首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A characteristic microfacies of the Late Jurassic to Early Cretaceous allodapic Barmstein Limestone of the Northern Calcareous Alps are clasts of wackestones with numerous fragments of calcareous algae (“algal debris-facies”). According to dasycladale palaeocoenoses, several subtypes comprising different associations can be distinguished. One association is characterized by the debris of an unknown large dasycladalean alga reported as dasycladalean alga indet. sp. 1 from different localities in the Northern Calcareous Alps, typically forming a monospecific assemblage. Another microfacies type contains star-like calcitic bodies tentatively referred to the morphospecies Coptocampylodon pantici Ljubović-Obradović and Radoičić, originally described as being from the Turonian of NW-Serbia. Other Coptocampylodon-like bodies represent the calcified tufts of the laterals of Selliporella neocomiensis (Radoičić). The occurrence of Coptocampylodon pantici-like microfossils in the Late Tithonian to Early Berriasian, shows that obviously different species of dasycladaleans display identical to similar shaped tufts of laterals in transverse sections when becoming fragmented. Coptocampylodon pantici Ljubović-Obradović and Radoičić was observed only from different occurrences of Barmstein Limestone, but not from the autochthonous platform carbonates of the Plassen carbonate platform. The Coptocampylodon algal debris-facies is also reported from the Late Jurassic of Albania, Mirdita zone. Occurrences of different types of algal debris-facies in components of mass-flow deposits can be used as a tool to reconstruct eroded carbonate platforms and tectonics, as demonstrated in the Northern Calcareous Alps and the Albanides. Finally, the general occurrences of algal debris-facies in both settings—intra-Tethyan mostly isolated platforms (Alps, Albanides) vs. extended epeiric platforms (Middle East)—are compared and discussed.  相似文献   

2.
3.
Jurassic neptunian dikes are common within Upper Triassic to Lower Jurassic platform limestone of the Julian Alps. At Mt Mangart, the following geometries were observed: irregular dissolution cavities, thin penetrative fractures, larger fractures with sharp sidewalls, and laterally confined breccia bodies. Inside a complex neptunian dike system two main generations of infillings were differentiated. The first generation is heterogeneous and consists of bioclastic limestones, representing uniquely preserved sediments subdivided into five different microfacies. The second generation is more common and typically consists of coarse-grained breccias with host-rock clasts and marly limestone matrix containing echinoderms. Fracture formation and void filling of the first generation of neptunian dikes is dated as Pliensbachian and is interpreted to be caused by the Julian carbonate platform dissection due to widely recognized Lower Jurassic Tethyan rifting. The timing of formation for the second generation is only broadly constrained, ranging from the Pliensbachian to the Late Cretaceous.  相似文献   

4.
Summary Selected Late Paleozoic and Triassic limestone exposures were studied on northern Palawan Island, Philippines, with regard to microfacies, stratigraphy and facies interpretation. Although some of the outcrops were already reported in literature, we present the first detailed microfacies study. Late Paleozoic carbonates in the El Nido area are represented by widley distributed Permian and locally very restricted Carbonifenous limestones. Of particular interest is the first report of Carboniferous limestones in the Philippines dated by fossils. Fusulinids indicate a ‘Middle’ Carboniferous (Moscovian-Kasimovian) age of the Paglugaban Formation only known from Paglugaban Island. The Permian Minilog Formation consists mostly of fusulinid wackestones and dasycladacean wacke-/packstones. Fusulinid datings (neoschwagerinids and verbeekinids) provide a Guadalupian (Wordian-Capitanian) age. The depositional setting of the Middle Permian carbonates corresponds to a distally steepened ramp with biostromes built by alatoconchid bivalves locally associated with richthofeniid brachiopods. Late Triassic limestones occur in isolated exposures on and around Busuanga Island (Calamian Islands). The age of the investigated carbonates is Rhaetian based on the occurrence ofTriasina hantkent Maizon. Microfacies data indicate the existence of reefs (Malajon Island) and carbonate platforms (Kalampisanan Islands, Busuanga Island, Coron Island). Reef boundstones are characterized by abundant solenoporacean red algae, coralline sponges and corals. Platform carbonates yield a broad spectrum of microfacies types, predominantly wacke- and packstones with abundant involutinid foraminifera and some calcareous algae. These facies types correspond to platform carbonates known from other parts of Southeast Asia (Eastern Sulawesi and Banda Basin; Malay Peninsula and Malay Basin). The Philippine platform carbonates were deposited on and around seamounts surrounded by deeper water radiolarian cherts. The new data on facies and age of the Philippine Permian and Triassic carbonates contradict a close paleogeographical connection between the North Palawan Block and South China and arise problems for the currently proposed origin of the North Palawan Block at the paleomargin of South China. We hypothesize that North Palawan was part of the Indochina Block during the Carboniferous and Permian, separated from the Indochina Block during the Middle Permian and collided with the South China Block in the Late Cretaceous.  相似文献   

5.
Two tooth morphotypes corresponding to one or two tetrapod species from the Late Jurassic or Earliest Cretaceous locality of Ksar Metlili (KM), Anoual Syncline (eastern Morocco), are reported and described. These teeth cannot be related to any of the identified vertebrate major groups of this site. They are tricusped and uniradiculate, with a high and large main central cusp mesio-distally surrounded by two smaller accessory cusps. Their morphology is reminiscent of several taxa such as pterosaurs, notosuchians and mammals, with which they are compared here. These morphotypes are tentatively referred to cf. Cynodontia indet. They would be the most recent non-mammaliaform cynodonts reported in Africa and among the latest described. The KM specimens display remarkable plesiomorphic dental features with respect to known contemporaneous non-mammaliaform cynodonts. They might indicate the survival of a relict lineage in a North African refugium.  相似文献   

6.
Felix Schlagintweit 《Facies》2008,54(3):377-402
Examples of bioerosional processes (boring patterns) are described from shallow-water limestones of the Late Jurassic Plassen Carbonate Platform (PCP) and the Late Cretaceous to Paleocene Gosau Group of the Northern Calcareous Alps, Austria. Some micro-/macro-borings can be related to distinct ichnotaxa, others are classified in open nomenclature. In the Alpine Late Jurassic, bioerosional structures recorded from clasts in mass-flows allow palaeogeographical conclusions concerning the source areas. In particular, these are borings of the Trypanites-ichnofacies detected from clasts (Barmstein limestones) of the PCP or special type of bored ooids of unknown source areas or restricted autochthonous occurrences. In the Lower Gosau Subgroup, Gastrochaenolites macroborings occur in mobile carbonate clast substrates of shore zone deposits (“Untersberg Marmor”). Different types of borings are recorded from rudist shells and coral skeleton, some of which are referable to the ichnotaxon Entobia produced by endolithic sponges. In the present study, special attention is paid to the occurrences of the cryptobiotic foraminifera Troglotella incrustans Wernli and Fookes in the Late Jurassic and Tauchella endolithica Cherchi and Schroeder in the Late Cretaceous. The latter is so far only known to be from the Early Cenomanian of France and is reported here for the first time from the Late Turonian-Early Coniacian stratigraphic interval where it was found in turbulent carbonate deposits within borings penetrating bivalve shells or coralline algae. The records of cryptobiotic foraminifera from the Northern Calcareous Alps are supplemented by a single finding from the Middle Cenomanian of SE France. A palaeoenvironmental interpretation of the occurrences of the cryptobiotic foraminifera is provided.  相似文献   

7.
The French dinosaur record is one of the most extensive in Europe; it ranges stratigraphically from the Late Triassic to the Latest Cretaceous. All major clades of dinosaurs but marginocephalians are known. About 20 species are based on significant material; the theropods are the best represented. Most of these taxa have been described or revised in recent years. Important specimens have been discovered in the Late Triassic of eastern France, the Middle Jurassic of Normandy, and the Late Cretaceous of Provence and Languedoc. The ichnological record is good for the Late Triassic-Early Jurassic, and the Late Cretaceous egg sites are among the richest in the world. To cite this article: R. Allain, X.P. Suberbiola, Palevol 2 (2003) 27–44.  相似文献   

8.
The origin of Jurassic reefs: Current research developments and results   总被引:2,自引:0,他引:2  
Summary In order to elucidate the control of local, regional and global factors on occurrence, distribution and character of Jurassic reefs, reefal settings of Mid and Late Jurassic age from southwestern Germany, Iberia and Romania were compared in terms of their sedimentological (including diagenetic), palaeoecological, architectural, stratigraphic and sequential aspects. Upper Jurassic reefs of southern Germany are dominated by siliceous sponge—microbial crust automicritic to allomicritic mounds. During the Oxfordian these form small to large buildups, whereas during the Kimmeridgian they more frequently are but marginal parts of large grain-dominated massive buildups. Diagenesis of sponge facies is largely governed by the original composition and fabric of sediments. The latest Kimmeridgian and Tithonian spongiolite development is locally accompanied by coral facies, forming large reefs on spongiolitic topographic elevations or, more frequently, small meadows and patch reefs within bioclastic to oolitic shoal and apron sediments. New biostratigraphic results indicate a narrower time gap between Swabian and Franconian coral development than previously thought. Palynostratigraphy and mineralostratigraphy partly allow good stratigraphic resolution also in spongiolitic buildups, and even in dolomitised massive limestones. Spongiolite development of the Bajocian and Oxfordian of eastern Spain shares many similarities. They are both dominated by extensive biostromal development which is related to hardground formation during flooding events. The Upper Jurassic siliceous sponge facies from Portugal is more localised, though more differentiated, comprising biostromal, mudmound and sponge-thrombolite as well as frequent mixed coral-sponge facies. The Iberian Upper Jurassic coral facies includes a great variety of coral reef and platform types, a pattern which together with the analysis of coral associations reflects the great variability of reefal environments. Microbial reefs ranging from coralrich to siliceous sponge-bearing to pure thrombolites frequently developed at different water depths. Reef corals even thrived within terrigeneous settings. In eastern Romania, small coral reefs of various types as well as larger siliceous sponge-microbial crust mounds grew contemporaneously during the Oxfordian, occupying different bathymetric positions on a homoclinal ramp. Application of sequence stratigraphic concepts demonstrates that onset or, in other cases, maximum development of reef growth is related to sea level rise (transgressions and early highstand) which caused a reduction in allochthonous sedimentation. The connection of reef development with low background sedimentation is corroborated by the richness of reefs in encrusting organisms, borers and microbial crusts. Microbial crusts and other automicrites can largely contribute to the formation of reef rock during allosedimentary hiatuses. However, many reefs could cope with variable, though reduced, rates of background sedimentation. This is reflected by differences in faunal diversities and the partial dominance of morphologically adapted forms. Besides corals, some sponges and associated brachiopods show distinct morphologies reflecting sedimentation rate and substrate consistency. Bathymetry is another important factor in the determination of reefal composition. Not only a generally deeper position of siliceous sponge facies relative to coral facies, but also further bathymetric differentiation within both facies groups is reflected by changes in the composition, diversity and, partly, morphology of sponges, corals, cementing bivalves and microencrusters. Criteria such as authigenic glauconite, dysaerobic epibentic bivalves,Chondrites burrows or framboidal pyrite in the surrounding sediments of many Upper Jurassic thrombolitic buildups suggest that oxygen depletion excluded higher reefal metazoans in many of these reefs. Their position within shallowing-upwards successions and associated fauna from aerated settings show that thrombolitic reefs occurred over a broad bathymetric area, from moderately shallow to deep water. Increases in the alkalinity of sea water possibly enhanced calcification. Reefs were much more common during the Late Jurassic than during the older parts of this period. Particularly the differences between the Mid and Late Jurassic frequencies of reefs can be largely explained by a wider availability of suitable reef habitats provided by the general sea level rise, rather than by an evolutionary radiation of reef biota. The scarcity of siliceous sponge reefs on the tectonically more active southern Tethyan margin as well as in the Lusitanian Basin of west-central Portugal reflects the scarcity of suitable mid to outer ramp niches. Coral reefs occurred in a larger variety of structural settings. Upper Jurassic coral reefs partly grew in high latitudinal areas suggesting an equilibrated climate. This appears to be an effect of the buffering capacity of high sea level. These feedback effects of high sea level also may have reduced oceanic circulation particularly during flooding events of third and higher order, which gave rise to the development of black shales and dysaerobic thrombolite reefs. Hence, the interplay of local, regional and global factors caused Jurassic reefs to be more differentiated than modern ones, including near-actualistic coral reefs as well as non-actualistic sponge and microbial reefs.  相似文献   

9.
Carsten Helm  Immo Schülke 《Facies》2006,52(3):441-467
Small reefal bioconstructions that developed in lagoonal settings are widespread in a few horizons of the Late Jurassic (Oxfordian) succession of the Korallenoolith Formation, exposed southwest of Hannover, Northwest Germany. Especially the florigemma-Bank Member, “sandwiched” between oolite shoal deposits, exposes a high variety of build-ups, ranging from coral thrombolite patch reefs, to biostromes and to coral meadows. The reefs show a distribution with gradual facies variations along an outcrop belt that extends about 30 km from the Wesergebirge in the NW to the Osterwald Mts in the SE.The patch reefs from the Deister Mts locality at the “Speckhals” are developed as coral-chaetetid-solenoporid-microbialite reefs and represent a reef type that was hitherto unknown so far north of its Tethyan counterparts. They are mainly built up by coral thickets that are preserved in situ up to 1.5 m in height and a few metres in diameter. They contain up to 20 coral species of different morphotypes but are chiefly composed of phaceloid Stylosmilia corallina and Goniocora socialis subordinately. The tightly branched Stylosmilia colonies are stabilized by their anastomosing growth. The coral branches are coated with microbial crusts and micro-encrusters reinforcing the coral framework. Encrusters and other biota within the thicket show a typical community replacement sequence: Lithocodium aggregatum, Koskinobullina socialis and Iberopora bodeuri are pioneer organisms, whereas the occurrence of non-rigid sponges represents the terminal growth stage. The latter are preserved in situ and seem to be characteristic so far poorly known constituents of the Late Jurassic cryptobiont reef dweller community. The distance and overall arrangement of branches seems to be the crucial factor for the manifestation of a (cryptic) habitat promoting such community replacement sequences. Widely spaced branches often lack any encrusting and/or other reef dwelling organisms, whereas tightly branched corals, as is St. corallina, stimulate such biota. Hence, such reefs are well suited for research on coelobites and community sequences of encrusting and cavity dwelling organisms.  相似文献   

10.
Thaumatoporellacean algae are widespread constituents in Middle Triassic–Cretaceous shallow-marine carbonates of the Tethyan realm. Based on various examples from Mesozoic limestones of Mediterranean platforms (e.g., Dinaric, Apenninic, Apulia) and rare records of Iberia (Pyrenees), Saudi Arabia and Mexico, it is shown that thaumatoporellaceans commonly dwelt as cryptoendoliths in the tests of larger benthic foraminifera and the thalli of dasycladalean algae. Their high morphological plasticity allowed the test invasion and the adaptation to the available interior spaces (chambers, apertures). The temporal distribution of cryptoendolithic thaumatoporellaceans with first records in the Late Triassic, shows acme intervals in Early–Middle Jurassic and Early–Late Cretaceous times. Within the foraminiferans, the thaumatoporellaceans were erroneously considered as an integral part of the test, respectively, phrenoteca-like structures (species Biokovina gradacensis) in the Lower Jurassic and trematophore (species Scandonea? mediterranea) in the Upper Cretaceous. Therefore, the presence of phrenoteca-like structures in the Biokovinidae, being part of the family diagnosis, is challenged. The comparably thin walls of the cryptoendolithic thaumatoporellacean algae are interpreted as an adaptation to the poorly illuminated microhabitats (photoadaptation) in order to maximize light capture for photosynthesis.  相似文献   

11.
Upper Jurassic‐Lower Cretaceous sponge biostromes and bafflestone mounds were common and widespread in European temperate to tropical marine environments. They declined markedly during the Late Cretaceous. Most sponge frameworks were paucispecific and ecologically simple, with only basic levels of succession or tiering. The occurrence of ecologically complex, lithistid sponge biostromes and mounds in the Cenomanian Quadersandstein Member, Regensburger Grünsandstein of the Saal Quarry, Bavaria, is therefore of special significance. These are ecologically the most complex sponge frameworks yet reported from the Cretaceous. Their size, morphology and ecological organization compare favorably with shallow‐water, sponge‐dominated frameworks in modern seas. The Saal Quarry sponge frameworks are generally associated with firmgrounds and condensed intervals in the transgressive systems tract of the Cenomanian‐Turonian, tectonoeustatic supercycle UZA‐2. The lowest sponge frameworks are up to 1 m high bafflestone mounds consisting of large, irregular, sheet‐ and mound‐like recumbent sponges overlain by diverse, cylindrical, pyriform, upward‐branching forms of Jerea and Siphonia. These biostromes overlie a condensed interval or firmground which locally contains small, in situ pyriform sponges (Jerea pyriformis Lamouroux) as well as Middle Cenomanian Inoceramus etheridgei Woods. The upper sponge frameworks consist of bafflestone mounds up to 4.4 m wide and 1.3 m high, composed of six lithistid sponge morphotypes, possibly representing several species of Jerea and Siphonia. The occurrence of Rotalipora cushmanni in strata overlying the upper sponge framework indicates a Late Cenomanian age. Morphotypes preserve internal sponge morphologies and partially dissolved spicules surrounded by a diagenetic halo of silicified, pelletoid grainstone and/or packstone. Silica cements were derived from spicule dissolution. Different combinations of these morphotypes dominate three to four successional stages of sponge framework growth, and show vertical ecological tiering within communities. This ecological zonation is consistent among frameworks, and is partially or wholly repeated between storm‐related disturbance events.  相似文献   

12.
The very common and species-rich Scleractinian genus Actinastrea (family Actinastraeidae, suborder Archeocaeniina) is revised on the basis of the type material of its type species and additional material from the type locality. A lectotype is designated for the type species. It was discovered that Jurassic to Early Cretaceous corals currently assigned to Actinastrea do not fit into the concept of this genus. These species belong to the genus Stelidioseris, which is also revised on the basis of the type of the type species, including designating a lectotype. These two genera are distinguished by various characteristics: septal external parts are swollen in Actinastrea but not in Stelidioseris, the costae are confluent in Stelidioseris but not in Actinastrea, the coenosteum is granulated in Actinastrea but narrow than in Actinastrea and only with costae in Stelidioseris. Actinastrea is restricted to the Late Cretaceous (Late Turonian—Maastrichtian), whereas Stelidioseris originates in the Jurassic and reaches into the Late Cretaceous, but is less common from the Turonian on.  相似文献   

13.
Markus Wilmsen  Emad Nagm 《Facies》2012,58(2):229-247
The Cenomanian–Turonian (Upper Cretaceous) Galala and Maghra el Hadida formations of the Southern Galala Plateau in Wadi Araba (northern Eastern Desert, Egypt) represent marine depositional systems developing in response to the early Late Cretaceous transgression at the southern margin of the Neotethyan Ocean in tropical paleolatitudes. A facies analysis (litho-, bio- and microfacies) of these successions shows the presence of 22 facies types (FTs, six are related to the Galala Formation, while the Maghra el Hadida Formation is represented by 16 FTs). The Galala Formation was deposited in a fully marine lagoonal environment developing in response to a latest Middle to early Late Cenomanian transgression. The rich suspension- and deposit-feeding macrobenthos of the Galala Formation indicate meso- to eutrophic (i.e., green water) conditions. The facies types of the uppermost Cenomanian–Turonian Maghra el Hadida Formation suggest deposition on a homoclinal carbonate ramp with sub-environments ranging from deep-subtidal basin to intertidal back-ramp. Major and rapid shifts in depositional environments, related to (relative) sea-level changes, occurred in the mid-Late Cenomanian, the Early–Middle Turonian boundary interval, the middle part of the Middle Turonian and the Middle–Late Turonian boundary interval.  相似文献   

14.
The Paleocene–Eocene Taleh Zang Formation of the Zagros Basin is a sequence of shallow-water carbonates. We have studied carbonate platform, sedimentary environments and its changes based on the facies analysis with particular emphasis on the biogenic assemblages of the Late Paleocene Sarkan and Early Eocene Maleh kuh sections. In the Late Paleocene, nine microfacies types were distinguished, dominated by algal taxa and corals at the lower part and larger foraminifera at the upper part. The Lower Eocene section is characterised by 10 microfacies types, which are dominated by diverse larger foraminifera such as alveolinids, orbitolitids and nummulitids. The Taleh Zang Formation at the Sarkan and Maleh kuh sections represents sedimentation on a carbonate ramp.

The deepening trends show a gradual increase in perforate foraminifera, the deepest environment is marked by the maximum occurrence of perforate foraminifers (Nummulites), while the shallowing trends are composed mainly of imperforate foraminifera and also characterised by lack of fossils in tidal flat facies.

Based on the facies changes and platform evolution, three stages are assumed in platform development: I; algal and coralgal colonies (coralgal platform), II; coralgal reefs giving way to larger foraminifera, III; dominance of diverse and newly developing larger foraminifera lineages in oligotrophic conditions.  相似文献   

15.
The trace fossil Zoophycos characterized by complex, three‐dimensional morphology with systematic internal structures occurs throughout the Phanerozoic marine sediments. The specimens of Zoophycos examined herein consist of a downward and helical spreite and are a product of the excretory behaviour of endobenthic detritus feeders. They are divided into two basic types: pre‐Jurassic and post‐Cretaceous types on the basis of whorls of spreiten in a single specimen. The pre‐Jurassic type has fewer than four whorls. In contrast, most of the post‐Cretaceous specimens exhibit spreite with multiple coils more than ten whorls. The abrupt increase in whorl number during the Cretaceous suggests that the sedentary lifestyle of the producer should change from a short‐term stay to long‐term or permanent occupation of the same burrow. Timing of the lifestyle change the Zoophycos producers seems to be closely related to the deep‐seaward migration of their habitats. The change in lifestyle and migration of Zoophycos‐producing animals during the Cretaceous might be attributable to the establishment of eutrophic bottom conditions in the deep sea. These changes seem to be associated with the flux of large amounts of phytodetrital food produced by phytoplankton, which experienced an explosive increase in species diversity during the Late Jurassic to the Late Cretaceous. The series of changes in lifestyle and habitat of the Zoophycos animals during the Late Mesozoic can serve as one piece of geological evidence for the ‘benthic‐pelagic coupling model’.  相似文献   

16.
A. V?r?s 《Facies》2012,58(3):415-443
The Villány area, as a central part of the Tisza microcontinent/terrane along the European margin of Tethys, was characterized by intense subsidence in the Early and Middle Triassic, followed by a long interruption of subsidence in the Late Triassic to Middle Jurassic. During the Middle–Late Jurassic transition, marine sedimentation started with three distinct sedimentary episodes dated as Late Bathonian, Early Callovian, and Middle–Late Callovian, respectively. The succession is terminated by a thick limestone of Middle Oxfordian age. The sedimentary features, microfacies, and macroinvertebrate associations of these four stratigraphic units are documented and illustrated. The Middle to Late Jurassic sedimentary episodes of the Villány succession record an interplay of local and global factors and paleogeographical changes. At the beginning, local tectonic movements governed the main features of sedimentation, though the role of eustasy was also essential. From the mid-Callovian onwards, global climatic, biotic, and paleoceanographical changes controlled the nature and formation of the local carbonate sediments. The Callovian stromatolites are attributed to the activity of sulphate-reducing bacteria in a deep sublittoral, current-swept environment. Upwelling of eutrophic Tethyan waters is recorded by the prevalence of the Bositra filament microfacies in the Callovian. The long submarine hiatus at around the Callovian–Oxfordian transition mirrors a serious restriction of the carbonate budget, due to sudden cooling and a change in the oceanic current system (opening of a circumglobal Tethyan Passage), and to a higher amount of dissolved CO2. In the Middle Oxfordian, the carbonate production considerably increased in accordance with the sudden global warming.  相似文献   

17.
Abstract: The sauropod dinosaur ‘Bothriospondylus’, originally named on the basis of Late Jurassic remains from England, is demonstrated to be invalid, and the characters used to diagnose it are shown to be obsolescent features which are widespread throughout Sauropoda. Material referred to this genus spans a temporal range from the Middle Jurassic until the early Late Cretaceous and has been described from five different countries, across three continents. These remains represent a wide array of sauropod groups, comprising non‐neosauropod eusauropods, a macronarian, titanosauriforms (including at least one definite brachiosaurid) and a rebbachisaurid. The type material of the Middle Jurassic ‘B. madagascariensis’ represents a derived non‐neosauropod eusauropod and possesses two potential autapomorphies. However, as a result of the fragmentary nature of the material and the uncertainty surrounding its association, a new taxon is not erected. Of the numerous specimens referred to ‘Bothriospondylus’, however, several remains are considered diagnostic: Ornithopsis hulkei (Early Cretaceous, UK), Lapparentosaurus madagascariensis (Middle Jurassic, Madagascar) and Nopcsaspondylus alarconensis (early Late Cretaceous, Argentina). At least three types of sauropod were present in the Bathonian (Middle Jurassic) of north‐west Madagascar, with a basal eusauropod (Archaeodontosaurus), a more derived eusauropod (‘B. madagascariensis’) and a titanosauriform (Lapparentosaurus) all approximately contemporaneous. Palaeocontinental reconstructions suggest that Middle Jurassic Madagascan sauropods would still have been capable of global biotic interchange, and this is perhaps reflected in their diverse assemblage. Re‐evaluation of these Malagasy forms has shed new light on this important time period in sauropod evolution.  相似文献   

18.
Upper Jurassic reefs rich in microbial crusts generally appear in deeper (sponge—‘algal’ crust reefs) or in very shallow but protected settings (coral or coral-coralline sponge meadows with ‘algal’ crusts). Upper Jurassic high-energy reefs (coral reefs and coral-stromatoporoid reefs) normally lack major participation of microbial crusts but rather represent huge bioclastic piles with only minor framestone patches preserved. An exception to this rule is represented by the high-energy, coral-‘algal’ Ota Reef from the Kimmeridgian of the Lusitanian Basin (Portugal). The narrow Ota Reef tract rims a small intra-basinal carbonate platform exhibiting perfect facies zonation (from W to E: Reef tract, back reef sands, peritidal belt, low-energy shallow lagoon). The reef is dominated by massive corals (Thamnasteria, Microsolena, Stylina). Complete preservation of coral framework is rare: like other Upper Jurassic high-energy reefs, the Ota Reef is very rich in debris; however, this debris is largely stabilized by algal and microbial crusts, what contrasts the other examples and gives the Ota Reef the appearance of a typical modern high-energy coral-melobesioid algal reef. Further similarities to modern reefs are the likely existence of a spur-and-groove system, the perfect sheltering of inner platform areas and the occurrence of small islands, as indicated by local blackenings and early vadose and karstic features.  相似文献   

19.
Abstract:  The largest known flying organisms are the azhdarchid pterosaurs, a pterodactyloid clade previously diagnosed by the characters of their extremely elongate middle-series cervical vertebrae. The named species of the Azhdarchidae are from the Late Cretaceous. However, isolated mid-cervical vertebrae with similar dimensions and characters have been referred to this group that date back to the Late Jurassic, implying an almost 60 million year gap in the fossil record of this group and an unrecorded radiation in the Jurassic of all the major clades of the Pterodactyloidea. A new pterosaur from the Early Cretaceous of Liaoning Province of China, Elanodactylus prolatus gen. et sp. nov., is described with mid-cervical vertebrae that bear these azhdarchid characters but has other postcranial material that are distinct from the members of this group. Phylogenetic analysis of the new species and the Pterodactyloidea places it with the Late Jurassic vertebrae in the Late Jurassic–Early Cretaceous Ctenochasmatidae and reveals that the characters of the elongate azhdarchid vertebrae appeared independently in both groups. These results are realized though the large taxon sampling in the analysis demonstrating that the homoplastic character states present in these two taxa were acquired in a different order in their respective lineages. Some of these homoplastic characters were previously thought to appear once in the history of pterosaurs and may be correlated to the extension of the neck regions in both groups. Because the homoplastic character states in the Azhdarchidae and Ctenochasmatidae are limited to the mid-cervical vertebrae, these states are termed convergent based on a definition of the term in a phylogenetic context. A number of novel results from the analysis presented produce a reorganization in the different species and taxa of the Pterodactyloidea.  相似文献   

20.
Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号