首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular production of laccase (E.C. 1.10.3.2) by Polyporus versicolor was studied on lignin, complex and defined media. Although the production of enzyme was more on lignin the specific activity was more on malt extract. Laccase was produced on all the media tested i.e. phenolic compounds, lignins and sugars alone, and in combination with malt extract, excepting salicylic acid. On single source media maximum yields of enzyme were obtained on polyfon followed by resorcinol, reax and lignin. As compared to phenolic compounds the enzyme production was low on sugars. Addition of malt extract enhanced the enzyme yield which was maximum in the case of lignin followed by gallic acid.  相似文献   

2.
The laccase production byT. hirsuta was better in lignin as compared to malt extract media. Tannic acid gave the best laccase yield out of different lignins, phenolic compounds and sugars tested as substrates. The sugars proved to be good substrates for growth only. The role ofT. hirsuta in semisolid fermentation of sawdust was studied with reference to its capacity to degrade lignin in its native form. During two months of decay an overall weight loss of 22.2% along with a lignin loss of 13.6% was recorded.  相似文献   

3.
Polyporus versicolor was selected to find out its ability to degrade four different lignocellulosic residues (angiospermic wood sawdust, sugarcane bagasse, paddy and wheat straw) under semisolid conditions. The production of laccase was also studied on these substrates. Sawdust suffered a maximum lignin loss though overall reduction in weight was maximum in paddy straw. Addition of malt extract and certain phenolic compounds (gallic acid, tannic acid and orcinol) favoured ligninolysis in sawdust. A moisture level of 5 ml/g of sawdust was found to be the most suitable for degradation whereas laccase yield increased with further rise in moisture content.  相似文献   

4.
Laccases have great biotechnological potential in diverse industries as they catalyze the oxidation of a broad variety of chemical compounds. Production of laccases by basidiomycetes has been broadly studied as they secrete the enzymes, grow on cheap substrates, and they generally produce more than one isoenzyme (constitutive and/or inducible). Laccase production and isoenzyme profile can be modified through medium composition and the use of inducers. The objective of this work was to increase laccase production by Pleurotus ostreatus CP-50 through culture medium optimization and the simultaneous use of copper and lignin as inducers. Increased fungal growth was obtained through the use of a factorial fractional experimental design 26–2 where the influence of the nature and concentration of carbon and nitrogen sources was assessed. Although specific laccase production (U/mg biomass) decreased when malt extract medium was supplemented with carbon and nitrogen sources, fungal growth and laccase volumetric activity increased four and sixfold, respectively. The effect of media supplementation with copper and/or lignin on laccase production by P. ostreatus CP-50 was studied. A positive synergistic effect between copper and lignin was observed on laccase production. Overall, the use of an optimized medium and the simultaneous addition of copper and lignin improved growth, laccase volumetric activity, and process productivity by 4-, 60-, and 10-fold, respectively.  相似文献   

5.
Cyathus bulleri, a bird's nest fungus, known to decolorize polymeric dye Poly R-478, was found to produce 8 U ml(-1) of laccase in malt extract broth. Laccase activity appeared as a single band on non-denaturing gel. Laccase was purified to homogeneity by anion exchange chromatography and gel filtration. The enzyme was a monomer with an apparent molecular mass of 60 kD, pI of 3.7 and was stable in the pH range of 2-6 with an optimum pH of 5.2. The optimal reaction temperature was 45 degrees C and the enzyme lost its activity above 70 degrees C. Enzyme could oxidize a broad range of various phenolic substrates. K(m) values for ABTS, 2,6-dimethoxyphenol, guaiacol, and ferulic acid were found to be 48.6, 56, 22, and 14 mM while K(cat) values were 204, 180, 95.6, and 5.2, respectively. It was completely inhibited by KCN, NaN(3), beta-mercaptoethanol, HgCl(2), and SDS, while EDTA had no effect on enzyme activity. The N-terminal amino acid sequence of C. bulleri laccase showed close homology to N-terminal sequences of laccase from other white-rot fungi. A 150 bp gene sequence encoding copper-binding domains I and II was most similar to the sequence encoding a laccase from Pycnoporus cinnabarinus with 74.8% level of similarity.  相似文献   

6.
A comparative study has been conducted on seven white rot fungi to investigate their abilities to produce laccase and selectively degrade lignin. Laccase was produced constitutively on the different media tested. Of the different lignins, phenolic compounds and sugars involved, the highest laccase yield was obtained on indulin AT. Salicylic acid inhibited enzyme activity. A temperature of 20°C and 0.2% of indulin AT were found to be optimum for enzyme activity. No correlation was found between the amount of enzyme and fungal mass produced. During semisolid degradation of angiospermic wood sawdust, Daedalea flavida caused a total weight loss of 11%, with a lignin loss of 15.77% during two months of decay. Lignin removal was comparatively selective during the first month, during which time laccase production was also higher, indicating its probable role in lignin degradation.  相似文献   

7.
Pleurotus florida produced high amounts of laccase (4.60 U/ml) in malt extract broth after 12 days' growth under stationary conditions. The production of laccase was semi-constitutive. Hyperlaccase mutants ofP. florida were obtained through mutagenesis of mycelial protoplasts usingN-methyl-N-nitro-N-nitrosoguanidine (50 g/ml) for 2 min. Three hyperlaccase mutants were selected showing growth and enzyme production responses similar to the parent.  相似文献   

8.
The ability of Streptomyces ipomoea laccase to polymerize secoisolariciresinol lignan and technical lignins was assessed. The reactivity of S. ipomoea laccase was also compared to that of low redox fungal laccase from Melanocarpus albomyces using low molecular mass p-coumaric, ferulic and sinapic acid as well as natural (acetosyringone) and synthetic 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) mediators as substrates. Oxygen consumption measurement, MALDI-TOF MS and SEC were used to follow the enzymatic reactions at pH 7, 8, 9 and 10 at 30 °C and 50 °C. Polymerization of lignins and lignan by S. ipomoea laccase under alkaline reaction conditions was observed, and was enhanced in the presence of acetosyringone almost to the level obtained with M. albomyces laccase without mediator. Reactivities of the enzymes towards acetosyringone and TEMPO were similar, suggesting exploitation of the compounds and low redox laccase in lignin valorization under alkaline conditions. The results have scientific impact on basic research of laccases.  相似文献   

9.
The aim of this work was to characterise wine-related wastewaters and ascertain the wastewater concentrations that were optimal for treatment by Trametes pubescens. Laccase production was also monitored. Crudely purified laccase was tested independently to determine its role in phenolic compounds degradation and colour change. The fungal treatment resulted in decreases in the wastewater chemical oxygen demand of up to 83+/-2.1%, phenolic compounds of 87+/-1.6% and colour of 88+/-4.7%. Although laccase treatment lowered total phenolics by up to 61+/-0.5%, the colour was increased by up to 160+/-5%, indicating the formation of colour-rich compounds. Trametes pubescens MB 89 greatly improved the quality of all six wastewaters tested, although two wastewaters had to be diluted to below 50% to allow for bioremediation by the submerged fungal culture. Laccase synthesis greater than 1500 U/l was obtained in all wastewaters, with a maximum of 8997 U/l. The complete fungal system was found to be superior to enzymatic treatment alone. Enzymatic treatment reduced the total phenols but did little to improve the colour of the wastewaters, and in the case of wine lees significantly increased the colour.  相似文献   

10.
  • The seed coat of many species contains hydrophobic lignins, and in soil the action of microbial ligninases may contribute to release from dormancy. Laboratory use of ligninases to stimulate germination is promising because of the specific action on the seed coat, whereas chemical scarification agents may also corrode the embryo. We hypothesised that exposure of Anacamptis morio (Orchidaceae) seeds to fungal laccase would stimulate germination, and that the mechanism involves lignin degradation and increased imbibition.
  • Germination capacity in vitro was quantified with 1 U filter‐sterilised laccase added to agar medium following autoclaving, compared to a 10% bleach solution (standard bleach surface sterilisation/scarification method used in orchid seed sowing). Lignin degradation was quantified using an optical method (phloroglucinol‐HCl staining) combined with image analysis, following experimental pre‐treatments involving immersion in laccase solution, distilled water (negative control) or bleach (positive control). Water uptake after experimental treatments was quantified as the proportion of seeds exhibiting visible uptake of an aqueous fluorochrome under UV excitation.
  • Laccase stimulated a doubling of germination in vitro with respect to bleach surface sterilisation/scarification alone, from 23.7 to 49.8% (= 0.007). Laccase and bleach methods both significantly decreased the optical signal of phloroglucinol (for laccase, to 79.9 ± 1.3% of controls; anova : F = 10.333, = 0.002). Laccase resulted in a modest but highly significant (< 0.0001) increase in water uptake with respect to the control (11.7%; cf 99.4% for bleach).
  • Laccase scarification can stimulate germination of A. morio through a mechanism of targeted seed coat degradation. The results demonstrate the potential of this relatively non‐invasive enzymatic scarification technique.
  相似文献   

11.
12.
A laccase-mediated system for denim overdyeing using phenolic compounds was developed. Laccase from ascomycete Myceliophthora thermophila was able to oxidize phenolic compounds such as catechol and catechin and mediate their attachment to denim surfaces. Laccase-generated polymers gave rise to new coloration states from dark brown to green-yellow and replaced dyes in the overdyeing process. Process parameters, such as enzyme dosage, incubation time and presence of mediator, were studied by considering a compromise between the highest overdyeing level and lower energy/products consumption (2 U/mL laccase; 4 h incubation in the absence of mediator). Enzyme-generated polymers were followed by UV/Vis spectrophotometry and their level of attachment to denim surfaces was evaluated by means of spectral values quantification [k/s, Kubelka-Munk relationship (k=absorption coefficient, s=scattering coefficient)]. Overdyeing of denim with phenolics, such as catechol or catechin, was successfully achieved with acceptable levels in terms of durability.  相似文献   

13.
In this work we compared the efficiency of a laccase treatment performed on steam-exploded wheat straw pretreated under soft conditions (water impregnation) or harsh conditions (impregnation with diluted acid). The effect of several enzymatic treatment parameters (pH, time of incubation, laccase origin and loading) was analysed. The results obtained indicated that severity conditions applied during steam explosion have an influence on the efficiency of detoxification. A reduction of the toxic effect of phenolic compounds by laccase polymerization of free phenols was demonstrated. Laccase treatment of steam-exploded wheat straw reduced sugar recovery after enzymatic hydrolysis, and it should be better performed after hydrolysis with cellulases. The fermentability of hydrolysates was greatly improved by the laccase treatment in all the samples. Our results demonstrate the action of phenolic compounds as fermentation inhibitors, and the advantages of a laccase treatment to increase the ethanol production from steam-exploded wheat straw.  相似文献   

14.
Laccase production from a novel actinobacterial strain, Streptomyces psammoticus, MTCC 7334 was optimized in solid-state fermentation. The process parameters were initially optimized by the conventional “one factor at a time” approach, and the optimal levels of the factors that had considerable influence on enzyme production were identified by response surface methodology. Rice straw was identified as a suitable substrate for laccase production (17.3 U/g), followed by coffee pulp (15.8 U/g). Other optimized conditions were particle size, 500–1,000 μm (21.2 U/g); initial moisture content, 65% (26.8 U/g); pH of moistening solution, 8.0 (26.9 U/g); incubation temperature, 32°C (27.6 U/g) and inoculum size, 1.5 × 107 CFU (33.8 U/g). Yeast extract served as the best nitrogen source (34.8 U/g). No enhancement in enzyme yield was observed with carbon supplementation. The level of yeast extract, inoculum size and copper sulphate were optimized statistically. Statistical optimization performed using a central composite design resulted in threefold increase in laccase activity (55.4 U/g) as compared to the unoptimized medium (17.3 U/g). The upgrading of fermented rice straw for fodder enhancement is also discussed briefly.  相似文献   

15.
We have investigated the abilities of extracellular enzymes from dark-grown cell-suspension cultures of sycamore maple (Acer pseudoplatanus L.) to oxidize monolignols, the precursors for lignin biosynthesis in plants, as well as a variety of other lignin-related compounds. Laccase and peroxidase both exist as a multiplicity of isoenzymes in filtrates of spent culture medium, but their abilities to produce water-insoluble, dehydrogenation polymers (DHPs) from the monolignols (in the presence of hydrogen peroxide for the peroxidase reaction) appear identical whether or not the enzymes are purified from the concentrated filtrates or left in a crude mixture. The patterns of bonds formed in these DHPs are identical to those found in DHPs synthesized using horseradish peroxidase or fungal laccase, and many of these bonds are found in the natural lignins extracted from different plant sources. On the other hand, sycamore maple laccase is very much less active on phenolic substrates containing multiple aromatic rings than is sycamore maple peroxidase. We suggst that whereas laccase may function during the early stages of lignification to polymerize monolignols into oligo-lignols, cell-wall peroxidases may function when H2O2 is produced during the later stages of xylem cell development or in response to environmental stresses.Abbreviations DHP dehydrogenation polymer - IEF isoelectric focuring - NMR nuclear magnetic resonance - PAGE polyacrylamide gel electrophoresis The authors wish to thank Dr. Masahiro Samejima (University of Tokyo) for provision of lignin model compounds and Dr. Göran Gellerstadt (Royal Institute of Technology, Sweden) for helpful suggestions regarding stilbene formation and light spectroscopy. Monolignols were prepared by Mr. Nate Weymouth with help from Dr. Herb Morrison (USDA/ARS, Richard B. Russell Research Center, Athens, GA). Thanks also to Ms. Izabella Poppe of the Complex Carbohydrate Research Center (CCRC) for assistance with carbohydrate analyses, and Mr. Vincent Sorrentino for help with the growth of cell-suspension cultures.  相似文献   

16.
This study on the lignocellulases in broth cultures of the basidiomycete Panus tigrinus indicates that laccase and xylanase enzymes are constitutive and cellulase is inducible. In stationary culture at 28°C, the greatest laccase and xylanase activity was observed after growth for approximately nine days. Laccase production was dependent on the presence, and the particular brand, of malt extract in the growth medium. While production of laccase was enhanced by growth at 37°C and 42°C, xylanase was not. Raising the pH of the growth medium from pH 5.6 to pH 7.0 did not affect xylanase production, but laccase production was reduced at the higher pH. In shake culture, growth was pelleted and biomass lower than in stationary culture, and synthesis of both enzymes was strongly inhibited. Cultures of P. tigrinus decolourised Poly R-478 and the toxic triphenyl methane dye, crystal violet. It was also shown to degrade a natural lignocellulosic waste, sawdust.  相似文献   

17.
Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen (HN; 24 mM N) shaken cultures were much greater than those seen in low-nitrogen (2.4 mM N), malt extract, or wood-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar (100-mesh-size ground wood) as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HN cultures showed two laccase activity bands (Mr of 40,000 and 66,000), whereas isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, 4.8, and 5.1. Low levels of MnP activity (~100 U/liter) were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.  相似文献   

18.
Substrate specificity of laccase from Lentinus edodes   总被引:1,自引:0,他引:1  
In previous studies, the white-rot basidiomycete Lentinus edodes, strain SC-495, was proved to be a “selective” lignin degrader and its extracellular crude preparations arising from solid-state cultures were successfully employed in biopulping experiments on annual plants. This fungus produced extracellular laccase as the predominant phenoloxidase when growing in solid-state fermentation on corn stalks. Laccase from this strain was purified and partially characterized, as an initial approach towards the study of its ligninolytic complex. Laccase was purified 69.6-fold by anion-exchange chromatography and two affinity-chromatography steps with an overall yield of 7.45%. The native enzyme exhibited a molecular mass of 74 kDa, an isoelectric point of 3.42 and a carbohydrate content of 7.5%. The absorption spectrum of laccase showed a maximum at 605 nm, typical of blue-copper oxidases. The optimum pH and temperature for the activity of laccase were 4.0–4.2 and 50°C, respectively. Kinetic experiments, performed with a wide range of phenolic compounds, showed that the reaction rate and the substrate affinity greatly varied depending on the nature of substituents and their reciprocal positions on the aromatic ring. In particular, the enzyme showed high affinity to phenolic compounds bearing methoxyl or methyl groups, but no affinity to those bearing the nitro group directly attached to the benzene ring, nor to non-phenolic lignin-related compounds, such as trans-cinnamic acid or 3,4-dimethoxycinnamic acid. The huge differences in terms of reactivity of the enzyme towards phenolic compounds suggests that a preliminary systematic screening should be advisable when using laccase in effluent treatment applications.  相似文献   

19.
In this study, we investigated the efficacy of phenolic extract of wheat bran and lignin-related phenolic compounds as natural redox mediators on laccase-mediated transformation of malachite green (MG) using purified laccase from the white-rot fungus Ganoderma lucidum. G. lucidum laccase was able to decolorize 40.7% MG dye (at 25 mg l−1) after 24 h of incubation. Whereas, the addition of phenolic extract of wheat bran enhanced the decolorization significantly (p < 0.001) by two- to threefold than that of purified laccase alone. Among various natural phenolic compounds, acetovanillone, p-coumaric acid, ferulic acid, syringaldehyde, and vanillin were the most efficient mediators, as effective as the synthetic mediator 1-hydroxybenzotriazole. Characterization of MG transformation products by HPLC, UV–Vis, and liquid chromatography-mass spectrometry-electrospray ionization analysis revealed that N-demethylation was the key mechanism of decolorization of MG by laccase. Growth inhibition test based on mycelial growth inhibition of white rot fungus Phanerochaete chrysosporium revealed that treatment with laccase plus natural mediators effectively reduced the growth inhibitory levels of MG than that of untreated one. Among all the tested compounds, syringaldehyde showed the highest enhanced decolorization, as a consequence reduced growth inhibition was observed in syringaldehyde-treated samples. The results of the present study revealed that the natural phenolic compounds could alternatively be used as potential redox mediators for effective laccase-mediated decolorization of MG.  相似文献   

20.
Selected strains of basidiomycetes (Abortiporus biennis, Trametes versicolor and Cerrena unicolor) were shown to produce enhanced extracellular peroxidase (EP), superoxide dismutase (SOD) and laccase activities following the exposure of 10-day-old fungal cultures to separate high and low temperature stress. The stressful conditions also caused an increase in the concentrations of phenol compounds and superoxide anion radicals in these cultures. At first, peroxidase activity was observed at 12 hours from the moment of temperature stress application. Laccase activity appeared at 96 hours after the maximum levels of superoxide anion radicals (48 h) and SOD activity (36–72 h). The concentration of phenolic substances grew steadily during the period of cultivation. These relations between laccase, SOD and EP as well as superoxide radicals and phenol levels in the environment of ligninolytic fungi seems to be important in the course of the biosynthesis or biodegradation of lignin, as the consequence of adaptation of these basidiomycetes to environmental temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号