapid and sustained [Ca2+]i rise in a concentration-dependent manner. The [Ca2+]i rise was prevented by 40% by removal of extracellular Ca2+, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of 10 microM Y-24180 on [Ca2+]i was reduced by 67%; conversely, depletion of Ca2+ stores with 10 microM Y-24180 abolished thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phospholipase C, inhibited ATP-, but not Y-24180-induced [Ca2+]i rise. Activation of protein kinase C with phorbol-12-myristate-13-acetate (PMA) enhanced Y-24180-induced [Ca2+]i rise by 70%. Overnight treatment with 0.1-10 microM Y-24180 inhibited cell proliferation in a concentration-dependent manner. Collectively, these results suggest that Y-24180 acts as a potent and cytotoxic Ca2+ mobilizer in prostate cancer cells, by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release. Since alterations in Ca2+ movement may interfere with many cellular signalling processes unrelated to modulation of PAF receptors, caution must be applied in using this reagent as a selective PAF receptor antagonist.  相似文献   

14.
Jan CR  Yu CC  Huang JK 《Hormone research》2000,54(3):143-148
BACKGROUND/METHODS: The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca2+ levels ([Ca2+]i) in populations of BFTC human bladder cancer cells was explored by using fura-2 as a Ca2+ indicator. RESULTS: Clomiphene at concentrations between 10 and 75 microM increased [Ca2+]i in a concentration-dependent manner and the signal saturated at 50 microM. The [Ca2+]i signal was biphasic with an initial rise and a slow decay. Ca2+ removal inhibited the Ca2+ signal by about 40-50% in maximum [Ca2+]i. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with 50 microM clomiphene in Ca2+-free medium, suggesting that clomiphene induced capacitative Ca2+ entry. In Ca2+-free medium, pretreatment with 50 microM brefeldin A (to disrupt the Golgi complex Ca2+ store), 1 microM thapsigargin (to inhibit the endoplasmic reticulum Ca2+ pump), and CCCP (to uncouple mitochondria) inhibited 85% of clomiphene-induced intracellular Ca2+ release. Conversely, pretreatment with 50 microM clomiphene in Ca2+-free medium abolished the [Ca2+]i increase induced by brefeldin, thapsigargin or CCCP. The intracellular Ca2+ release was unaltered by inhibiting formation of inositol-1,4,5-trisphosphate (IP3) with 2 mM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122; a phospholipase C inhibitor). CONCLUSION: The [Ca2+]i increase induced by 50 microM clomiphene was not affected by 10 microM of nifedipine, verapamil or diltiazem. Collectively, the results suggest that clomiphene releases intracellular Ca2+ in an IP3-independent manner and also activates extracellular Ca2+ influx.  相似文献   

15.
The effects of voltage-dependent calcium channel (VDCC) antagonists and the non-specific calcium channel antagonists on both juvenile hormone acids (JHA) release and cytosolic free calcium concentration ([Ca2+]i) are investigated in the corpora allata (CA) of the adult males loreyi leafworm Mythimna loreyi. The VDCC antagonists used in this study are: the L-type antagonists diltiazem, nifedipine, and verapamil, the N-type antagonist omega-Conotoxin (CgTx) GVIA, the N- and P/Q-type antagonist omega-CgTx MVIIC, and the T-type antagonist amiloride. The non-specific calcium channel antagonists used in this study were cadmium (Cd2+), cobalt (Co2+), nickle (Ni2+), and lanthanum (La3+). The results show that both the DHPs-sensitive L-type antagonist nifedipine and the N-type antagonist omega-CgTx GVIA were able to inhibit JHA release, but only omega-CgTx GVIA was able to reduce the [Ca2+]i. Among the non-specific calcium channel antagonists, Cd2+ is the most potent in reducing JHA release but without obvious effect on the [Ca2+]i, La3+ significantly increases the [Ca2+]i but without effect on JHA release.  相似文献   

16.
Hattori T  Wang PL 《Life sciences》2007,81(8):683-690
Ca2+ antagonists cause dry mouth by inhibiting saliva secretion. The present study was undertaken to elucidate the mechanism by which Ca2+ antagonists cause dry mouth. Since the intracellular Ca2+ concentration ([Ca2+]i) is closely related to saliva secretion, [Ca2+]i was measured with a video-imaging analysis system by using human submandibular gland (HSG) cells as the material. The Ca2+ antagonist, nifedipine, inhibited the elevation in [Ca2+]i induced by 1-10 microM carbachol (CCh), but had no inhibitory effect on that induced by 30 and 100 microM CCh. The other kinds of Ca2+ antagonists, verapamil (10 microM), diltiazem (10 microM), and the inorganic Ca2+ channel blocker, CdCl2 (50 microM), also inhibited the [Ca2+]i elevation induced by 10 microM CCh. The Ca2+ channel activator, Bay K 8644 (5 microM), significantly enhanced the CCh (10 microM)-induced [Ca2+]i elevation. Endothelin-1 and norepinephrine also increased the CCh (10 microM)-induced [Ca2+]i elevation. SKF-96365 reversed the enhancement of the CCh (10 microM)-induced [Ca2+]i elevation caused by AlF4- and phenylephrine. The phospholipase Cbeta (PLCbeta) inhibitor, U-73122 (5 microM), significantly inhibited the [Ca2+]i elevation induced by 100 microM CCh compared with that induced by 10 microM CCh, while the PLCbeta activator, m-3M3FBS (20 microM), significantly increased the [Ca2+]i elevation induced by 100 microM CCh compared with that induced by 10 microM CCh. We therefore conclude that non-selective cation and voltage-dependent Ca2+ channels are involved in resting salivation and that Ca2+ antagonists depress H2O secretion by blocking the Ca2+ channels and thereby cause dry mouth.  相似文献   

17.
In human neuroblastoma IMR32 cells, the effect of the anti-depressant maprotiline on baseline intracellular Ca2+ concentrations ([Ca2+]i) was explored by using the Ca2+-sensitive probe fura-2. Maprotiline at concentrations greater than 100 microM caused a rapid rise in [Ca2+]i in a concentration-dependent manner (EC50 = 200 microM). Maprotiline-induced [Ca2+]i rise was reduced by 50% by removal of extracellular Ca2+. Maprotiline-induced [Ca2+]i rises were inhibited by half by nifedipine, but was unaffected by verapamil or diiltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of maprotiline on [Ca2+]i was abolished. U73122, an inhibitor of phospholipase C, did not affect maprotiline-induced [Ca2+]i rises. These findings suggest that in human neuroblastoma cells, maprotiline increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum via a phospholiase C-independent manner.  相似文献   

18.
We recently reported that prostaglandin E2 (PGE2) stimulates phosphoinositide metabolism accompanied by an increase in intracellular free Ca2+ concentration ([Ca2+]i) in cultured bovine adrenal chromaffin cells. In the present study, temporal and spatial changes in [Ca2+]i induced by PGE2 in fura-2-loaded individual cells were investigated by digital image microscopy and were compared with those induced by nicotine and histamine. Image analysis of single cells revealed that responses to PGE2 showed asynchrony with the onset of [Ca2+]i changes. After a lag time of 10-30 s, PGE2-induced [Ca2+]i changes took a similar prolonged time course in almost all cells: a rapid rise followed by a slower decline to the basal level over 5 min. Few cells exhibited oscillations in [Ca2+]i. In contrast, nicotine and histamine induced rapid and transient [Ca2+]i changes, and these [Ca2+]i changes were characteristic of each stimulant. Whereas pretreatment of the cells with pertussis toxin (100 ng/ml, 6 h) did not block the response to any of these stimulants, treatment with 12-O-tetradecanoylphorbol 13-acetate (100 nM, 10 min) completely abolished [Ca2+]i changes elicited by PGE2 and histamine. In a Ca2(+)-free medium containing 3 mM EGTA, or in medium to which La3+ was added, the [Ca2+]i response to nicotine disappeared, but that to histamine was not affected significantly. Under the same conditions, the percentage of the cells that responded to PGE2 was reduced to 37% and the prolonged [Ca2+]i changes induced by PGE2 became transient in responding cells, suggesting that the maintained [Ca2+]i increase seen in normal medium is the result of a PGE2-stimulated entry of extracellular Ca2+. Whereas the organic Ca2(+)-channel blocker nicardipine inhibited [Ca2+]i changes by all stimulants at 10 microM, these [Ca2+]i changes were not affected by any of the organic Ca2(+)-channel blockers, i.e., verapamil, diltiazem, nifedipine, and nicardipine, at 1 microM, a concentration high enough to inhibit voltage-sensitive Ca2+ channels. These results demonstrate that PGE2 may promote Ca2+ entry with concomitant release of Ca2+ from intracellular stores and that the mechanism(s) triggered by PGE2 is apparently different from that by histamine or nicotine.  相似文献   

19.
The regulation of the increase in intracellular calcium ([Ca2+]i) occurring in cytolytic T lymphocytes (CTLs) upon their interaction with antigen was examined. This [Ca2+]i increase and lytic function were insensitive to verapamil, a Ca channel blocker. An antigen-independent increase in [Ca2+]i was not induced by depolarization of CTLs with excess extracellular K+, suggesting that Ca2+ influx is not mediated by the ubiquitous voltage-gated Ca channel. The antigen-induced [Ca2+]i increase was inhibited by prior membrane hyperpolarization with valinomycin. Hyperpolarization occurred under normal circumstances in CTLs exposed to antigen-receptor-specific antibodies. This potential change was Ca2+-dependent and inhibited by K channel blockade. Conversely, K channel blockade augmented the antigen-specific [Ca2+]i increase while markedly decreasing the K+ efflux associated with CTL lytic function. Therefore, either membrane potential or intracellular K+ regulates the antigen-specific [Ca2+]i increase in CTLs.  相似文献   

20.
The effect of the carcinogen safrole on intracellular Ca2+ movement in renal tubular cells has not been explored previously. The present study examined whether safrole could alter Ca2+ handling in Madin-Darby canine kidney (MDCK) cells. Cytosolic free Ca2+ levels ([Ca2+]i) in populations of cells were measured using fura-2 as a fluorescent Ca2+ probe. Safrole at concentrations above 33 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 400 microM. The Ca2+ signal was reduced by 90% by removing extracellular Ca2+, but was not affected by nifedipine, verapamil, or diltiazem. Addition of Ca2+ after safrole had depleted intracellular Ca(2+)-induced dramatic Ca2+ influx, suggesting that safrole caused store-operated Ca2+ entry. In Ca(2+)-free medium, after pretreatment with 650 microM safrole, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to release more Ca 2+. Inhibition of phospholipase C with 2 microM U73122 did not affect safrole-induced Ca2+ release. Trypan blue exclusion assays revealed that incubation with 650 microM safrole for 30 min did not kill cells, but killed 70% of cells after incubation for 60 min. Collectively, the data suggest that in MDCK cells, safrole induced a [Ca2+] increase by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent fashion, and by inducing Ca2+ influx via store-operated Ca2+ entry. Furthermore, safrole can cause acute toxicity to MDCK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号