首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A halotolerant strain of Rhizobium meliloti was isolated from nodules of a Melilotus plant growing in a salt marsh in Donana National Park (southwest Spain). This strain, EFB1, is able to grow at NaCl concentrations of up to 500 mM, and no effect on growth is produced by 300 mM NaCl. EFB1 showed alterations on its lipopolysaccharide (LPS) structure that can be related to salt stress: (i) silver-stained electrophoretic profiles showed a different mobility that was dependent on ionic stress but not on osmotic pressure, and (ii) a monoclonal antibody, JIM 40, recognized changes in LPS that were dependent on osmotic stress. Both modifications on LPS may form part of the adaptive mechanism of this bacterium for saline environments.  相似文献   

2.
Six heat shock tolerant mutants of Rhizobium meliloti Rmd201 were isolated through transposon Tn5 mutagenesis. The symbiotic assays of these mutants with alfalfa plants, showed four of these mutants to be affected in nitrogenase effectivity also. These four mutants could be classified into two separate complementation groups hssA and hssC through R-prime mediated merodiploid constructions. The hssC mutant Rmd1040 also showed poor interaction with phages indicating surface alterations. The results indicated possible involvement of these loci in symbiosis as well as heat shock response.  相似文献   

3.
In a study of the halotolerant yeast Debarymyces hansenii cultured in 4 mM and 2.7 M NaCl the intracellular ATP pool, the heat production, the oxygen uptake, and, in the high culture salinity also, the intracellular glycerol concentration were found to be correlated. The intracellular ATP in the 2.7 M NaCl culture had a constant concentration of 3.5 mM ATP during the second half of the lag phase, while in 4 mM NaCl it rose to a maximum of 3.1 mM during the late log phase. The intracellular glycerol concentration in 2.7 M NaCl was about 1.3M during the entire exponential growth phase. Sine the glycerol concentration of the medium was not more than 0.23 mM, glycerol must contribute to the osmotic balance of the cells in high salinity. The corresponding maximum values for the 4 mM NaCl culture were 0.16 M and 0.08 mM. The experimental enthalpy changes were approximately the same for the two salinities, viz. about-1200 kJ per mole consumed glucose. The Y m-values for the 4 mM and 2.7 M NaCl cultures were 91 and 59, respectively, the difference being a consequence of the decreased efficiency of growth in high salinity.Abbreviations CFU colony-forming units - PCA perchloric acid - TCA trichloroacetic acid  相似文献   

4.
Twenty three pyrimidine auxotrophs of Sinorhizobium meliloti Rmd201 were generated by random mutagenesis with transposon Tn5. On the basis of biochemical characters these auxotrophic mutants were classified into car, pyrC and pyrE/pyrF categories. All auxotrophs induced white nodules which were ineffective in nitrogen fixation. Light and electron microscopic studies revealed that the nodules induced by pyrC mutants were more developed than the nodules of car mutants. Similarly the nodules induced by pyrE/pyrF mutants had more advanced structural features than the nodules of pyrC mutants. The nodule development in case of pyrE/pyrF mutants was not to the extent observed in the parental strain. These results indicated that some of the intermediates and/or enzymes of pyrimidine biosynthetic pathway of S. meliloti play a key role in bacteroidal transformation and nodule development.  相似文献   

5.
Ten isoleucine+valine and three leucine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5 followed by screening of Tn5 derivatives on minimal medium supplemented with modified Holliday pools. Based on intermediate feeding, intermediate accumulation and cross-feeding studies, isoleucine+valine and leucine auxotrophs were designated as ilvB/ilvG, ilvC and ilvD, and leuC/leuD and leuB mutants, respectively. Symbiotic properties of all ilvD mutants with alfalfa plants were similar to those of the parental strain. The ilvB/ilvG and ilvC mutants were Nod-. Inoculation of alfalfa plants with ilvB/ilvG mutant did not result in root hair curling and infection thread formation. The ilvC mutants were capable of curling root hairs but did not induce infection thread formation. All leucine auxotrophs were Nod+ Fix-. Supplementation of leucine to the plant nutrient medium did not restore symbiotic effectiveness to the auxotrophs. Histological studies revealed that the nodules induced by the leucine auxotrophs did not develop fully like those induced by the parental strain. The nodules induced by leuB mutants were structurally more advanced than the leuC/leuD mutant induced nodules. These results indicate that ilvB/ilvG, ilvC and one or two leu genes of S. meliloti may have a role in symbiosis. The position of ilv genes on the chromosomal map of S. meliloti was found to be near ade-15 marker.  相似文献   

6.
Ten aromatic amino acid auxotrophs of Sinorhizobium meliloti (previously called Rhizobium meliloti) Rmd201 were generated by random mutagenesis with transposon Tn5 and their symbiotic properties were studied. Normal symbiotic activity, as indicated by morphological features, was observed in the tryptophan synthase mutants and the lone tyrosine mutant. The trpE and aro mutants fixed trace amounts of nitrogen whereas the phe mutant was completely ineffective in nitrogen fixation. Histology of the nodules induced by trpE and aro mutants exhibited striking similarities. Each of these nodules contained an extended infection zone and a poorly developed nitrogen fixation zone. Transmission electron microscopic studies revealed that the bacteroids in the extended infection zone of these nodules did not show maturation tendency. A leaky mutant, which has a mutation in trpC, trpD, or trpF gene, was partially effective in nitrogen fixation. The histology of the nodules induced by this strain was like that of the nodules induced by the parental strain but the inoculated plants were stunted. These studies demonstrated the involvement of anthranilic acid and at least one more intermediate of tryptophan biosynthetic pathway in bacteroidal maturation and nitrogen fixation in S. meliloti. The alfalfa plant host seems to provide tryptophan and tyrosine but not phenylalanine to bacteroids in nodules.  相似文献   

7.
Of 23 strains of halotolerant (up to 12% w/v NaCl) photosynthetic bacteria isolated from various sources, one isolate, SH5, accumulated intracellular 5-aminolevulinic acid (ALA) at 0.45 μg/g dry cell wt (DCW) growing aerobically in the dark. The strain was identified as Rhodobacter sphaeroides using 16S rDNA sequencing. Biosynthesis of ALA was enhanced to 14 μg/g DCW using modified glutamate/glucose (50 mM) medium with the addition of 10 mM levulinic acid after 24 h cultivation. Addition of 30 μM Fe2+ to this medium increased the yield to 226 μg/g DCW.  相似文献   

8.
Among the Rhizobiaceae, Bradyrhizobium japonicum strain USDA110 appears to be extremely salt sensitive, and the presence of glycine betaine cannot restore its growth in medium with an increased osmolarity (E. Boncompagni, M. Osteras, M. C. Poggi, and D. Le Rudulier, Appl. Environ. Microbiol. 65:2072-2077, 1999). In order to improve the salt tolerance of B. japonicum, cells were transformed with the betS gene of Sinorhizobium meliloti. This gene encodes a major glycine betaine/proline betaine transporter from the betaine choline carnitine transporter family and is required for early osmotic adjustment. Whereas betaine transport was absent in the USDA110 strain, such transformation induced glycine betaine and proline betaine uptake in an osmotically dependent manner. Salt-treated transformed cells accumulated large amounts of glycine betaine, which was not catabolized. However, the accumulation was reversed through rapid efflux during osmotic downshock. An increased tolerance of transformant cells to a moderate NaCl concentration (80 mM) was also observed in the presence of glycine betaine or proline betaine, whereas the growth of the wild-type strain was totally abolished at 80 mM NaCl. Surprisingly, the deleterious effect due to a higher salt concentration (100 mM) could not be overcome by glycine betaine, despite a significant accumulation of this compound. Cell viability was not significantly affected in the presence of 100 mM NaCl, whereas 75% cell death occurred at 150 mM NaCl. The absence of a potential gene encoding Na(+)/H(+) antiporters in B. japonicum could explain its very high Na(+) sensitivity.  相似文献   

9.
The in vitro response of kiwifruit (Actinidia deliciosa) to increasing concentrations of boron (B) and NaCl in the culture medium was studied. Kiwifruit shoot cultures were grown in vitro for 12 weeks on an MS medium containing two B concentrations (0.1 and 2 mM) combined with five NaCl concentrations (0, 10, 20, 40 and 80 mM). Kiwifruit produced the longest shoots with 2 mM B when NaCl concentration was 0--20 mM. More shoots were produced with 2 mM B for all NaCl treatments. More shoots were produced with 2 mM B and 10 and 20 mM NaCl. High B concentrations in the culture medium significantly increased shoot proliferation. Explants exhibited a moderate chlorotic appearance with 40 mM NaCl and shoots died with 80 mM NaCl. With 2 mM B, the B concentration of explants was 5--9X greater for the various NaCl treatments compared to the control. Increasing the NaCl concentration from 10 to 80 mM, resulted in higher Na and Cl concentrations in explants for all B treatments, while K and Ca concentrations decreased. Phosphorus concentration in the explants was significantly increased by increasing the NaCl concentration reaching a maximum value at 80 mM NaCl for the two B concentrations.  相似文献   

10.
The growth, morphology, and life cycle of two marine myxobacterial isolates, halotolerant Myxococcus fulvus strain HW-1 and halophilic Haliangium ochraceum strain SMP-2, were studied as models to determine the living patterns of myxobacteria in the ocean. The growth, morphology, and development of halotolerant strain HW-1 shifted in response to salinity. The optimal seawater concentration for growth of HW-1 was 0 to 80% (salinity, 0.1 to 2.9%), and the strain grew poorly in media with a salinity of more than 4%. The cells became shorter as the seawater concentration increased. The fruiting body structure was complete only on agar prepared with low concentrations of seawater or salts (less than 60% seawater; salinity, 2.1%), and rudimentary structures or even simple cell mounds appeared as the seawater concentration increased. In contrast, the halophilic strain SMP-2 was unable to grow without NaCl. The cell length and the morphology of the fruiting body-like structure did not change in response to salts. In seawater liquid medium, the cells of both strains were confirmed to be able to form myxospores directly from vegetative cells, but they could not do so in medium containing a low seawater concentration (10% or less). HW-1 cells from medium containing a high concentration of seawater grew independent of cell density, while cells from medium containing a low concentration of seawater (10% or less) showed density-dependent growth. SMP-2 cells showed density-dependent growth under all salinity conditions. The results suggest that the halotolerant myxobacteria are the result of degenerative adaptation of soil myxobacteria to the marine environment, while the halophilic myxobacteria form a different evolutionary group that is indigenous to the ocean.  相似文献   

11.
The growth, morphology, and life cycle of two marine myxobacterial isolates, halotolerant Myxococcus fulvus strain HW-1 and halophilic Haliangium ochraceum strain SMP-2, were studied as models to determine the living patterns of myxobacteria in the ocean. The growth, morphology, and development of halotolerant strain HW-1 shifted in response to salinity. The optimal seawater concentration for growth of HW-1 was 0 to 80% (salinity, 0.1 to 2.9%), and the strain grew poorly in media with a salinity of more than 4%. The cells became shorter as the seawater concentration increased. The fruiting body structure was complete only on agar prepared with low concentrations of seawater or salts (less than 60% seawater; salinity, 2.1%), and rudimentary structures or even simple cell mounds appeared as the seawater concentration increased. In contrast, the halophilic strain SMP-2 was unable to grow without NaCl. The cell length and the morphology of the fruiting body-like structure did not change in response to salts. In seawater liquid medium, the cells of both strains were confirmed to be able to form myxospores directly from vegetative cells, but they could not do so in medium containing a low seawater concentration (10% or less). HW-1 cells from medium containing a high concentration of seawater grew independent of cell density, while cells from medium containing a low concentration of seawater (10% or less) showed density-dependent growth. SMP-2 cells showed density-dependent growth under all salinity conditions. The results suggest that the halotolerant myxobacteria are the result of degenerative adaptation of soil myxobacteria to the marine environment, while the halophilic myxobacteria form a different evolutionary group that is indigenous to the ocean.  相似文献   

12.
Two strains designated strains L-1T and L-9T were isolated from activated sludge of a treatment plant that receives wastewater from the tannery industry contaminated with chromium. Phylogenetic analysis showed that the organisms represented two new species of the genus Leucobacter. Strains L-1T and L-9T could be distinguished from the type strain of L. komagatae and from the type strain of “L. albus” by the B-type peptidoglycan composition, fatty acid composition, several phenotypic and physiological characteristics. The major fatty acids of the organisms were iso- and anteiso-branched C15:0 and C17:0, straight-chain C16:0 was also found in relatively high proportions. The organisms were halotolerant, grew in medium containing 9% NaCl, and all strains, including the type strain of L. komagatae grew in medium containing 5 mM Cr(VI). On the basis of the distinct peptidoglycan composition, 16S ribosomal DNA sequence analysis, percentage of DNA-DNA reassociation values, and phenotypic characteristics we are of the opinion that strain L-1T represents a new species of the genus Leucobacter for which we propose the name Leucobacter chromiireducens and that strain L-9T represents an additional new species of the same genus for which we propose the name Leucobacter aridicollis.  相似文献   

13.
In this study, we identify the extent of deformation that causes cell lysis using a simple technique where a drop of cell suspension is compressed by two flat plates. The viability of human prostatic adenocarcinoma PC-3 cells in solutions of various concentrations of NaCl is determined as a function of the gap size between the plates. The viability declines with decreasing gap size in the following order: 700 mM >150 mM >75 mM NaCl. This is considered to be due to the difference in cell size, which is caused by the osmotic volume change before deformation; cell diameter becomes smaller in a solution of higher NaCl concentration, which appears to increase the survival ratio in a given gap size. The deformation-induced decrease in cell viability is correlated with the cell surface strain, which is dependent on the increase in surface area, irrespective of NaCl concentration. In addition, the treatment of cells with cytochalasin D results in the disappearance of cortical actin filaments and a marked drop in the viability, indicating that cell lysis is closely related to the deformation of the cytoskeleton.  相似文献   

14.
The phospholipid headgroup composition and fatty acid composition of a gram-positive halotolerant Planococcus sp. (strain A4a) were examined as a function of growth temperature (5 to 35 degrees C) and NaCl content (0 to 1.5 M) of the growth medium. When the growth temperature was decreased, the relative amount of mono-unsaturated branched-chain fatty acids increased. When Planococcus sp. strain A4a was grown in media containing high NaCl concentrations, the relative amount of the major fatty acid, Ca15:0, increased. The relative amount of anionic phospholipid also increased when the NaCl concentration of the growth medium was increased. The increase in anionic phospholipid content resulted from a decrease in the relative mole percent content of phosphatidylethanolamine and an increase in the relative mole percent content of cardiolipin.  相似文献   

15.
Seventeen arginine auxotrophic mutants of Sinorhizobium meliloti Rmd201 were isolated by random transposon Tn5 mutagenesis using Tn5 delivery vector pGS9. Based on intermediate feeding studies, these mutants were designated as argA/argB/argC/argD/argE (ornithine auxotrophs), argF/argI, argG and argH mutants. The ornithine auxotrophs induced ineffective nodules whereas all other arginine auxotrophs induced fully effective nodules on alfalfa plants. In comparison to the parental strain induced nodule, only a few nodule cells infected with rhizobia were seen in the nitrogen fixation zone of the nodule induced by the ornithine auxotroph. TEM studies showed that the bacteroids in the nitrogen fixation zone of ornithine auxotroph induced nodule were mostly spherical or oval unlike the elongated bacteroids in the nitrogen fixation zone of the parental strain induced nodule. These results indicate that ornithine or an intermediate of ornithine biosynthesis, or a chemical factor derived from one of these compounds is required for the normal development of nitrogen fixation zone and transformation of rhizobial bacteria into bacteroids during symbiosis of S. meliloti with alfalfa plants.  相似文献   

16.
Twenty one cysteine and 13 methionine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5. The cysteine auxotrophs were sulfite reductase mutants and each of these auxotrophs had a mutation in cysI/cysJ gene. The methionine auxotrophs were metA/metZ, metE and metF mutants. One hundred per cent co-transfer of Tn5-induced kanamycin resistance and auxotrophy from each Tn5-induced auxotrophic mutant indicated that each mutant cell most likely had a single Tn5 insertion. However, the presence of more than one Tn5 insertions in the auxotrophs used in our study cannot be ruled out. All cysteine and methionine auxotrophs induced nodules on alfalfa plants. The nodules induced by cysteine auxotrophs were fully effective like those of the parental strain-induced nodules, whereas the nodules induced by methionine auxotrophs were completely ineffective. The supplementation of methionine to the plant nutrient medium completely restored symbiotic effectiveness to the methionine auxotrophs. These results indicated that the alfalfa host provides cysteine but not methionine to rhizobia during symbiosis. Histological studies showed that the defective symbiosis of methionine auxotrophs with alfalfa plants was due to reduced number of infected nodule cells and incomplete transformation of bacteroids.  相似文献   

17.
Abstract The addition of 1 mM glycine betaine to the growth medium of Chromatium sp. NCIMB 8379 relieved growth inhibition caused by exposure to supra-optimal Nad concentrations. Intracellular glycine betaine concentrations were dependent upon the NaCl concentration of the growth medium up to 3 M exogenous Nad. Kinetic data for the accumulation of [methyl-14C]-glycine betaine demonstrated that Chromatium sp. NCIMB 8379 possesses a constitutively expressed active transport system for glycine betaine. The transport system was saturable with respect to glycine betaine concentration and exhibited typical Michaelis-Menten type kinetics: K m= 24 μ M, V max= 306 nmol min−1 mg protein−1 at an external NaCl concentration of 1 M. The rate of glycine betaine transport decreased progressively with increasing growth medium NaCl concentration. This transport system may represent an adaptive response to growth in high osmolarity environments in this halotolerant isolate, allowing accumulation of glycine betaine from the external cell environment or recycling synthesised glycine betaine which has passively diffused from the cell.  相似文献   

18.
Among the 49 strains of moderately halophilic bacteria isolated from the salty environments of Iran, a Gram-positive coccus designated as strain QW6 showed high capacity in the removal of toxic oxyanions of tellurium in a wide range of culture medium factors including pH (5.5-10.5), temperature (25-45 degrees C), various salts including NaCl, KCl, and Na(2)SO(4) (0.5-4M), selenooxyanions (2-10mM), and at different concentrations of potassium tellurite (0.5-1mM) under aerobic condition. Phenotypic characterization and phylogenetic analyses based on 16S rDNA sequence comparisons indicated that this strain was a member of the genus Salinicoccus. The maximum tellurite removal was exhibited in 1.5M NaCl at 35 degrees C, while the activity reduced by 53% and 47% at 25 and 45 degrees C, respectively. The optimum pH for removal activity was shown to be 7.5, with 90% and 83% reduced removal capacities at the two extreme values of 5.5 and 10, respectively. The impact of different concentrations of selenooxyanions (2-10mM) on tellurite removal by strain QW6 was evaluated. The ability of strain QW6 in the removal of tellurite in the presence of 6mM selenite increased by 25%. The concentration of toxic potassium tellurite in the supernatant of the bacterial culture medium decreased by 99% (from 0.5 to 0.005mM) after 6 days and the color of the medium changed to black due to the formation of less toxic elemental tellurium.  相似文献   

19.
20.
Slightly halophilic marine Vibrio alginolyticus grown in the range of NaCl from 0.2 to 1.5 M maintained the total internal solute concentration always higher than the external medium by about 0.25 osM. The concentrations of macromolecules such as DNA, RNA, and protein were little affected by the increase in medium NaCl. The internal K+ concentration was kept to about 400 mM in the range of medium NaCl from 0.4 to 0.8 M; it rose to 510 mM when the bacterium was grown in 1.5 M NaCl, indicating that K+ increased only slightly in response to the large increase in medium NaCl. Thus, in contrast to the case of nonhalophilic and extremely halophilic bacteria, K+ was unlikely to act as a major component to regulate the internal solute concentration of marine V. alginolyticus. The internal Na+ and Cl- concentrations were maintained always lower than those in the growth medium, but they increased in response to the increase in medium NaCl. The concentration of internal Na+ was close to that of K+ at the concentration of medium NaCl that supports the optimal growth of this organism. The total amino acid content of V. alginolyticus increased from 76 to 413 mM by the increase in medium NaCl from 0.2 to 1.5 M. The concentrations of glutamic acid and prolined were 254 and 72 mM, respectively, when grown in 1.5 M NaCl. These results indicated that Na+, Cl- and amino acids, especially glutamic acid and proline, contributed to the regulation of internal solute concentration of V. alginolyticus in response to the increased external NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号