首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It is known that immobilization of the rat hindlimb by plaster casting leads to muscle atrophy and loss of muscle protein. In the present study, immobilization of the rat hindlimb for 6 h resulted in a significant 27% decrease in the absolute rate of cytochrome c synthesis in the red quadriceps muscle, without any change in the relative amount of cytochrome c mRNA. Cytochrome c mRNA in normal red quadriceps muscle was observed to be of four different lengths (1400, 1050, 650 and 580 bases). After 7 days of immobilization, the absolute rate of cytochrome c synthesis remained depressed and cytochrome c mRNA decreased by 40%; each of the cytochrome c mRNAs decreased, with a preferential disappearance of the 1050- and 1400-base lengths. Immobilization was ended on day 7, and the atrophied muscle was allowed to recover. At day 4 of recovery, the absolute rate of cytochrome c synthesis was 92% higher and the amount of cytochrome c mRNA had returned to control values. The abundances of the 1050- and 1400-base cytochrome c mRNAs had increased more than the shorter cytochrome c mRNAs, so that they were higher than control values. It appears that acute decreases in contractile activity of the red quadriceps muscle alter cytochrome c synthesis rates via translational or post-translational mechanisms, whereas chronic periods of modified contractile activity alter its synthesis rate via pre-translational mechanisms.  相似文献   

3.
4.
Expression of actin mRNAs in denervated chicken skeletal muscle   总被引:3,自引:0,他引:3  
The expression of actin genes in chicken pectoralis muscle denervated 1 week after hatching was examined 1-8 weeks after the operation by RNA blot hybridization using a generic actin cDNA probe and DNA probes specific for alpha-skeletal and alpha-cardiac actin genes. Total and alpha-skeletal actin mRNAs/microgram total RNA decreased to about half of the levels found in contralateral control muscle, while the expression of alpha-cardiac actin mRNA was up-regulated. Consequently, alpha-cardiac actin mRNA formed about 15% of the total actin mRNA as compared to less than 1% found in control muscle. The expression of actin genes in the denervated muscle was similar to that in the late embryonic muscle. These results suggest that innervation is required to show the expression pattern of striated muscle actin genes found in mature muscle.  相似文献   

5.
BALB/c mice possess a 5' duplication of the alpha-cardiac actin gene which is associated with abnormal levels of alpha-cardiac and alpha-skeletal actin mRNAs in adult cardiac tissue. This mutation therefore provides a potential tool for the study of the inter-relationship between the striated muscle actins. We have examined the expression of this actin gene pair throughout the development of skeletal and cardiac muscle in BALB/c mice. During embryonic and fetal development, the expression of these two genes is indistinguishable from that in normal mice, as determined by in situ hybridization. A quantitative postnatal study demonstrates that in the hearts of normal mice the level of alpha-cardiac actin mRNA declines, whereas that of alpha-skeletal actin increases. In mutant mice, these trends are exaggerated so that whereas normal mice have 95.8% alpha-cardiac mRNA and 4.2% alpha-skeletal mRNA in the adult heart, BALB/c mice have 52.4 and 47.6% of these mRNAs, respectively. This difference is also reflected at the protein level. In developing skeletal muscle, the expression of these genes follows kinetics similar to that observed in the heart with a decrease in the relative level of alpha-cardiac mRNA as the muscle matures. Cardiac actin mRNA levels are again lower in the mutant mouse, but here the effect is less striking because skeletal actin is the predominant isoform. These results are discussed in the context of the interaction between this actin gene pair in developing and adult striated muscle.  相似文献   

6.
Specific DNA fragments complementary to the 3' untranslated regions of the beta-, alpha-cardiac, and alpha-skeletal actin mRNAs were used as in situ hybridization probes to examine differential expression and distribution of these mRNAs in primary myogenic cultures. We demonstrated that prefusion bipolar-shaped cells derived from day 3 dissociated embryonic somites were equivalent to myoblasts derived from embryonic day 11-12 pectoral tissue with respect to the expression of the alpha-cardiac actin gene. Fibroblasts present in primary muscle cultures were not labeled by the alpha-cardiac actin gene probe. Since virtually all of the bipolar cells express alpha-cardiac actin mRNA before fusion, we suggest that the bipolar phenotype may distinguish a committed myogenic cell type. In contrast, alpha-skeletal actin mRNA accumulates only in multinucleated myotubes and appears to be regulated independently from the alpha-cardiac actin gene. Accumulation of alpha- skeletal but not alpha-cardiac actin mRNA can be blocked by growth in Ca2+-deficient medium which arrests myoblast fusion. Thus, the sequential appearance of alpha-cardiac and then alpha-skeletal actin mRNA may result from factors that arise during terminal differentiation. Finally, the beta-actin mRNA was located in both fibroblasts and myoblasts but diminished in content during myoblast fusion and was absent from differentiated myotubes. It appears that in primary myogenic cultures, an asynchronous stage-dependent induction of two different alpha-striated actin mRNA species occurs concomitant with the deinduction of the nonmuscle beta-actin gene.  相似文献   

7.
8.
We examined the expression of alpha-skeletal, alpha-cardiac, and beta- and gamma-cytoskeletal actin genes in a mouse skeletal muscle cell line (C2C12) during differentiation in vitro. Using isotype-specific cDNA probes, we showed that the alpha-skeletal actin mRNA pool reached only 15% of the level reached in adult skeletal muscle and required several days to attain this peak, which was then stably maintained. However, these cells accumulated a pool of alpha-cardiac actin six times higher than the alpha-skeletal actin mRNA peak within 24 h of the initiation of differentiation. After cells had been cultured for an additional 3 days, this pool declined to 10% of its peak level. In contrast, over 95% of the actin mRNA in adult skeletal muscle coded for alpha-actin. This suggests that C2C12 cells express a pattern of sarcomeric actin genes typical of either muscle development or regeneration and distinct from that seen in mature, adult tissue. Concurrently in the course of differentiation the beta- and gamma-cytoskeletal actin mRNA pools decreased to less than 10% of their levels in proliferating cells. The decreases in beta- and gamma-cytoskeletal actin mRNAs are apparently not coordinately regulated.  相似文献   

9.
10.
11.
Soleus and EDL muscles of rats were examined following hindlimb unloading. Some of the rats were given beta-GPA, a creatine analog which depletes high-energy phosphates in muscle tissue, in their food. The contractile properties and fatigue resistance of these muscles were studied, with and without incubation in calcium solution. The increased fatigue resistance after beta-GPA feeding was less in calcium-free solution.  相似文献   

12.
Isolation and characterization of six different chicken actin genes.   总被引:14,自引:4,他引:10       下载免费PDF全文
Genes representing six different actin isoforms were isolated from a chicken genomic library. Cloned actin cDNAs as well as tissue-specific mRNAs enriched in different actin species were used as hybridization probes to group individual actin genomic clones by their relative thermal stability. Restriction maps showed that these actin genes were derived from separate and nonoverlapping regions of genomic DNA. Of the six isolated genes, five included sequences from both the 5' and 3' ends of the actin-coding area. Amino acid sequence analysis from both the NH2- and COOH-terminal regions provided for the unequivocal identification of these genes. The striated isoforms were represented by the isolated alpha-skeletal, alpha-cardiac, and alpha-smooth muscle actin genes. The nonmuscle isoforms included the beta-cytoplasmic actin gene and an actin gene fragment which lacked the 5' coding and flanking sequence; presumably, this region of DNA was removed from this gene during construction of the genomic library. Unexpectedly, a third nonmuscle chicken actin gene was found which resembled the amphibian type 5 actin isoform (J. Vandekerckhove, W. W. Franke, and K. Weber, J. Mol. Biol., 152:413-426). This nonmuscle actin type has not been previously detected in warm-blooded vertebrates. We showed that interspersed, repeated DNA sequences closely flanked the alpha-skeletal, alpha-cardiac, beta-, and type 5-like actin genes. The repeated DNA sequences which surround the alpha-skeletal actin-coding regions were not related to repetitious DNA located on the other actin genes. Analysis of genomic DNA blots showed that the chicken actin multigene family was represented by 8 to 10 separate coding loci. The six isolated actin genes corresponded to 7 of 11 genomic EcoRI fragments. Only the alpha-smooth muscle actin gene was shown to be split by an EcoRI site. Thus, in the chicken genome each actin isoform appeared to be encoded by a single gene.  相似文献   

13.
A histochemical study, using myosin-adenosine triphosphatase activity at pH 9.4, was conducted in soleus and plantaris muscles of adult rats, after bilateral crushing of the sciatic nerve at the sciatic notch. The changes in fiber diameter and per cent composition of type I and type II fibers plus muscle weights were evaluated along the course of denervation-reinnervation curve at 1, 2, 3, 4 and 6 weeks postnerve crush. The study revealed that in the early denervation phase (up to 2 weeks postcrush) both the slow and fast muscles, soleus and plantaris, resepctively, atrophied similarly in muscle mass. Soleus increased in the number of type II fibers, which may be attributed to "disuse" effect. During the same period, the type I fibers of soleus atrophied as much or slightly more than the type II fibers; whereas the type II fibers of plantaris atrophied significantly more than the type I fibers, reflecting that the process of denervation, in its early stages, may affect the two fiber types differentially in the slow and fast muscles. It was deduced that the type I fibers of plantaris may be essentially different in the slow (soleus) and fast (plantaris) muscles under study. The onset of reinnervation, as determined by the increase in muscle weight and fiber diameter of the major fiber type, occurred in soleus and plantaris at 2 and 3 weeks postcrush, respectively, which confirms the earlier hypotheses that the slow muscles are reinnervated sooner than the fast muscles. It is suggested that the reinnervation of muscle after crush injury may be specific to the muscle type or its predominant fiber type.  相似文献   

14.
Sequential expression of chicken actin genes during myogenesis   总被引:25,自引:8,他引:17       下载免费PDF全文
Embryonic muscle development permits the study of contractile protein gene regulation during cellular differentiation. To distinguish the appearance of particular actin mRNAs during chicken myogenesis, we have constructed DNA probes from the transcribed 3' noncoding region of the single-copy alpha-skeletal, alpha-cardiac, and beta-cytoplasmic actin genes. Hybridization experiments showed that at day 10 in ovo (stage 36), embryonic hindlimbs contain low levels of actin mRNA, predominantly consisting of the alpha-cardiac and beta-actin isotypes. However, by day 17 in ovo (stage 43), the amount of alpha-skeletal actin mRNA/microgram total RNA increased more than 30-fold and represented approximately 90% of the assayed actin mRNA. Concomitantly, alpha-cardiac and beta-actin mRNAs decreased by 30% and 70%, respectively, from the levels observed at day 10. In primary myoblast cultures, beta-actin mRNA increased sharply during the proliferative phase before fusion and steadily declined thereafter. alpha-Cardiac actin mRNA increased to levels 15-fold greater than alpha-skeletal actin mRNA in prefusion myoblasts (36 h), and remained at elevated levels. In contrast, the alpha-skeletal actin mRNA remained low until fusion had begun (48 h), increased 25-fold over the prefusion level by the completion of fusion, and then decreased at later times in culture. Thus, the sequential accumulation of sarcomeric alpha-actin mRNAs in culture mimics some of the events observed in embryonic limb development. However, maintenance of high levels of alpha-cardiac actin mRNA as well as the transient accumulation of appreciable alpha-skeletal actin mRNA suggests that myoblast cultures lack one or more essential components for phenotypic maturation.  相似文献   

15.
16.
Measurements of succinate dehydrogenase and mitochondrial glycerol-3-phosphate dehydrogenase activities, iron, cytochrome c and myoglobin, were made on various hind-leg muscles, fast-twitch red and white muscle and heart and liver of male Wistar rats fed an iron-deficient diet on weaning. Rats fed the same diet and given 20 mg iron intraperitoneally as iron-dextran (Imferon) served as controls. For iron-repletion studies anemic rats (hemoglobin less than 7 g/dl) were given a single injection of 10 mg iron (Imferon) and the time course of change in the above parameters was followed up to 22 days after injection. The iron concentration of most iron-deficient muscles dropped to approx. 35% of control, the heart to 60% and liver to 13%. On repletion, the iron concentration of all tissues increase significantly by 4 days. While the levels of cytochrome c and myoglobin approximated the iron levels in muscle, they did not change significantly in the heart. Succinate dehydrogenase activity dropped profoundly in muscle, to 10-30% of control; on repletion, the activity increased significantly. Mitochondrial glycerol-3-phosphate dehydrogenase activity showed only small changes in iron-deficient tissues.  相似文献   

17.
18.
Exercise has been shown to be effective in preventing glucocorticoid-induced atrophy in muscles containing high proportions of type II or fast-twitch fibers. This investigation was undertaken to further evaluate this response in type IIa and IIb fibers, determined by histochemical staining for myofibrillar adenosinetriphosphatase with alkaline and acid preincubation. Steroid [cortisol acetate (CA), 100 mg/kg body wt] and exercise (running 90 min/day, 29 m/min) treatments were initiated simultaneously for 11 consecutive days in female rats. Fiber distribution and area measurements were performed in a deep and superficial region of plantaris muscle. The exercise regimen spared approximately 40% of the CA-induced plantaris muscle atrophy. In the deep region, the fiber population, which contained approximately 13% type I (slow-twitch), 24% type IIa, and 63% IIb fibers, was not affected by either treatment. In the superficial section, which consisted solely of type II fibers, the proportion of type IIa fibers was higher (27 vs. 9%, P less than 0.01) in the steroid- than in the vehicle-treated groups. Within each region, type IIa fibers were less susceptible to atrophy than type IIb fibers, and within each fiber type, the deep region had less atrophy than the superficial region. Type I fibers were unchanged by steroid treatment. For type IIa fibers, exercise prevented 100% of the atrophy in the deep region and 50% in the superficial region. For type IIb fibers, the activity spared 67 and 40% of the atrophy in these same regions, respectively. These results show that glucocorticoids are capable of changing the myosin phenotype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Endurance training is associated with increases in mitochondrial density, of which cytochrome c protein is an index. Increases in the synthesis rates of cytochrome c protein in skeletal muscle during endurance training have been inferred (Biochem. Biophys. Res. Commun. 66: 173, 1975; J. Biol. Chem. 252: 416, 1977). One purpose of the present study was to test these indirect approximations with direct measurements of the synthesis rates of cytochrome c protein in skeletal muscles postexercise. No change in the fractional synthesis rate of cytochrome c was detected in the red quadriceps muscle of rats either 2-7 h after a 104-min run on a motor-driven treadmill or 17-22 h after the final bout of 4 days of running 100 min/day. If the 16% increase in cytochrome c protein concentration in the red quadriceps muscle on the 5th day of training is used to calculate the nanomoles of cytochrome c synthesized per gram of wet muscle weight, the normalized rate of cytochrome c protein synthesis is increased 29% on the 5th day of training. The observation of no significant alteration in cytochrome c mRNA in the red quadriceps muscle of rats during the 1st wk of training implies that the initial increase in the synthesis rate of cytochrome c protein normalized per unit of muscle mass during treadmill training is likely to occur at a translational or posttranslational step. These results suggest that the control of increased cytochrome c expression in skeletal muscle during exercise training involves a complex mechanism.  相似文献   

20.
Lack of staining for desmin in muscles in animal models of eccentric exercise has been suggested to reflect disruption of the desmin intermediate filament network and proposed to cause disruption of the myofibrillar apparatus and deterioration of muscle fibers. In a recent study, we examined muscle biopsies from persons who had performed different eccentric exercise protocols, which induced delayed onset muscle soreness (DOMS). We were unable to verify that loss of staining for desmin was a feature of sore muscles. Nevertheless, we observed changes in the desmin cytoskeleton, but the meaning of the observations was not conclusive. In the present study, a high resolution immunocytochemical method was used to investigate the changes of desmin and actin in human muscles following a bout of eccentric exercise that lead to DOMS 2-3 days post-exercise. Biopsies were taken before exercise and 1 h and 2-3 and 7-8 days after exercise. Phalloidin, a ligand that labels filamentous actin, and anti-desmin antibodies were used to stain semithin (approximately 0.5 micro m) cryosections. At 1 h post-exercise, the staining of actin and desmin did not differ from the controls, whereas in biopsies taken 2-3 and 7-8 days after exercise, 12.5% (SD 5.8%) and 6.1% (SD 2.3%) fibers showed areas of increased staining for actin. Corresponding values for fibers with increased staining for both actin and desmin were 8.7% (SD 3.9%) and 11.4% (SD 4.6%), respectively. We suggest that the increased staining of actin and desmin reflects an increased synthesis of these proteins as part of an adaptation process following the unaccustomed eccentric exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号