首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently demonstrated that the product of the HERV-W env gene, a retroviral envelope protein also dubbed syncytin, is a highly fusogenic membrane glycoprotein inducing the formation of syncytia on interaction with the type D mammalian retrovirus receptor. In addition, the detection of HERV-W Env protein (Env-W) expression in placental tissue sections led us to propose a role for this fusogenic glycoprotein in placenta formation. To evaluate this hypothesis, we analyzed the involvement of Env-W in the differentiation of primary cultures of human villous cytotrophoblasts that spontaneously differentiate by cell fusion into syncytiotrophoblasts in vitro. First, we observed that HERV-W env mRNA and glycoprotein expression are colinear with primary cytotrophoblast differentiation and with expression of human chorionic gonadotropin (hCG), a marker of syncytiotrophoblast formation. Second, we observed that in vitro stimulation of trophoblast cell fusion and differentiation by cyclic AMP is also associated with a concomitant increase in HERV-W env and hCG mRNA and protein expression. Finally, by using specific antisense oligonucleotides, we demonstrated that inhibition of Env-W protein expression leads to a decrease of trophoblast fusion and differentiation, with the secretion of hCG in culture medium of antisense oligonucleotide-treated cells being decreased by fivefold. Taken together, these results strongly support a direct role for Env-W in human trophoblast cell fusion and differentiation.  相似文献   

2.
Due to the key role of the human chorionic gonadotropin hormone (hCG) in placental development, the aim of this study was to characterize the human trophoblastic luteinizing hormone/chorionic gonadotropin receptor (LH/CG-R) and to investigate its expression using the in vitro model of human cytotrophoblast differentiation into syncytiotrophoblast. We confirmed by in situ immunochemistry and in cultured cells, that LH/CG-R is expressed in both villous cytotrophoblasts and syncytiotrophoblasts. However, LH/CG-R expression decreased during trophoblast fusion and differentiation, while the expression of hCG and hPL (specific markers of syncytiotrophoblast formation) increased. A decrease in LH/CG-R mRNA during trophoblast differentiation was observed by means of semi-quantitative RT-PCR with two sets of primers. A corresponding decrease ( approximately 60%) in LH/CG-R protein content was shown by Western-blot and immunoprecipitation experiments. The amount of the mature form of LH/CG-R, detected as a 90-kDa band specifically binding (125)I-hCG, was lower in syncytiotrophoblasts than in cytotrophoblasts. This was confirmed by Scatchard analysis of binding data on cultured cells. Maximum binding at the cell surface decreased from 3,511 to about 929 molecules/seeded cells with a kDa of 0.4-0.5 nM. Moreover, on stimulation by recombinant hCG, the syncytiotrophoblast produced less cyclic AMP than cytotrophoblasts, indicating that LH/CG-R expression is regulated during human villous trophoblast differentiation.  相似文献   

3.
4.
Normal trophoblast of the human placenta elaborates at least two major protein hormones, chorionic gonadotropin (hCG), and placental lactogen (hPL). There are several gestational trophoblastic diseases of the placenta called hydatidiform mole, invasive mole, and choriocarcinoma. Molar and choriocarcinoma tissues characteristically synthesize large amounts of hCG and small quantities of hPL. To examine the role of trophoblast differentiation in the expression of the hCG and hPL genes, we studied the cytological distribution of their messenger RNA (mRNA) in tissue sections of human hydatidiform mole and choriocarcinoma by in situ hybridization. Histologically, these tissues are in different stages of cellular differentiation. In normal placenta, hCG alpha and - beta mRNA can be localized to some cytotrophoblasts and primarily to the syncytium, whereas hPL mRNA appears only in the syncytial layer. In hydatidiform mole, which still retains placental villous morphology, the hPL gene and hCG alpha and -beta genes are expressed but are poorly localized because of the admixture of cyto- and syncytiotrophoblasts. By contrast, choriocarcinoma, which is devoid of placental villous pattern but in which the cyto- and syncytiotrophoblast-like components are distinguishable, expresses hCG alpha and -beta in the syncytial- like areas but little, if any, hPL. These results suggest that a certain level of trophoblast differentiation, such as villous formation, is associated with hPL expression, while the hCG alpha gene and the hCG beta gene can be expressed in more disorganized tissues that contain cytotrophoblastic elements.  相似文献   

5.
6.
Implantation of the mouse embryo involves the invasion of the secondary trophoblast giant cells of the ectoplacental cone (EPC) into the uterine decidua. The mechanisms of this event are poorly understood. The putative substrate molecules found in the decidua which could support trophoblast invasion include laminin, fibronectin, and collagen type IV. EPCs dissected from Day 7.5 embryos were cultured on all three matrices. Galactosyltransferase (GalTase) was localized by immunolabeling on trophoblast cell surfaces when grown on laminin but not the other matrices. Perturbations of the enzyme:substrate complex with alpha-lactalbumin, uridine diphosphogalactose, anti-GalTase, and pregalactosylation of the matrix did not affect rates of EPC attachment. However, decreased rates of migration or altered morphologies of spreading cells were observed. Laminin, and not fibronectin or collagen type IV, could be galactosylated with both exogenous GalTase or EPC outgrowths. Digests of galactosylated laminin produced a glycoconjugate substrate with a molecular weight of less than 10K. The results suggest that invasive secondary trophoblast cells possess a GalTase-mediated migration system that is functional on laminin.  相似文献   

7.
Mouse-hatched blastocysts cultured in vitro will attach and form outgrowths of trophoblast cells on appropriate substrates, providing a model for implantation. Immediately after hatching, the surfaces of blastocysts are quiescent and are not adhesive. Over the period 24-36 h post-hatching, blastocysts cultured in serum-free medium become adhesive and attach and spread on the extracellular matrix components fibronectin, laminin, and collagen type IV in a ligand specific manner. Attachment and trophoblast outgrowth on these substrates can be inhibited by addition to the culture medium of an antibody, anti-ECMr (anti-extracellular matrix receptor), that recognizes a group of 140-kD glycoproteins similar to those of the 140-kD extracellular matrix receptor complex (integrin) recognized in avian cells by CSAT and JG22 monoclonal antibodies. Addition to the culture medium of a synthetic peptide containing the Arg-Gly-Asp tripeptide cell recognition sequence of fibronectin inhibits trophoblast outgrowth on both laminin and fibronectin. However, the presence of the peptide does not affect attachment of the blastocysts to either ligand. Immunoprecipitation of 125I surface-labeled embryos using anti-ECMr reveals that antigens recognized by this antibody are exposed on the surfaces of embryos at a time when they are spreading on the substrate, but are not detectable immediately after hatching. Immunofluorescence experiments show that both the ECMr antigens and the cytoskeletal proteins vinculin and talin are enriched on the cell processes and ventral surfaces of trophectoderm cells in embryo outgrowths, in patterns similar to those seen in fibroblasts, and consistent with their role in adhesion of the trophoblast cells to the substratum.  相似文献   

8.
The aim of this study was to detect the effect of extracellular matrix (ECM) proteins on rat Leydig cell shape, adhesion, expression of integrin subunits and testosterone production, in vitro. Leydig cells isolated from adult rats were cultured on plates uncoated or coated with different concentrations of laminin-1, fibronectin, or type IV collagen in the presence or absence of hCG for 3 or 24 hr. A significant increase of cell adhesion and of alpha3, alpha5, and beta1 integrin subunit expression was observed when cells were cultured on ECM proteins, compared to those grown on uncoated plates. Leydig cells cultured on glass coverslips coated with ECM proteins for 24 hr exhibited elongated shapes with long cell processes (spreading), while cells cultured on uncoated plates showed few cell processes. A significant decrease in testosterone production was observed when basal and hCG-stimulated Leydig cells were cultured for 3 or 24 hr on plates coated with type IV collagen (12 and 24 microg/cm(2)) compared to uncoated plates. A significant though a slighter decrease in testosterone production was also observed in cells cultured on plates coated with fibronectin (12 and 24 microg/cm(2)), compared to uncoated plates. Laminin-1 did not modify testosterone production under basal or hCG stimulated conditions. These results suggest that ECM proteins are able to modulate Leydig cell steroidogenesis, in vitro.  相似文献   

9.
Human placental alkaline phosphatase (PLAP) was localized at the apical and basal plasma membrane of syncytiotrophoblasts and at the surface of cytotrophoblasts in term chorionic villi using immunoelectron microscopy. Similarly, apical and basolateral PLAP expression was found in polarized trophoblast-derived BeWo cells. Trophoblasts isolated from term placentas exhibited mainly vesicular PLAP immunofluorescence staining immediately after isolation. After in vitro differentiation into syncytia, PLAP plasma membrane expression was upregulated and exceeded that observed in mononuclear trophoblasts. These data call for caution in using PLAP as a morphological marker to differentiate syncytiotrophoblasts from cytotrophoblasts or as a marker enzyme for placental brush-border membranes. (J Histochem Cytochem 49:1155-1164, 2001)  相似文献   

10.
The relationship between the adhesion of five human colorectal carcinoma cell lines to extracellular matrix (ECM) proteins, namely type I collagen, type IV collagen, fibronectin, laminin and basement membrane extract (Matrigel), and the ability of these cells to express morphological differentiation when grown in a basement membrane extract (Matrigel) or on normal rat mesenchymal cells has been examined. Two cell lines, SW1222 and HRA-19, organised into glandular structures, with well-defined polarity when cultured on both substrata as well as in three-dimensional (3D) collagen gel culture as previously shown. The remaining three cell lines (SW620, SW480 and HT29) grew as loose aggregates or as they would normally grow on tissue culture plastic. Addition to the culture medium of a hexapeptide, containing the cell-matrix recognition sequence arginine-glycine-aspartic acid (RGD), inhibited attachment and glandular formation of SW1222 and HRA-19 when these cells were grown on living mesenchymal cells, but not in Matrigel. The morphological differentiation of HRA-19 cells in 3D-collagen was also inhibited by the same RGD-containing peptide, as previously shown for SW1222 cells. Attachment of the remaining three cell lines was inhibited on mesenchyme but not in Matrigel, further supporting the specificity of the peptide effect on epithelial-mesenchymal binding. In conclusion we have shown that colorectal tumour cells are able to bind ECM proteins and that the cellular binding is an essential step in the induction of the morphological differentiation seen on living mesenchymal cells, in basement membrane extracts and in type I collagen gel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Epidermal growth factor (EGF) receptors were studied during the in vitro differentiation of human trophoblast cells from first- and third-trimester placentas. Cytotrophoblasts were isolated by enzymatic digestion and purified on a discontinuous Percoll gradient. As analyzed by flow cytometry, 5% of the cells are in the G2M phase in the early placenta and 0% in the term placenta. In culture, the cytotrophoblasts at both gestational ages flatten out, aggregate, and fuse together to form syncytiotrophoblasts. This in vitro morphological differentiation is associated with a threefold increase in the ability to bind specifically 125I-EGF. Trophoblastic cells from the term placenta have a significantly (p less than 0.005) higher receptor number (68.6 +/- 9.5 fmol/mg protein) for EGF after 2 days of culture than first-trimester cytotrophoblasts (35.8 +/- 2.3 fmol/mg protein). Scatchard plot analysis revealed two classes of binding sites with a similar affinity in both first-trimester and term placentas (9.5 x 10(9) M-1 for the high-affinity, 0.5 x 10(9) M-1 for the low affinity site). When 125I-EGF was affinity cross-linked to cytotrophoblasts, the receptors appeared as a specific band with a molecular weight of 180 kD in SDS-PAGE. This study demonstrates that the culture of cytotrophoblasts offer an appropriate model to study the modulation of EGF receptors.  相似文献   

13.
The nonenzymatic glycation of basement membrane proteins, such as fibronectin and type IV collagen, occurs in diabetes mellitus. These proteins are nonenzymatically glycated in vivo and can also be nonenzymatically glycated in vitro. After 12 days of incubation at 37 degrees C with 500 mM glucose, purified samples of human plasma fibronectin and native type IV collagen showed a 13.0- and 4.2-fold increase, respectively, in glycated amino acid levels in comparison to control samples incubated in the absence of glucose. Gelatin (denatured calfskin collagen) was glycated 22.3-fold under the same conditions. Scatchard analyses were performed on the binding of radiolabeled fibronectin to gelatin or type IV collagen. It was found that there is a 3-fold reduction in the affinity of fibronectin to type IV collagen due to the nonenzymatic glycation of fibronectin. The dissociation constant (KD) for the binding of control fibronectin to type IV collagen was 9.6 X 10(-7) M while the KD for glycated fibronectin and type IV collagen was 2.9 X 10(-6) M. This was similar to the 2.7-fold reduction in the affinity of fibronectin for gelatin found as a result of the nonenzymatic glycation of fibronectin (KD of 4.5 X 10(-7) M for the interaction of control fibronectin with gelatin vs. KD of 1.2 X 10(-6) M for the interaction of nonenzymatically glycated fibronectin with gelatin). The molecular association of control fibronectin or its glycated counterpart with [3H]heparin was also determined. Scatchard analyses of this interaction showed no difference between control fibronectin and glycated fibronectin in [3H]heparin binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract: The influence of basement membrane proteins on cellular barrier properties of primary cultures of porcine brain capillary endothelial cells grown on permeable filter inserts has been investigated. Measurements of transcellular electrical resistance (TER) by impedance spectroscopy were performed with cells cultured on type IV collagen, fibronectin, laminin, and one-to-one mixtures of these proteins. Moreover, a one-to-one combination of type IV collagen and SPARC (secreted protein acidic and rich in cysteine) has been studied. Rat tail collagen has been used as a reference substratum. If TERs of cells from a given preparation were low (∼350 Ω× cm2) on the reference substratum, type IV collagen, fibronectin, and laminin as well as one-to-one combinations of these proteins elevated transcellular resistances significantly (2.3- to 2.9-fold) compared with rat tail collagen. TER of cells exhibiting a high reference level (∼1,000 Ω× cm2) could, by contrast, be increased only 1.1- to 1.2-fold. The type IV collagen/SPARC mixture did not elevate TER. Our findings suggest that type IV collagen, fibronectin, and laminin are involved in tight junction formation between cerebral capillary endothelial cells. The differential effects observed for individual preparations probably reflect more or less dedifferentiated states of the endothelium, in which basement membrane proteins can influence cellular differentiation more or less strongly. However, our results indicate that type IV collagen, fibronectin, and laminin enhance the reliability and suitability of primary microvascular endothelial cell cultures as an in vitro model of the blood-brain barrier.  相似文献   

15.
Immunofluorescence study of the extracellular matrix of the human placenta   总被引:1,自引:0,他引:1  
Distribution of collagen types I, III, IV, V and fibronectin in human placental villi has been studied by indirect immunofluorescence. During 9-12 weeks of pregnancy the extracellular matrix of villi represents a network of filaments organized in bundles and aggregates that contain collagen types I and III and finer filaments of collagen types IV and V. Collagen type IV is regularly detected in basal membrane of capillaries and particularly in villous epithelium, collagen type V and fibronectin are occasionally detected there. Marked immunofluorescent reaction on collagen types IV and V and fibronectin, and weak reaction on collagen type III is observed in cellular islets around cytotrophoblasts. In the fetus born in term placental villi have uniform immunofluorescence in thick basal membranes of fetal capillaries and of chorionic epithelium. The immunofluorescent reaction specific for all collagen types is uniform in villous stroma. Distribution of different collagen types and fibronectin, including the unusual localization of membrane collagen type IV, in villous stroma and cellular islets of early and mature placenta is discussed.  相似文献   

16.
The processes by which trophoblast cells invade and modify the walls of the uteroplacental arteries of macaques during the course of gestation were examined. Antibodies to cytokeratins were employed to identify trophoblast, anti-desmin antibody to identify smooth muscle, and antibodies to type IV collagen, laminin, and fibronectin to examine changes in extracellular matrix distribution in the arterial wall. During early gestation, endovascular trophoblast adhered to the arterial wall, often in an asymmetrical distribution. As trophoblast cells moved outwardly into the tunica media, the basement membrane underlying the endothelium was lost, as indicated by gaps in the layer when stained for type IV collagen and laminin. Trophoblast cells became sequestered in the vessel wall where they hypertrophied and became surrounded by a capsule containing type IV collagen and laminin. As the trophoblast cells became established in the vessel wall, the muscular layer of the artery became discontinuous. Throughout gestation it was common for trophoblast cells to invade the vessel intimal layer and share the lining of the artery with typical endothelial cells. This general disposition of endovascular and intramural trophoblast persisted into late gestation. In addition, and contrary to the results of earlier studies of macaques, we identified trophoblastic invasion and modification of myometrial segments of the uteroplacental arteries in later gestation. We also found evidence of interstitial trophoblast cells among the stromal cells of the endometrium, especially during early gestation.  相似文献   

17.
The interaction of transforming growth factor beta (TGF beta) with extracellular matrix macromolecules was examined by using radiolabeled TGF beta and various matrix macromolecules immobilized on nitrocellulose. TGF beta bound to collagen IV with greater affinity than to other extracellular matrix macromolecules tested. Neither laminin nor fibronectin, both of which bind type IV collagen, interfered with the binding of TGF beta to type IV collagen. TGF beta 2 competed effectively with TGF beta 1 for binding to type IV collagen. The biological effect of TGF beta was tested by an assay based on inhibition of proliferation of an osteoblast cell line, MC3T3-E1. The results demonstrated that the effect of TGF beta 1 was sustained when cells were grown on type IV collagen compared to cells grown on laminin, collagen type I, and plastic. These results demonstrate that extracellular matrix components may function as an affinity matrix for binding and immobilizing soluble growth and differentiation factors. In view of the demonstrated role of basement membranes in development the present results imply an important function for transforming growth factor beta bound to collagen IV in local regulation of cell proliferation and differentiation.  相似文献   

18.
19.
Specific antibodies to laminin, type IV collagen, basement-membrane proteoglycan, and fibronectin have been used in immunofluorescence microscopy to study the development of basement membranes of the embryonic kidney. Kidney tubules are known to form from the nephrogenic mesenchyme as a result of an inductive tissue interaction. This involves a change in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses fibronectin but no detectable laminin, type IV collagen, or basement-membrane proteoglycan. During the inductive interaction, basement-membrane specific components (laminin, type IV collagen, basement membrane proteoglycan) become detectable in the induced area, whereas fibronectin is lost. While the differentiation to epithelial cells of the kidney requires an inductive interaction, the development of the vasculature seems to involve an ingrowth of cells which throughout development deposits basement-membrane specific components, as well as fibronectin. These cells form the endothelium and possibly also the mesangium of the glomerulus, and contribute to the formation of the glomerular basement membrane. An analysis of differentiation of the kidney mesenchyme in vitro in the absence of circulation supports these conclusions. Because a continuity with vasculature is required for glomerular endothelial cell differentiation, it is possible that these cells are derived from outside vasculature.  相似文献   

20.
The mechanisms by which the placenta adapts to exogenous stimuli to create a stable and healthy environment for the growing fetus are not well known. Low oxygen tension influences placental function, and is associated with preeclampsia, a condition displaying altered development of placental trophoblast. We hypothesized that oxygen tension affects villous trophoblast by modulation of gene expression through DNA methylation. We used the Infinium HumanMethylation450 BeadChip array to compare the DNA methylation profile of primary cultures of human cytotrophoblasts and syncytiotrophoblasts under < 1%, 8% and 20% oxygen levels. We found no effect of oxygen tension on average DNA methylation for either cell phenotype, but a set of loci became hypermethylated in cytotrophoblasts exposed for 24 h to < 1% oxygen, as compared with those exposed to 8% or 20% oxygen. Hypermethylation with low oxygen tension was independently confirmed by bisulfite-pyrosequencing in a subset of functionally relevant genes including CD59, CFB, GRAM3 and ZNF217. Intriguingly, 70 out of the 147 CpGs that became hypermethylated in < 1% oxygen overlapped with CpG sites that became hypomethylated upon differentiation of cytotrophoblasts into syncytiotrophoblasts. Furthermore, the preponderance of altered sites was located at AP-1 binding sites. We suggest that AP-1 expression is triggered by hypoxia and interacts with DNA methyltransferases (DNMTs) to target methylation at specific sites in the genome, thus causing suppression of the associated genes that are responsible for differentiation of villous cytotrophoblast to syncytiotrophoblast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号