首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligosaccharides prepared from glycosaminoglycans (GAGs) including heparin, heparan sulfate, chondroitin sulfates, dermatan sulfate, and keratan sulfate were analyzed using reverse-phase ion-pairing HPLC and ion-exchange HPLC with suppressed conductivity detection. The results were compared with those obtained by strong anion-exchange HPLC using uv detection. These oligosaccharides were first prepared by enzymatically depolymerizing the GAGs with enzymes including heparin lyase (EC 4.2.2.7), heparan sulfate lyase (EC 4.2.2.8), chondroitin ABC lyase (EC 4.2.2.4), and keratan sulfate hydrolase (EC 3.2.1.103). Analysis was then performed without derivitization under isocratic conditions with a limit of sensitivity in the picomole range. Preliminary studies suggest that this approach may be particularly useful in examining oligosaccharides having no uv chromophore such as those prepared from keratan sulfate.  相似文献   

2.
Examination of the substrate specificity of heparin and heparan sulfate lyases   总被引:15,自引:0,他引:15  
We have examined the activities of different preparations of heparin and heparan sulfate lyases from Flavobacterium heparinum. The enzymes were incubated with oligosaccharides of known size and sequence and with complex polysaccharide substrates, and the resulting degradation products were analyzed by strong-anion-exchange high-performance liquid chromatography and by oligosaccharide mapping using gradient polyacrylamide gel electrophoresis. Heparinase (EC 4.2.2.7) purified in our laboratory and a so-called Heparinase I (Hep I) from a commercial source yielded similar oligosaccharide maps with heparin substrates and displayed specificity for di- or trisulfated disaccharides of the structure----4)-alpha-D-GlcNp2S(6R)(1----4)-alpha-L-IdoAp2S( 1----(where R = O-sulfo or OH). Oligosaccharide mapping with two different commercial preparations of heparan sulfate lyase [heparitinase (EC 4.2.2.8)] indicated close similarities in their depolymerization of heparan sulfate. Furthermore, these enzymes only degraded defined oligosaccharides at hexosaminidic linkages with glucuronic acid:----4)-alpha-D-GlcNpR(1----4)-beta-D-GlcAp(1----(where R = N-acetamido or N-sulfo). The enzymes showed activity against solitary glucuronate-containing disaccharides in otherwise highly sulfated domains including the saccharide sequence that contains the antithrombin binding region in heparin. A different commercial enzyme, Heparinase II (Hep II), displayed a broad spectrum of activity against polysaccharide and oligosaccharide substrates, but mapping data indicated that it was a separate enzyme rather than a mixture of heparinase and heparitinase/Hep III. When used in conjunction with the described separation procedures, these enzymes are powerful reagents for the structural/sequence analysis of heparin and heparan sulfate.  相似文献   

3.
The rapid preparation of multimilligram quantities of five heparin-derived oligosaccharides (1–5) is described. These oligosaccharides are the final products obtained from the action of heparin lyase (heparinase, E.C. 4.2.2.7) at its primary sites in the heparin polymer. Five oligosaccharides comprise from 75–85 wt% of commercial porcine mucosal heparins and are recovered in good yield and high purity. Four of these five oligosaccharides were further acted upon at much lower rates by prolonged treatment with heparin lyase or heparan monosulfate lyase (heparitinase, E.C. 4.2.2.8), revealing the subspecificities of these enzymes. These oligosaccharides were used as defined substrates for heparin lyase and heparan monosulfate lyase and their kinetic constants were obtained. Potential applications for these oligosaccharides include their use as defined substrates for purification of heparin monosulfate lyases, and for establishing the catalytic purity of enzyme preparations.  相似文献   

4.
Action pattern of polysaccharide lyases on glycosaminoglycans   总被引:2,自引:1,他引:1  
The action pattern of polysaccharide lyases on glycosaminoglycansubstrates was examined using viscosimetric measurements andgradient polyacrylamide gel electrophoresis (PAGE). Heparinlyase I (heparinase, EC 4.2.2.7 [EC] ) and heparin lyase II (no ECnumber) both acted on heparin in a random endolytic fashion.Heparin lyase II showed an ideal endolytic action pattern onheparan sulphate, while heparin lyase I decreased the molecularweight of heparan sulphate more slowly. Heparin lyase III (heparitinase,EC 4.2.2.8 [EC] ) acted endolytically only on heparan sulphate anddid not cleave heparin. Chondroitin ABC lyase (chondroitinaseABC, EC 4.2.2.4 [EC] ) from Proteus vulgaris acted endolytically onchondroitin-6-sulphate (chondroitin sulphate C) and dermatansulphate at nearly identical initial rates, but acted on chondroitin-4-sulphate(chondroitin sulphate A) at a reduced rate, decreasing its molecularweight much more slowly. Two chondroitin AC lyases (chondroitinaseAC, both EC 4.2.2.5 [EC] ) were examined towards chondroitin-4- and-6-sulphates. The exolytic action of chondroitin AC lyase Afrom Arthrobacter aurescens on both chondroitin-4- and -6-sulphateswas demonstrated viscosimetrically and confirmed using bothgradient PAGE and gel permeation chromatography. ChondroitinAC lyase F from Flavobacterium heparinum (Cytophagia heparinia)acted endolytically on the same substrates. Chondroitin B lyase(chondroitinase B, no EC number) from F.heparinum acted endolyticallyon dermatan sulphate giving a nearly identical action patternas observed for chondroitin ABC lyase acting on dermatan sulphate. action pattern chondroitin lyase glycosaminoglycan heparin lyase.  相似文献   

5.
D M Cohen  R J Linhardt 《Biopolymers》1990,30(7-8):733-741
Heparin is a mixture of linear polysaccharides of undetermined sequence. Both biosynthetic data and computer simulation studies have established that each heparin polymer chain is comprised of oligosaccharides of defined sequence, representing ordered domains. One such ordered domian is a pentasaccharide corresponding to heparin's antithrombin III binding site. Previous computer simulation studies, performed under the assumption that heparin lyase (heparinase, EC 4.2.2.7), has a random endolytic action pattern, suggested that certain of these ordered oligosaccharide domains may themselves be nonrandomly arranged in the heparin polymer. The present work presents computer simulations of alternative action patterns for heparin lyase while assuming a random distribution of these oligosaccharide units within the heparin polymer. We consider action patterns that are determined solely by the primary structure of the substrate molecules. Results of the simulations are compared to (1) the experimental measurements of product chains formed throughout the reaction and (2) the change in weight average molecular weight Mw as a function of reaction completion as determined by absorbance at 232 nm. From the simulation of 60 action patterns for heparin lyase, we infer that one of the following statements concerning heparin and heparin lyase is true: (1) Heparin is a random arrangement of a small number of structurally defined oligosaccharide units. Heparin lyase changes its action pattern during the depolymerization of heparin (perhaps influenced by the secondary structure of substrate). (2) Heparin contain clusters of oligosaccharide sequences that are present in low concentrations (overall) in the polymer. Heparin lyase has a specificity for cleaving glycosidic linkages either exolytically at the nonreducing terminus of a chain or (endolytically) at the reducing side of these rare oligosaccharide sequence.  相似文献   

6.
Nonrandom structural features in the heparin polymer   总被引:1,自引:0,他引:1  
Computer simulation studies were used to prepare an ensemble of heparin number chains. The polydispersity of these chains was simulated by introducing a specific "fraction of terminators", and it closely resembled the experimentally observed polydispersity of a porcine mucosal, glycosaminoglycan heparin. The same percentage of simulated chains contained antithrombin III (ATIII) binding site sequences as are typically found to contain ATIII binding sites using affinity chromatography. Heparin lyase action was then simulated by using Michaelis-Menten kinetics. In one model, heparin chains were constructed from the random assembly of monosaccharide units using the observed mole percentage of each. After simulated depolymerization, the final oligosaccharides formed were compared to the observed oligosaccharide products. The simulation which assumed a random distribution of monosaccharide units in heparin did not agree with experimental observations. In particular, no ATIII binding site sequences were found in the simulated number chains. The results of this simulation indicate that heparin is not simply a random assembly of monosaccharide units. These results are consistent with the known, ordered biosynthesis of heparin. In a second model, heparin chains were constructed from randomly assembled oligosaccharides at the mole percentage in which each is found in the final product mixture. The action of heparin lyase was then simulated, and the distribution of the oligosaccharide products was measured throughout the simulated time course of the depolymerization reaction. The simulated rate of formation and final concentration of a particular oligosaccharide which contains a portion of heparin's ATIII binding site were similar to those observed experimentally. These results are consistent with the random distribution of ATIII binding sites within glycosaminoglycan heparin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Heparin lyase I has been purified from Flavobacterium heparinum and has been partially characterized (Yang, V. C., Linhardt, R. J., Berstein, H., Cooney, C. L., and Langer, R. (1985) J. Biol. Chem. 260, 1849-1857). There has been no report of the purification of the other polysaccharide lyases from this organism. Although all three of these heparin/heparan sulfate lyases are widely used, with the exception of heparin lyase I, there is no information on their purity or their physical and kinetic characteristics. The absence of pure heparin lyases and a lack of understanding of the optimal catalytic conditions and substrate specificity has stood in the way of the use of these enzymes as reagents for the specific depolymerization of heparin and heparan sulfate into oligosaccharides for structure and activity studies. This paper describes a single, reproducible scheme to simultaneously purify all three of the heparin lyases from F. heparinum to apparent homogeneity. Heparin lyase I (heparinase, EC 4.2.2.7), heparin lyase II (no EC number), and heparin lyase III (heparitinase, EC 4.2.2.8) have molecular weights (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and isoelectric points (by isoelectric focusing) of M(r) 42,800, pI 9.1-9.2, M(r) 84,100, pI 8.9-9.1, M(r) 70,800, pI 9.9-10.1, respectively. Their amino acid analyses and peptide maps demonstrate that while these proteins are different gene products they are closely related. The kinetic properties of the heparin lyases have been determined as well as the conditions to optimize their activity and stability. These data should improve the application of these important enzymes in the study of heparin and heparan sulfate.  相似文献   

8.
In the structural analysis of heparin and heparan sulfate, it is customary to combine or pool like-sized fractions obtained by size-exclusion chromatography (SEC) of enzymatically derived heparin oligosaccharides. In this study, we examine the heterogeneity of preparative-scale SEC fractions obtained from enzymatic digests of porcine intestinal mucosa heparin. Each fraction was profiled by capillary electrophoresis with UV detection (CE−UV) using a 60 mM formic acid running buffer at pH 3.43. Differences in the composition and relative concentration of components of the SEC fractions were observed for disaccharides and larger oligosaccharides. The heterogeneity of the fractions becomes more pronounced when heparin is digested using a heparin lyase cocktail. The heterogeneity of preparative SEC fractions was further investigated by reversed-phase ion-pairing ultraperformance liquid chromatography coupled with mass spectrometry (RPIP−UPLC−MS) using the ion-pairing reagent, tributylamine (Bu3N). Our results suggest that preliminary profiling of preparative SEC fractions prior to pooling may simplify efforts to identify and/or isolate rare structures.  相似文献   

9.
Yang HO  Gunay NS  Toida T  Kuberan B  Yu G  Kim YS  Linhardt RJ 《Glycobiology》2000,10(10):1033-1039
Eight oligosaccharides were prepared from dermatan sulfate (DS) and their structures were elucidated. Porcine intestinal mucosal DS was subjected to controlled depolymerization using chondroitin ABC lyase (chondroitinase ABC). The oligosaccharide mixture formed was fractionated by low-pressure gel permeation chromatography (GPC). Size uniform mixtures of disaccharides, tetrasaccharides, hexasaccharides, octasaccharides, decasaccharides, and dodecasaccharides were obtained. Each size-fractionated mixture was then purified on the basis of charge by repetitive semi-preparative strong-anion-exchange (SAX) high-performance liquid chromatography (HPLC). This approach has led to the isolation of six homogeneous oligosaccharides. The size of the oligosaccharides were determined using GPC-HPLC. Treatment of tetrasaccharide and hexasaccharide fragments with Hg(OAc)2 afforded trisaccharide and pentasaccharide products, respectively. The purity of the oligosaccharides obtained was confirmed by analytical SAX-HPLC, and capillary electrophoresis (CE). The molecular mass and degree of sulfation of the eight purified oligosaccharides were elucidated using electrospray ionization (ESI) mass spectrometry and their structures were established with high field nuclear magnetic resonance (NMR) spectroscopy. These DS-oligosaccharides are currently being used to study for interaction of the DS with biologically important proteins.  相似文献   

10.
Heparin has been enzymatically depolymerized with heparinase (heparin lyase (EC 4.2.2.7)) and then separated into di-, tetra-, hexa-, octa-, and decasaccharide mixtures by low-pressure gel-permeation chromatography (GPC). These sized mixtures were resolved by strong anion-exchange (SAX) HPLC into multiple components. The fractions from the SAX-HPLC were collected and characterized for size by GPC-HPLC and sulfate content by ion chromatography. This study provides detailed methodology for the separation of larger and more highly sulfated oligosaccharides than previously reported. It describes the first use of ion chromatography for the accurate determination of the sulfate content of heparin oligosaccharides, a method which can also be applied to heparin and other glycosaminoglycans.  相似文献   

11.
Porcine mucosal heparin was partially depolymerized with heparinlyase I and then fractionated into low-molecularweight (<5000)and high-molecular-weight (>5000) oligosaccharides by pressurefiltration. The high-molecular-weight oligosaccharide mixture({small tilde}50 wt% of the starting heparin) also containedintact heparin. This intact polymer complicates oligosacsharidepurification. Thus, the low-molecular-weight fraction was usedto prepare homogeneous oligosaccharides for structural characterization.The low-molecular-weight oligosaccharide mixture was first fractionatedby low pressure gel permeation chromatography into size-uniformmixtures of disaccharides, tetrasaccharides, hexasaccharides,octasaccharides, decasaccharides, dodecasaccharides, tetradecasaccharidesand higher oligosaccharides. Each size-fractionated mixturewas then purified on the basis of charge by repetitive semi-preparativestrong-anion-exchange high-performance liquid chromatography.This approach has led to the isolation of 14 homogeneous oligosaccharidesfrom disaccharide to tetradecasaccharide. The purity of theseheparin-derived oligosaccharides was determined by gradientpolyacrylamide gel electrophoresis, analytical strong-anion-exchangehigh-performance liquid chromatography, capillary electrophoresisand one-dimensional nuclear resonance spectroscopy. The structureof these oligosaccharides was established using 600 MHz two-dimensionalnuclear resonance spectroscopy . The spectral methods used includedhomonuclear correlation spectroscopy, nuclear Overhauser effectspectroscopy and heteronuclear multiple quantum coherence spech-clscopy.The 1H/1H connectivities of the protons of each sugar residuein an oligosaccharide were established by two-dimensional homonuclearcorrelation spectroscopy, while 1H/13C assignments were madeusing 1H inverse detection. One- and two-dimensional nuclearresonance spectroscopic analysis of these heparin oligosaccharidesshowed two closely related groups of heparin-oligosaccharidesare afforded by enzymatic depolymerization of heparin. One groupis fully sulphated, having the structures  相似文献   

12.
The last step of heparin biosynthesis is thought to involve the action of 3-O-sulfotransferase resulting in the formation of an antithrombin III (ATIII) binding site required for heparin's anticoagulant activity. The isolation of a significant fraction of heparin chains without antithrombin III-binding sites and having low affinity for ATIII suggests the presence of a precursor site, lacking the 3-O-sulfate group. Porcine mucosal heparin was depolymerized into a mixture of oligosaccharides using heparin lyase. One of these oligosaccharides was derived from heparin's ATIII-binding site. In an effort to find the ATIII-binding site precursor, the structures of several minor oligosaccharides were determined. A greater than 90% recovery of oligosaccharides (on a mole and weight basis) was obtained for both unfractionated and affinity-fractionated heparins. An oligosaccharide arising from the ATIII-binding site precursor was found that comprised only 0.8 mol % of the oligosaccharide product mixture. This oligosaccharide was only slightly enriched in heparin having a low affinity for ATIII and only slightly disenriched in high affinity heparin. The small number of these ATIII-binding site precursors, found in unfractionated and fractionated heparins, suggests the existence of a low ATIII affinity heparin may not simply be the result of the incomplete action of 3-O-sulfotransferase in the final step in heparin biosynthesis. Rather these data suggest that some earlier step, involved in the formation of placement of these precursor sites, may be primarily responsible for high and low ATIII affinity heparins.  相似文献   

13.
The structures of a series of large oligosaccharides derived from acharan sulfate were characterized. Acharan sulfate is an unusual glycosaminoglycan isolated from the giant African snail, Achatina fulica. Oligosaccharides from decasaccharide to hexadecasaccharide were enzymatically prepared using heparin lyase II and purified. Capillary electrophoresis and gel electrophoresis confirmed the purity of these oligosaccharides. Their structures, determined by ESI-MS and NMR, were consistent with the major repeating sequence in acharan sulfate, -->4)-alpha-d-GlcN(p)Ac-(1-->4)-alpha-l-IdoA(p)2S-(1-->, terminated by 4-linked alpha-d-GlcN(p)Ac residue at the reducing end and by 4,5-unsaturated pyranosyluronic acid 2-sulfate at the non-reducing end.  相似文献   

14.
We propose a two-dimensional sugar map method for the simple, reproducible, and sensitive analysis of the structures of N-linked oligosaccharides. The structure of an unknown oligosaccharide can be characterized from its position on the map. The data base for the sugar map is prepared by the use of 113 kinds of standard oligosaccharides, 58 of whose structures have been confirmed by 1H NMR spectroscopy. The present method involves six steps, (i) preparation of oligosaccharides from glycopeptides by N-oligosaccharide glycopeptidase (almond) digestion, (ii) derivatization of the reducing ends of oligosaccharides with a fluorescent reagent, 2-amino-pyridine, by using sodium cyanoborohydride, (iii) separation of oligosaccharide derivatives by high-performance liquid chromatography with an ODS-silica column, (iv) analysis of the size of each separated oligosaccharide on an amide-silica column, (v) plotting of the elution position of a sample on the two-dimensional sugar map obtained for the standard oligosaccharides, and (vi) structural analysis of the oligosaccharides by a combination of sequential exoglycosidase digestion and the steps (iii-v). The present method was applied to the identification of the structures of oligosaccharides in hen ovalbumin. It was found that two unusual oligosaccharides that have not yet been reported exist in ovalbumin.  相似文献   

15.
C(18) and C(8) bonded stationary phases dynamically coated with cetyltrimethylammonium (CTA) and strong anion exchange (SAX) were developed to obtain separations of oligosaccharide mixtures resulting from chemical or enzymatic depolymerization of heparin. With this method, the retention of sulfated oligosaccharides is directly adjustable depending on the amount of CTA adsorbed into the column. Oligosaccharides containing up to 20 sulfates were separated with a resolving power superior to that of conventional SAX analysis. The stability of the column coating enables hundreds of injections. Using ammonium methane sulfonate aqueous solutions as ultraviolet transparent mobile phases, it was possible to set up double detection, including selective detection of acetylated oligosaccharides. Analytical gel permeation chromatography was directly coupled to CTA-SAX, obtaining a two-dimensional profile of analyzed oligosaccharidic mixtures. A sequencing method of heparin oligosaccharides using partial depolymerization by heparinases according to their size and sulfation pattern and digest analysis by CTA-SAX was developed. A direct application of this method to the analysis of oligosaccharide mixtures obtained by complete digestion of heparins by heparinases I, II, and III was done. It allowed a reliable quantification of heparin building blocks. We also focused our attention on di- and tetrasaccharidic species containing the 3-O-sulfated glucosamines taken as markers of the active sites for antithrombin III. The method was also applied to more complex mixtures resulting from porcine heparin partially depolymerized with heparinase I. The specificity of the reaction was studied up to decasaccharidic fractions.  相似文献   

16.
Carbohydrate chip technology has a great potential for the high-throughput evaluation of carbohydrate-protein interactions. Herein, we report syntheses of novel sulfated oligosaccharides possessing heparin and heparan sulfate partial disaccharide structures, their immobilization on gold-coated chips to prepare array-type Sugar Chips, and evaluation of binding potencies of proteins by surface plasmon resonance (SPR) imaging technology. Sulfated oligosaccharides were efficiently synthesized from glucosamine and uronic acid moieties. Synthesized sulfated oligosaccharides were then easily immobilized on gold-coated chips using previously reported methods. The effectiveness of this analytical method was confirmed in binding experiments between the chips and heparin binding proteins, fibronectin and recombinant human von Willebrand factor A1 domain (rh-vWf-A1), where specific partial structures of heparin or heparan sulfate responsible for binding were identified.  相似文献   

17.
Thrombin-inhibitory activity of whale heparin oligosaccharides   总被引:1,自引:0,他引:1  
Whale heparin was partially digested with a purified heparinase and the oligosaccharide fractions with 8-20 monosaccharide units were isolated from the digest by gel filtration on Sephadex G-50, followed by affinity chromatography on a column of antithrombin III immobilized on Sepharose 4B. A marked difference in the inhibitory activity for thrombin in the presence of antithrombin III was observed between the high-affinity fractions for antithrombin III of octasaccharide approximately hexadecasaccharide and those of octadecasaccharide approximately eicosasaccharide. The disaccharide compositions of these hexadeca-, octadeca-, and eicosasaccharides were analyzed by high-performance liquid chromatography after digestion with a mixture of purified heparitinases 1 and 2 and heparinase. The analytical data indicated that the proportions of trisulfated disaccharide (IdUA(2S)alpha 1----4GlcNS(6S)) and disulfated disaccharide (UA1----4GlcNS(6S)) increased with the manifestation of high thrombin-inhibitory activity, while that of monosulfated disaccharide (UA1----4GlcNS) decreased. The present observations, together with those so far reported, suggest that the presence of the former structural elements, specifically IdUA(2S)alpha 1----4GlcNS(6S), as well as the antithrombin III-binding pentasaccharide at the proper positions in the molecules of whale heparin oligosaccharides is essential for the manifestation of high inhibitory activity for thrombin in the presence of antithrombin III. The structural bases for the manifestation of the anticoagulant activity of whale and porcine heparins and their oligosaccharides are also discussed.  相似文献   

18.
Heparin lyase I (heparinase I) specifically depolymerizes heparin, cleaving the glycosidic linkage next to iduronic acid. Here, we show the crystal structures of heparinase I from Bacteroides thetaiotaomicron at various stages of the reaction with heparin oligosaccharides before and just after cleavage and product disaccharide. The heparinase I structure is comprised of a β-jellyroll domain harboring a long and deep substrate binding groove and an unusual thumb-resembling extension. This thumb, decorated with many basic residues, is of particular importance in activity especially on short heparin oligosaccharides. Unexpected structural similarity of the active site to that of heparinase II with an (α/α)6 fold is observed. Mutational studies and kinetic analysis of this enzyme provide insights into the catalytic mechanism, the substrate recognition, and processivity.  相似文献   

19.
Salt-active acharan sulfate lyase (no EC number) has been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with GAG degrading enzymes. The enzyme was purified to apparent homogeneity by a combination of QAE-cellulose, diethylaminoethyl (DEAE)-cellulose, CM-Sephadex C-50, HA ultrogel and phosphocellulose column chromatography with the final specific activity of 81.33 micro mol x min-1 x mg-1. The purified salt-active acharan sulfate lyase was activated to 5.3-fold by salts (KCl and NaCl). The molecular weight of salt-active acharan sulfate lyase was 94 kDa by SDS/PAGE and gel filtration. The salt-active acharan sulfate lyase showed optimal activity at pH 7.2 and 40 degrees C. Salt-active acharan sulfate lyase activity was potently inhibited by Cu2+, Ni2+ and Zn2+. This enzyme was inhibited by some agents, butanediol and p-chloromercuric sulfonic acid, which modify arginine and cysteine residues. The purified Bacteroidal salt-active acharan sulfate lyase acted to the greatest extent on acharan sulfate, to a lesser extent on heparan sulfate and heparin. The biochemical properties of the purified salt-active acharan sulfate lyase are different from those of the previously purified heparin lyases. However, these findings suggest that the purified salt-active acharan sulfate lyase may belong to heparin lyase II.  相似文献   

20.
Hyaluronic acid was treated exhaustively with a hyaluronate lyase (hyaluronidase, EC 4.2.2.1) from Streptomyces hyalurolyticus to obtain a tetrasaccharide and a hexasaccharide product in a molar ratio of 1 to 1.2. The tetrasaccharide product was fluorescently labeled at the reducing end by reductive amination with 7-amino 1,3-naphthalene disulfonic acid (AGA) and the structure of the conjugate was determined spectroscopically. Partial treatments of hyaluronic acid with hyaluronate lyase afforded complex mixtures of oligosaccharides that were similarly fluorescently labeled. These labeled oligosaccharide mixtures were analyzed using high-resolution capillary electrophoresis. The resulting electropherograms showed the content of each hyaluronic acid derived oligosaccharide, having a degree of polymerization (dp) from 4 to 50, throughout the enzymatic reaction. Computer simulation studies gave comparable kinetic profiles suggesting that hyaluronate lyase exhibits a random endolytic action pattern. Interestingly, oligosaccharides of certain size (dp) were under-represented in these oligosaccharide mixtures suggesting that linkages at spacings of 10 to 12 saccharide units are somewhat resistant to this enzyme. The cause of this resistance might be the result of secondary or higher order structural features present in the hyaluronic acid polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号