首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The proton signals for the coordinated axial imidazoles in a series of low-spin ferric bis-imidazole complexes with natural porphyrin derivatives have been located and assigned. The methyl signals of several methyl-substituted imidazoles have also been resolved for the mixed ligand complexes of imidazole and cyanide ion. The imidazole spectra for the bis complexes are essentially the same as those reported earlier for synthetic porphyrins, with the hyperfine shifts exhibiting comparable contributions from the dipolar and contract interactions. The contact contribution reflects spin transfer into a vacant imidazole π orbital. The spectra of both the mono- and bis-imidazole complex concur in predicting that only the 2-H and 5CH2 signals of an axial histidine are likely to resonate clearly outside the diamagnetic 0 to ?10 ppm from TMS region in hemoproteins. However, both the 2-H and 4-H imidazole peaks are found to be too broad to detect in a hemoprotein. Hence, it is suggested that the pair of non-heme, single proton resonances in low-spin met-myoglobin cyanides arise from the non-equivalent methylene protons at the 5-position of the histidyl imidazole. Both the resonance positions and relative linewidths in the model compounds are consistent with the data for this pair of protons in myoglobins. The possible interpretations of the average downfield bias of these signals as well as the magnitude of their spacing, are discussed in terms of the conformation of the proximal histidine relative to the heme group.  相似文献   

2.
Reactions between (meso-tetraphenylporphyrinato)iron(III) perchlorate [Fe(tpp)]ClO4 and various imidazoles have been examined in CD2Cl2 solutions. 1H NMR analysis revealed the formation of three kinds of complex; mu-oxo dimer, mono-imidazole adduct, and bis-imidazole adduct. The product ratios changed to a great extent depending on the amount and nature of imidazoles. In general, addition of less than 1.0 equiv of imidazole relative to [Fe(tpp)]ClO4 led to the formation of both mu-oxo dimer and mono-imidazole adduct. However, by the addition of excess amount of imidazole, either the mu-oxo dimer or bis-imidazole adduct was formed exclusively depending on the bulkiness of the imidazole used. In the case of bulky imidazole such as 2-methylbenzimidazole or 2-isopropyl-1-methylimidazole, the mu-oxo dimer was formed quantitatively. In the case of less bulky imidazole such as parent imidazole or 1-methylimidazole, bis-imidazole adduct became the sole product. The results have been explained in terms of the difference in steric interactions between the axial ligands and porphyrin core; the severe steric repulsion prohibits the formation of bis-adduct in the case of bulky imidazoles. As a result, bulky imidazoles prefer to behave as a base; they abstract a proton from coordinated water, and lead to the formation of mu-oxo dimer. Thus, the role of bulky imidazoles in these reactions has some relevance to that of distal histidine in hemoglobin and peroxidase.  相似文献   

3.
Proton NMR spectra of a model of low-spin cyanide complexes of ferric hemoproteins indicate that two broad single-protein resonances from the axial imidazole can be resolved outside the diamagnetic spectral region. Upon deprotonation of the imidazole in the model, the upfield resonance shifts dramatically to higher field, suggesting that its position may reflect the degree of hydrogen bonding or proton donation of the imidazole. Met-cyano myoglobin reveals a pair of such broad peaks in the regions expected for an essentially neutral axial imidazole. In the cyano complexes of horseradish peroxidase and cytochrome c peroxidase, a pair of single-proton resonances are located which are assigned to the same imidazole protons on the basis of their linewidth and shift changes upon altering the heme substituents. The upfiled proton, however, is found at much higher field than in metMbCN. The upfield bias of this resonance is taken as evidence for appreciable imidazolate character for the axial ligand in these heme peroxidases.  相似文献   

4.
The proton NMR spectra of a series of low-spin bis-cyano ferric complexes of tetraarylporphyrins and octaethylporphyrin in a variety of solvents have been recorded and analyzed. The hyperfine shifts are shown to be very sensitive to the solvent, experiencing an overall downfield bias as the solvent hydroge-bonding donor strength increased. The characteristic pattern of the contact and dipolar shifts for the meso-aryl group in tetraarylporphyrin complexes are shown to permit a quantitative separation of the dipolar and contact contributions to the hyperfine shift. The separated components indicate that increased solvent hydrogen bonding strength significantly decreases the magnetic anisotropy of the iron and diminishes porphyrin → iron π bonding. The changes in anisotropy with solvent are shown to be consistent with the coordinated cyanide acting as a proton acceptor. Although similar effects are found to be absent in bis-imidazole complexes, a downfield bias of half the magnitude of the bis-cyano complexes is observed in mixed cyano/imidazole complexes. Hence, the heme hyperfine shifts in cyano-metmyoglobins and -hemoglobins may serve as probes for the protonation of the distal histidyl imidazole.  相似文献   

5.
Cytoglobin (Cgb) represents a fourth member of the globin superfamily in mammals, but its function is unknown. Site-directed mutagenesis, in which six histidine residues were replaced with alanine, was carried out, and the results indicate that the imidazoles of His81 (E7) and His113 (F8) bind to the heme iron as axial ligands in the hexacoordinate and the low-spin state. The optical absorption, resonance Raman, and IR spectral results are consistent with this conclusion. The redox potential measurements revealed an E' of 20 mV (vs NHE) in the ferric/ferrous couple, indicating that the imidazole ligands of His81 and His113 are electronically neutral. On the basis of the nu(Fe-CO) and nu(C-O) values in the resonance Raman and infrared spectra of the ferrous-CO complexes of Cgb and its mutants, it was found that CO binds to the ferrous iron after the His81 imidazole is dissociated, and three conformers are present in the resultant CO coordination structure. Two are in closed conformations of the heme pocket, in which the bound CO ligand interacts with the dissociated His81 imidazole, while the third is in an open conformation. The nu(Fe-O2) in the resonance Raman spectra of oxy Cgb can be observed at 572 cm(-1), suggesting a polar heme environment. These structural properties of the heme pocket of Cgb are discussed with respect to its proposed in vivo oxygen storage function.  相似文献   

6.
The proton nuclear-magnetic-resonance spectra of the cyano-met complexes of the cooperative dimeric and tetrameric hemoglobins from the mollusk Scapharca inaequivalvis have been investigated and compared to those of other structurally characterized oxygen binding hemoproteins. For these proteins, cooperativity is displayed even in the homodimer and preliminary X-ray structural data reveal an unusual back-to-front assembly with intersubunit contacts involving the EF helices [Royer, W. E., Love, W. E. + Fenderson, F. F. (1985) Nature (Lond.) 316, 277-280]. The pattern of hyperfine shifts is very similar for the dimer and tetramer chains, but distinctly different from those of previously characterized low-spin, ferric heme proteins. Individual heme resonances are identified by reconstituting the protein with specifically deuterated hemes. While the axial interactions involving the proximal and distal histidines are very similar to that in myoglobins and other hemoglobins, both the heme contact shift pattern and the amino acid dipolar shift pattern reflect a significantly reduced asymmetry. The decreased spread of the non-cordinated amino acid signals is interpreted in terms of a rotation of the magnetic axes relative to those in myoglobin or other hemoglobins, rather than a change in the magnetic anisotropy. The decreased spread of the heme methyl contact shifts supports this conclusion and is consistent with an orientation of the proximal histidine with the imidazole ring rotated by about 30-40 degrees relative to that in other structurally characterized proteins. Although resonances associated with a complex pattern of alternate heme orientations can be detected immediately after reconstitution of the protein, the isolated protein was found to exhibit insignificant equilibrium heme rotational disorder.  相似文献   

7.
8.
The absorption and MCD spectra of ferric lactoperoxidase from milk and its cyanide and fluoride derivatives have been measured in the near infrared and visible wavelength regions both at room temperature and at 4.2 K. By comparison with the MCD spectra of haemoproteins of known axial ligation, which also contain protohaem IX, it has been possible to arrive at suggestions for the axial ligation in lactoperoxidase. At room temperature oxidized lactoperoxidase has the haem iron in the high-spin state, and the results indicate that the proximal ligand of the haem iron is a histidine imidazole and that the sixth ligand is probably a carboxylate ion. At 4.2 K oxidized lactoperoxidase converts almost totally to a low-spin form, changing the sixth ligand to a histidine imidazole, which is in the imidazolate form.  相似文献   

9.
The resonance Raman spectra of neutrophil cytochrome b558 obtained upon Soret excitation indicate that the heme is low spin six-coordinate in both ferric and ferrous oxidation states; comparison with the spectra of bis-imidazole hemin suggests imidazole or imidazolate axial ligation. Minor bands attributable to vibrational motions of ring-conjugated vinyl substituents were also observed, consistent with a heme assignment of protoporphyrin IX. The spectra of deoxycholate-solubilized cytochrome b558 were indistinguishable from neutrophil plasma membranes or specific granules, as were spectra from unstimulated and phorbol myristate acetate-stimulated cells, indicating that the hemes are structurally identical in various subcellular environments and cellular physiological states. However, structural complexity was suggested by biphasic ferric-ferrous photoreduction under 413-nm illumination and the absence of an EPR spectrum for the ferric heme under conditions where simple bis-imidazole heme-containing cytochromes are expected to give detectable signals. Midpoint reduction potentials and resonance Raman spectra of the soluble cytochrome b558 from an individual with cytochrome b558 positive (type IA.2) chronic granulomatous disease were nearly identical to normal oxidase, with the exception that the deficient oxidase did not undergo heme photoreduction. Possible structural models are discussed in relation to other physical properties (ligand binding, thermodynamic potentials) exhibited by the cytochrome.  相似文献   

10.
The 1H-n.m.r. spectra of human somatotropin (growth hormone) show perturbed peaks from individual aromatic and aliphatic apolar residues, characteristic of a specifically folded globular structure. The imidazole C-2-H resonances of the histidine residues (at positions 18, 21 and 151 in the somatotropin sequence) were individually resolved, and their titration behaviour in the pH range 1.2-11.5 was investigated. The imidazole C-2-H resonance of histidine-151 is assigned, by comparison of its titration behaviour in human somatotropin and desamido-somatotropin (Asn-152 leads to Asp-152). The C-2-H resonances of all three histidine residues are assigned, by comparison of their relative deuterium-exchange rates (determined by n.m.r.) and the relative tritium-exchange rates of the histidine residues (determined by tryptic digestion of tritiated human somatotropin and reversed-phase high-pressure liquid-chromatographic separation of the histidine-containing tryptic peptides). There is evidence that histidine-18 forms an ion-pair bond with a glutamic acid or aspartic acid residue. The globular structure does not appear to change from pH3 to 11.5, though there is evidence for an unfolding of a region of the structure (involving histidine-21 and a tyrosine residue) below pH3.  相似文献   

11.
R C Holz  M L Alvarez  W G Zumft  D M Dooley 《Biochemistry》1999,38(34):11164-11171
1H NMR spectra of the CuA center of N2OR from Pseudomonas stutzeri, and a mutant enzyme that contains only CuA, were recorded in both H2O- and D2O-buffered solution at pH 7.5. Several sharp, well-resolved hyperfine-shifted 1H NMR signals were observed in the 60 to -10 ppm chemical shift range. Comparison of the native and mutant N2OR spectra recorded in H2O-buffered solutions indicated that several additional signals are present in the native protein spectrum. These signals are attributed to a dinuclear copperII center. At least two of the observed hyperfine-shifted signals associated with the dinuclear center, those at 23.0 and 13.2 ppm, are lost upon replacement of H2O buffer with D2O buffer. These data indicate that at least two histidine residues are ligands of a dinuclear CuII center. Comparison of the mutant N2OR 1H NMR spectra recorded in H2O and D2O indicates that three signals, c (27.5 ppm), e (23.6 ppm), and i (12.4 ppm), are solvent exchangeable. The two most strongly downfield-shifted signals (c and e) are assigned to the two N epsilon 2H (N-H) protons of the coordinated histidine residues, while the remaining exchangeable signal is assigned to a backbone N-H proton in close proximity to the CuA cluster. Signal e was found to decrease in intensity as the temperature was increased, indicating that proton e resides on a more solvent-exposed histidine residue. One-dimensional nOe studies at pH 7.5 allowed the histidine ring protons to be definitively assigned, while the remaining signals were assigned by comparison to previously reported spectra from CuA centers. The temperature dependence of the observed hyperfine-shifted 1H NMR signals of mutant N2OR were recorded over the temperature range of 276-315 K. Both Curie and anti-Curie temperature dependencies are observed for sets of hyperfine-shifted protons. Signals a and h (cysteine protons) follow anti-Curie behavior (contact shift increases with increasing temperatures), while signals b-g, i, and j (histidine protons) follow Curie behavior (contact shift decreases with increasing temperatures). Fits of the temperature dependence of the observed hyperfine-shifted signals provided the energy separation (Delta EL) between the ground (2B3u) and excited (2B2u) states. The temperature data obtained for all of the observed hyperfine-shifted histidine ligand protons provided a Delta EL value of 62 +/- 35 cm-1. The temperature dependence of the observed cysteine C beta H and C alpha H protons (a and h) were fit in a separate experiment providing a Delta EL value of 585 +/- 125 cm-1. The differences between the Delta EL values determined by 1H NMR spectroscopy and those determined by EPR or MCD likely arise from coupling between relatively low-frequency vibrational states and the ground and excited electronic states.  相似文献   

12.
Many properties of cytochromes and model systems depend on orientations of axial ligands. In this work, we elucidated the role of porphyrin substituents on orientation of axial ligands in model systems of cytochromes. The orientations of axially coordinated imidazoles and pyridines in crystal structures of model systems of cytochromes were analyzed and data were compared with previous quantum-chemical calculations. The results show that eight ethyl groups on porphyrin ring strongly favor parallel orientation, hence, in all these complexes axial ligands, pyridines or imidazoles, are mutually parallel. Four phenyl or mesityl groups at meso-carbons also favor parallel orientation but less strongly. Hence, in most of the bis-imidazole complexes the orientation is parallel, while in bis-pyridine complexes the orientation of pyridines depends on oxidation state of Fe. In bis-pyridine Fe(II) complexes orientation is parallel, in Fe(III) it is orthogonal. This analysis is in agreement with previous quantum-chemical calculations.  相似文献   

13.
Chlorite dismutase (EC 1.13.11.49), an enzyme capable of reducing chlorite to chloride while producing molecular oxygen, has been characterized using EPR and optical spectroscopy. The EPR spectrum of GR-1 chlorite dismutase shows two different high-spin ferric heme species, which we have designated 'narrow' (gx,y,z = 6.24, 5.42, 2.00) and 'broad' (gz,y,x = 6.70, 5.02, 2.00). Spectroscopic evidence is presented for a proximal histidine co-ordinating the heme iron center of the enzyme. The UV/visible spectrum of the ferrous enzyme and EPR spectra of the ferric hydroxide and imidazole adducts are characteristic of a heme protein with an axial histidine co-ordinating the iron. Furthermore, the substrate analogs nitrite and hydrogen peroxide have been found to bind to ferric chlorite dismutase. EPR spectroscopy of the hydrogen peroxide adduct shows the loss of both high-spin and low-spin ferric signals and the appearance of a sharp radical signal. The NO adduct of the ferrous enzyme exhibits a low-spin EPR signal typical of a five-co-ordinate heme iron nitrosyl adduct. It seems that the bond between the proximal histidine and the iron is weak and can be broken upon binding of NO. The midpoint potential, Em(Fe3+/2+) = -23 mV, of chlorite dismutase is higher than for most heme enzymes. The spectroscopic features and redox properties of chlorite dismutase are more similar to the gas-sensing hemoproteins, such as guanylate cyclase and the globins, than to the heme enzymes.  相似文献   

14.
The electron-nuclear coupling in low-spin iron complexes including myoglobin hydroxide (MbOH) and two related model compounds, Fe(III) tetraphenylporphyrin(pyridine)(OR-) (R = H or CH3) and Fe(III) tetraphenylporphyrin(butylamine)(OR-) was investigated using electron spin echo envelope modulation (ESEEM) spectroscopy. The assignment of frequency components in ESEEM spectra was accomplished through the use of nitrogen isotopic substitution wherever necessary. For example, the proximal imidazole coupling in MbOH was investigated without interference from the contributions of porphyrin 14N nuclei after substitution of the heme in native Mb with 15N-labeled heme. Computer simulation of spectra using angle selected techniques enabled the assignment of parameters describing the hyperfine and quadrupole interactions for axially bound nitrogen of imidazole in MbOH, of axial pyridine and butylamine in the models, and for the porphyrin nitrogens of the heme in native MbOH. The isotropic component of axial nitrogen hyperfine interactions exhibits a trend from 5 to 4 MHz, with imidazole (MbOH) greater than pyridine greater than amine. The nuclear quadrupole interaction coupling constant e2Qq was near 2 MHz for all nitrogens in these complexes. The Qzz axis of the nuclear quadrupole interaction tensor for the proximal imidazole nitrogen in MbOH was found to be aligned near gz (gmax) in MbOH, suggesting that gz is near the heme normal. A crystal field analysis, that allows a calculation of rhombic and axial splittings for the d orbitals of the t2g set in a low-spin heme complex, based on the g tensor assignment gz greater than gy greater than gx, yielded results that are consistent with the poor pi-acceptor properties expected for the closed shell oxygen atom of the hydroxide ligand in MbOH. A discussion is presented of the unusual results reported in a linear electric field effect in EPR (LEFE) study of MbOH published previously [Mims, W. B., & Peisach, J. (1976) J. Chem. Phys. 64, 1074-1091].  相似文献   

15.
High-resolution proton NMR spectra are reported for the paramagnetic ferric native and cyano complexes of the five major horseradish root peroxidase (HRP) isoenzymes (A1, A2, A3, B, and C). Axial imidazole resonances are observed in the native and cyano-complex spectra of all the isoenzymes, thus indicating the presence of a common axial histidine ligand. Proton NMR spectra outside the usual diamagnetic region are identical for sets of A1 and A2 isoenzymes and for the B and C isoenzyme set. Variation in heme residue chemical shift positions may be controlled in part by porphyrin vinyl side chain-protein interactions. Diverse upfield spectra among the isoenzymes reflect amino acid substitutions and/or conformational differences near the prosthetic group, as signals in this region must result from amino acid residues in proximity to the heme center. Acid-base dependence studies reveal an "alkaline" transition that converts the native high-spin iron (III) porphyrin to the low-spin state. The transition occurs at pH 9.3, 9.4, 9.8, and 10.9 for respective HRP A1, A2, A3, and C isoenzymes, respectively. Significantly, this ordering also reflects specific activities for the isoenzymes in the order A1 = A2 greater than A3 greater than B = C. Identical proton NMR spectra for A1/A2 and B/C isoenzyme sets parallel equivalent specific activities for members of a particular set. Proton NMR spectra thus appear to be highly sensitive to protein modifications that affect catalytic activity.  相似文献   

16.
The dissociation rates of axially coordinated imidazole in bis-ligated low spin ferric complexes of synthetic porphyrins such as tetraphenylporphyrin (TPP) and tetramesitylporphyrin (TMP) were measured by NMR method. In both TPP and TMP complexes, the axial lability of imidazoles increased in the order 1-methylimidazole < 2-methylirnidazole < 2-ethylimidazole ∼ 1,2-dimethylimidazole. The results were explained in terms of the steric repulsion between the 2-alkyl group of imidazole and the porphyrin ring. The dissociation rates of TPP complexes were then compared with those of TMP complexes carrying the same axial ligands. In every case examined, imidazole dissociated faster from the TPP complex than from the TMP complex. The results were ascribed to the stability of the bis-ligated TMP complex relative to the corresponding TPP complex; the formation constant of the TMP complex having 2-Melm as axial ligand was larger than that of the corresponding TPP complex by a factor of c. 600. A hypothesis has been proposed to explain the stability of the sterically hindered porphyrin complex relative to the less hindered complex.  相似文献   

17.
A histidine auxotroph of Saccharomyces cerevisiae has been used to metabolically incorporate [1,3-15N2] histidine into yeast cytochrome c oxidase. Electron nuclear double resonance (ENDOR) spectroscopy of cytochrome a in the [15N]histidine-substituted enzyme reveals an ENDOR signal which can be assigned to hyperfine coupling of a histidine 15N with the low-spin heme, thereby unambiguously identifying histidine as an axial ligand to this cytochrome. Comparison of this result with similar ENDOR data obtained on two 15N-substituted bisimidazole model compounds, metmyoglobin-[15N]imidazole and bis[15N]imidazole tetraphenyl porphyrin, provides strong evidence for bisimidazole coordination in cytochrome a.  相似文献   

18.
The interaction of Cu(II) with di- and tripeptides each containing phenylalanine, tryptophan or histidine in the amino acid chain has been investigated by means of electron spin resonance (ESR) and optical absorption spectroscopy. Cu(II) complexes of dipeptides and tripeptides exhibit different magnetic and optical parameters. Dipeptide complexes have larger gparallel-values and smaller A parallel values than tripeptide complexes. When compared to dipeptide complexes, the d-d band of the central metal ion is blue shifted for tripeptide complexes. There are no significant difference in the behavior of Cu(II) peptide complexes containing phenylalanine or tryptophan. Complexes of histidine containing peptides, however, show modified spectra caused by the participation of the imidazole nitrogen in the coordination to Cu(II). The imidazole nitrogen seems to coordinate in-plane with other coordinating atoms or in an axial position depending on the kind of peptide.  相似文献   

19.
The (1)H NMR resonances of the heme substituents of the low-spin Fe(III) form of nitrophorin 2, as its complexes with N-methylimidazole (NP2-NMeIm) and imidazole (NP2-ImH), have been assigned by a combination of (1)H homonuclear two-dimensional NMR techniques and (1)H-(13)C HMQC. Complete assignment of the proton and partial assignment of the (13)C resonances of the heme of these complexes has been achieved. Due to favorable rates of ligand exchange, it was also possible to assign part of the (1)H resonances of the high-spin heme via saturation transfer between high- and low-spin protein forms in a partially liganded NP2-NMeIm sample; additional resonances (vinyl and propionate) were assigned by NOESY techniques. The order of heme methyl resonances in the high-spin form of the protein over the temperature range of 10-37 degrees C is 8 = 5 > 1 > 3; the NMeIm complex has 5 > 1 > 3 > 8 as the order of heme methyl resonances at <30 degrees C, while above that temperature, the order is 5 > 3 > 1 > 8, due to crossover of the closely spaced 3- and 1-methyl resonances of the low-spin complex at higher temperatures. This crossover defines the nodal plane of the heme orbital used for spin delocalization as being oriented 162 +/- 2 degrees clockwise from the heme N(II)-Fe-N(IV) axis for the heme in the B orientation. For the NP2-ImH complex, the order of heme methyl resonances is 3 > 5 > 1 > 8, which defines the orientation of the nodal plane of the heme orbital used for spin delocalization as being oriented approximately 150-155 degrees clockwise from the heme N(II)-Fe-N(IV) axis. In both low-spin complexes, the results are most consistent with the exogenous planar ligand controlling the orientation of the nodal plane of the heme orbital. In the high-spin form of NP2, the proximal histidine plane is shown to be oriented 135 degrees clockwise from the heme N(II)-Fe-N(IV) axis, again for the B heme orientation. A correlation between the order of heme methyl resonances in the high-spin form of NP2 and several other ferriheme proteins and an apparent 90 degrees shift in the nodal plane of the orbital involved in spin delocalization from that expected on the basis of the orientation of the axial histidine imidazole nodal plane have been explained in terms of bonding interactions between Fe(III), the axial histidine imidazole nitrogen, and the porphyrin pi orbitals of the high-spin protein.  相似文献   

20.
The magnetic circular dichroism (MCD) spectrum of bis-imidazole ferrous tetraphenylporphyrin in the Soret region is nearly the mirror image of the spectrum of ferrous cytochrome b5, a bis-imidazole (histidine)-ligated hemoprotein. Based on previous MCD studies of model and protein heme systems, a sign inversion in the spectra of two heme chromophores having essentially the same coordination structure is unexpected. To investigate whether the nature of the porphyrin itself could account for the observed spectral discrepancy, two additional model complexes, bis-imidazole ferrous protoporphyrin IX dimethylester and bis-imidazole ferrous octaethylporphyrin, whose peripheral porphyrin substituent patterns more closely match that of the protein- bound porphyrin, have been prepared and their MCD spectra measured. In these cases, the band pattern of the ferrous protein in the Soret region is successfully reproduced. It therefore appears that the anomalous MCD spectrum of the tetraphenylporphyrin complex can be attributed to the nature and positioning of the peripheral substituents on the porphyrin ring. Although iron tetraphenylporphyrin complexes are frequently used as models for protoporphyrin- containing hemoproteins, one should be aware that such differences in the peripheral porphyrin substituents may significantly affect the spectral properties of the model complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号