首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
By means of time-resolved electron paramagnetic resonance (EPR) spectroscopy, the photoexcited structural changes of site-directed spin-labeled bacteriorhodopsin are studied. A complete set of cysteine mutants of the C-D loop, positions 100-107, and of the E-F loop, including the first alpha-helical turns of helices E and F, positions 154-171, was modified with a methanethiosulfonate spin label. The EPR spectral changes occurring during the photocycle are consistent with a small movement of helix C and an outward tilt of helix F. These helix movements are accompanied by a rearrangement of the E-F loop and of the C-terminal turn of helix E. The kinetic analysis of the transient EPR data and the absorbance changes in the visible spectrum reveals that the conformational change occurs during the lifetime of the M intermediate. Prominent rearrangements of nitroxide side chains in the vicinity of D96 may indicate the preparation of the reprotonation of the Schiff base. All structural changes reverse with the recovery of the bacteriorhodopsin initial state.  相似文献   

2.
Due to high temperature factors and the lack of considerable electron density, electron microscopy and X-ray experiments on the cytoplasmic E-F loop of bacteriorhodopsin result in a variety of structural models. As the experimental conditions regarding ionic strength, temperature and the presence of detergents may affect the structure of the E-F loop, we employ electron paramagnetic resonance and site-directed spin-labeling to study the structure of this loop under physiological conditions. The amino acid residues at positions 154 to 171 were replaced by cysteine residues and derivatized with a sulfhydryl-specific nitroxide spin label one by one. The conventional and power saturation electron paramagnetic spectroscopy provide the mobility of the nitroxide and its accessibility to dissolved molecular oxygen and membrane-impermeable chromium oxalate in the respective site. The results show that K159 and A168 are located at the water-lipid interface of helices E and F, respectively. The orientation of the amino acid side-chains in the helical regions from positions 154 to 159 and 166 to 171 were found to agree with published structural data for bacteriorhodopsin. In the residue sequence from positions 160 to 165 the EPR data yield evidence for a turned loop structure with the side-chains of M163 and S162 oriented towards the proton channel and the water phase, respectively.  相似文献   

3.
Ribonuclease P (RNase P) is a catalytic ribonucleoprotein (RNP) essential for tRNA biosynthesis. In Escherichia coli, this RNP complex is composed of a catalytic RNA subunit, M1 RNA, and a protein cofactor, C5 protein. Using the sulfhydryl-specific reagent (1-oxyl-2,2,5, 5-tetramethyl-Delta3-pyrroline-3-methyl)methanethiosulfonate (MTSL), we have introduced a nitroxide spin label individually at six genetically engineered cysteine residues (i.e., positions 16, 21, 44, 54, 66, and 106) and the native cysteine residue (i.e., position 113) in C5 protein. The spin label covalently attached to any protein is sensitive to structural changes in its microenvironment. Therefore, we expected that if the spin label introduced at a particular position in C5 protein was present at the RNA-protein interface, the electron paramagnetic resonance (EPR) spectrum of the spin label would be altered upon binding of the spin-labeled C5 protein to M1 RNA. The EPR spectra observed with the various MTSL-modified mutant derivatives of C5 protein indicate that the spin label attached to the protein at positions 16, 44, 54, 66, and 113 is immobilized to varying degrees upon addition of M1 RNA but not in the presence of a catalytically inactive, deletion derivative of M1 RNA. In contrast, the spin label attached to position 21 displays an increased mobility upon binding to M1 RNA. The results from this EPR spectroscopy-based approach together with those from earlier studies identify residues in C5 protein which are proximal to M1 RNA in the RNase P holoenzyme complex.  相似文献   

4.
Photo-excited structural changes of the light-driven proton pump bacteriorhodopsin were monitored using double-site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy. The inter-spin distances between nitroxides attached at residue positions 100 and 226, 101 and 160, and 101 and 168 were determined for the BR initial state and the trapped M photo-intermediate. Distance changes that occur during the photocycle were followed with millisecond time resolution under physiological conditions at 293 K. The kinetic analysis of the EPR data and comparison with the absorbance changes in the visible spectrum reveal an outward movement of helix F during the late M intermediate and a subsequent approach of helix G toward the proton channel. The displacements of the cytoplasmic moieties of these helices amount to 0.1-0.2 nm. We propose that the resulting opening of the proton channel decreases the pK of the proton donor D96 and facilitates proton transfer to the Schiff base during the M-to-N transition.  相似文献   

5.
Cw and pulsed high-field EPR (95 GHz, 3.4 T) are performed on site-directed spin labeled bacteriorhodopsin (BR) mutants. The enhanced Zeeman splitting leads to spectra with resolved g-tensor components of the nitroxide spin label. The g(xx) component shift determined for 10 spin labels located in the cytoplasmic loop region and in the protein interior along the BR proton channel reveals a maximum close to position 46 between the proton donor D96 and the retinal. A plot of g(xx) versus A(zz) of the nitrogen discloses grouping of 12 spin labeled sites in protic and aprotic sites. Spin labels at positions 46, 167 and 171 show the aprotic character of the cytoplasmic moiety of the proton channel whereas nitroxides at positions 53, 194 and 129 reveal the protic environment in the extracellular channel. The enhanced sensitivity of high-field EPR with respect to anisotropic reorientational motion of nitroxides allows the characterization of different motional modes for spin labels bound to positions 167 and 170. The motional restriction of the nitroxide at position 167 of the double mutant V167C/D96N is decreased in the M(N) photo-intermediate. An outward shift of the cytoplasmic moiety of helix F in the M(N) intermediate would account for the high-field EPR results and is in agreement with diffraction and recent X-band EPR data.  相似文献   

6.
Spin labeling EPR spectroscopy has been used to characterize light-induced conformational changes of bacteriorhodopsin (bR). Pairs of nitroxide spin labels were attached to engineered cysteine residues at strategic positions near the cytoplasmic ends of transmembrane alpha-helices B, F, and G in order to monitor distance changes upon light activation. The EPR analysis of six doubly labeled bR mutants indicates that the cytoplasmic end of helix F not only tilts outwards, but also rotates counter-clockwise during the photocycle. The direction of the rotation of helix F is the opposite of the clockwise rotation previously reported for bovine rhodopsin. The opposite chirality of the F helix rotation in the two systems is perhaps related to the differences in the cis-trans photoisomerization of the retinal in the two proteins. Using time-resolved EPR, we monitored the rotation of helix F also in real time, and found that the signal from the rotation arises concurrently with the reprotonation of the retinal Schiff base.  相似文献   

7.
A cysteine-specific methanethiosulfonate spin label was introduced into yeast iso-1-cytochrome c at three different positions. The modified forms of cytochrome c included: the wild-type protein labeled at naturally occurring C102, and two mutated proteins, S47C and L85C, labeled at positions 47 and 85, respectively (both S47C and L85C derived from the protein in which C102 had been replaced by threonine). All three spin-labeled protein derivatives were characterized using electron paramagnetic resonance (EPR) techniques. The continuous wave (CW) EPR spectrum of spin label attached to L85C differed from those recorded for spin label attached to C102 or S47C, indicating that spin label at position 85 was more immobilized and exhibited more complex tumbling than spin label at two other positions. The temperature dependence of the CW EPR spectra and CW EPR power saturation revealed further differences of spin-labeled L85C. The results were discussed in terms of application of the site-directed spin labeling technique in probing the local dynamic structure of iso-1-cytochrome c.  相似文献   

8.
Site-directed mutagenesis was used to produce 27 single cysteine mutants of bacteriophage M13 major coat protein spanning the whole primary sequence of the protein. Single-cysteine mutants were labeled with nitroxide spin labels and incorporated into phospholipid bilayers with increasing acyl chain length. The SDSL is combined with ESR and CD spectroscopy. CD spectroscopy provided information about the overall protein conformation in different mismatching lipids. The spin label ESR spectra were analyzed in terms of a new spectral simulation approach based on hybrid evolutionary optimization and solution condensation. This method gives the residue-level free rotational space (i.e., the effective space within which the spin label can wobble) and the diffusion constant of the spin label attached to the protein. The results suggest that the coat protein has a large structural flexibility, which facilitates a stable protein-to-membrane association in lipid bilayers with various degrees of hydrophobic mismatch.  相似文献   

9.
Bacteriorhodopsin mutants containing deletions in loop B-C, delta Thr67-Glu74 or delta Gly65-Gln75 or a deletion in the loop E-F, delta Glu161-Ala168, were prepared. Following their expression in Escherichia coli, the mutant proteins were purified to homogeneity and refolded with retinal in detergent-phospholipid mixtures. The mutants containing deletions in the loop B-C were normal at 4 degrees C but showed the following changes at 20 degrees C. 1) The lambda max shifted from 540 to below 510 nm; 2) the rates of bleaching by hydroxylamine in the dark increased; and 3) the rate and steady state of proton pumping decreased. Deletion of the eight amino acids in loop E-F did not affect wild-type behavior. However, all the mutant proteins were more prone to thermal and sodium dodecyl sulfate denaturation than the wild-type bacteriorhodopsin. These observations show that the structures of the B-C and E-F loops are not essential for correct folding of bacteriorhodopsin, but they contribute to the stability of the folded protein.  相似文献   

10.
To investigate internal movements in Tet repressor (TetR) during induction by tetracycline (tc) we determined the interspin distances between pairs of nitroxide spin labels attached to specific sites by electron paramagnetic resonance (EPR) spectroscopy. For this purpose, we constructed six TetR variants with engineered cysteine pairs located in regions with presumed conformational changes. These are I22C and N47C in the DNA reading head, T152C/Q175C, A161C/Q175C and R128C/D180C near the tc-binding pocket, and T202C in the dimerization surface. All TetR mutants show wild-type activities in vivo and in vitro. The binding of tc results in a considerable decrease of the distance between the nitroxide groups attached to both I22C residues in the TetR dimer and an increase of the distance between the N47C residues. These opposite effects are consistent with a twisting motion of the DNA reading heads. Changes of the spin-spin interactions between nitroxide groups attached to residues near the tc-binding pocket demonstrate that the C-terminal end of alpha-helix 9 moves away from the protein core upon DNA binding. Alterations of the dipolar interaction between nitroxide groups at T202C indicate different conformations for tc and DNA-bound repressor also in the dimerization area. These results are used to model structural changes of TetR upon induction.  相似文献   

11.
Sun J  Voss J  Hubbell WL  Kaback HR 《Biochemistry》1999,38(10):3100-3105
Site-directed thiol cross-linking indicates that the first periplasmic loop (loop I/II) in the lactose permease of Escherichia coli is in close proximity to loops VII/VIII and XI/XII [Sun, J., and Kaback, H. R. (1997) Biochemistry 36, 11959-11965]. To determine whether thiol cross-linking reflects proximity as opposed to differences in the reactivity and/or dynamics of the Cys residues that undergo cross-linking, single-Cys mutants in loops I/II, VII/VIII, and XI/XII and double-Cys mutants in loop I/II and VII/VIII or XI/XII were purified and labeled with a sulfhydryl-specific nitroxide spin label. The labeled mutants were then analyzed by electron paramagnetic resonance (EPR) spectroscopy, and interspin distance was estimated from the extent of line shape broadening in the double-labeled proteins. Out of six paired double-Cys mutants that exhibit thiol cross-linking, five display significant spin-spin interaction. Furthermore, there is a qualitative correlation between distances estimated by site-directed cross-linking and EPR. Taken as a whole, the results are consistent with the conclusion that site-directed thiol cross-linking is primarily a reflection of proximity.  相似文献   

12.
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy revealed the two-part structure of the complex with a peripheral arm involved in electron transfer and a membrane arm most likely involved in proton translocation. It was proposed that the quinone binding site is located at the joint of the two arms. Most likely, proton translocation in the membrane arm is enabled by the energy of the electron transfer reaction in the peripheral arm transmitted by conformational changes. For the detection of the conformational changes and the localization of the quinone binding site, we set up a combination of site-directed spin labeling and EPR spectroscopy. Cysteine residues were introduced to the surface of the Escherichia coli complex I. The spin label (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate (MTSL) was exclusively bound to the engineered positions. Neither the mutation nor the labeling had an effect on the NADH:decyl-ubiquinone oxidoreductase activity. The characteristic signals of the spin label were detected by EPR spectroscopy, which did not change by reducing the preparation with NADH. A decyl-ubiquinone derivative with the spin label covalently attached to the alkyl chain was synthesized in order to localize the quinone binding site. The distance between a MTSL labeled complex I variant and the bound quinone was determined by continuous-wave (cw) EPR allowing an inference on the location of the quinone binding site. The distances between the labeled quinone and other complex I variants will be determined in future experiments to receive further geometry information by triangulation.  相似文献   

13.
Increased triglyceride-rich lipoproteins (TGRLs) in the postprandial state are associated with atherosclerosis. We investigated whether the postprandial state induced structural changes at the apolipoprotein E4 (apoE4) C terminus, its principal lipid binding domain, using electron paramagnetic resonance (EPR) spectroscopy of a site-directed spin label attached to the cysteine of apoE4-W264C. Spin coupling between labels located in the C termini was followed after mixing with preprandial and postprandial human plasma samples. Our results indicate that postprandial plasma triggers a reorganization of the protein such that the dipolar broadening is diminished, indicating a reduction in C-terminal interaction. The loss of spectral broadening was directly correlated with an increase in postprandial plasma triglycerides and was reduced with delipidated plasma. The spin-labeled apoE4 displayed a lipid preference of VLDL > LDL > HDL in the preprandial and postprandial states. The apoE4 shift to VLDL during the postprandial state was accompanied by a loss in spectral broadening of the protein. These findings suggest that apoE4 associated with LDL maintains self-association via its C terminus and that this association is diminished in VLDL-associated protein. Lipolyzed TGRL reflected a depletion of the C-terminal interaction of apoE4. Addition of palmitate to VLDL gave a similar response as lipolyzed TGRL, suggesting that lipolysis products play a major role in reorganizing apoE4 during the postprandial state.  相似文献   

14.
Kim M  Xu Q  Murray D  Cafiso DS 《Biochemistry》2008,47(2):670-679
The binding and recognition of ligands by bacterial outer membrane transport proteins is mediated in part by interactions made through their extracellular loops. Here, site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy were used to examine the effect of stabilizing solutes on the extracellular loops in BtuB, the vitamin B12 transporter, and FecA, the ferric citrate transporter. EPR spectra from the extracellular loops of FecA and BtuB arise from dynamic backbone segments, and distance measurements made by double electron-electron resonance indicate that the second extracellular loop in BtuB samples a wide range of conformations. These conformations are dramatically restricted upon substrate binding. In addition, the EPR spectra from nitroxide labels attached to the extracellular loops in BtuB and FecA are highly sensitive to solutes, and at every site examined the motion of the label is significantly reduced in the presence of stabilizing osmolytes, such as polyethylene glycols. For the second extracellular loop in BtuB, the solute-induced structural changes are small, but they are sufficient to bring spin-labeled side chains into tertiary contact with other portions of the protein. The spectroscopic changes seen by SDSL suggest that high concentrations of stabilizing solutes, such as those used to generate membrane protein crystals, result in a more compact and ordered state of the protein than is seen under more physiological conditions.  相似文献   

15.
Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as protein–protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron paramagnetic resonance (EPR) and NMR spectroscopy. Close agreement was found between the conformation of the spin label observed in the crystal structure with interspin distances measured by EPR and signal broadening in NMR spectra, suggesting that the conformation seen in the crystal structure is also preferred in solution. In contrast, conformations of the spin label observed in crystal structures of T4 lysozyme are not in agreement with the paramagnetic relaxation enhancement observed for spin-labeled CylR2 in solution. Our data demonstrate that accurate positioning of the paramagnetic center is essential for high-resolution structure determination.  相似文献   

16.
We characterized the dynamics of proteorhodopsin (PR), solubilized in diC7PC, a detergent micelle, by liquid-state NMR spectroscopy at T?=?323?K. Insights into the dynamics of PR at different time scales could be obtained and dynamic hot spots could be identified at distinct, functionally relevant regions of the protein, including the BC loop, the EF loop, the N-terminal part of helix F and the C-terminal part of helix G. We further characterize the dependence of the photocycle on different detergents (n-Dodecyl ??-D-maltoside DDM; 1,2-diheptanoyl-sn-glycero-3-phosphocholine diC7PC) by ultrafast time-resolved UV/VIS spectroscopy. While the photocycle intermediates of PR in diC7PC and DDM exhibit highly similar spectral characteristics, significant changes in the population of these intermediates are observed. In-situ NMR experiments have been applied to characterize structural changes during the photocycle. Light-induced chemical shift changes detected during the photocycle in diC7PC are very small, in line with the changes in the population of intermediates in the photocycle of proteorhodopsin in diC7PC, where the late O-intermediate populated in DDM is missing and the population is shifted towards an equilibrium of intermediates states (M, N, O) without accumulation of a single populated intermediate.  相似文献   

17.
The intramembrane locations of several spin labeled probes in small egg phosphatidylcholine (egg PC) vesicles were determined from the enhancement of the 13C nuclear spin lattice relaxation of the membrane phospholipid. Electron paramagnetic resonance (EPR) spectroscopy was also used to measure the relative environmental polarities of the spin labels in egg PC vesicles, ethanol and aqueous solution. The binding location of the spin label group was determined for a pair of hydrophobic ion spin labels, a pair of long chain amphiphiles, and three stearates containing doxyl groups at the 5, 10 and 16 positions. The nuclear relaxation results indicate that the spin label groups on the stearates are located nearer to the membrane exterior than the analogous positions of the unlabeled phospholipid acyl chains. In addition, the spin label groups of the hydrophobic ions and long chain amphiphiles are located near the acyl chain methylene immediately adjacent to the carboxyl group. The relative polarities, determined by the EPR technique, are consistent with the nuclear relaxation results. This information, when combined with information on their electrical properties, allows for an assessment of the conformation and position of these voltage sensitive probes in membranes.  相似文献   

18.
High pressure EPR studies of protein mobility in reversed micelles   总被引:1,自引:0,他引:1  
We have investigated the effect of pressure on structural properties of subtilisin solubilized in reversed micelles of Tween-85/isopropanol in hexane. Electron paramagnetic resonance (EPR) spectra of spin-labeled enzyme indicate a reduction in spin-label mobility when the enzyme is transferred from aqueous solution to the microemulsion. One explanation for the spectral broadening is a change in the protein's active-site conformation and/or dynamics. However, over a W(0) range of 80 to 180, EPR spectroscopy could detect no change in the enzyme's environment, conformation, or molecular dynamics. The EPR spectra also contained a contribution from free spin label located in an environment with a polarity roughly between that of propanol and bulk water. No changes in the polarity surrounding the free spin label nor in the enzyme's structural properties were evident at pressures up to 10,000 psi. Previous work has demonstrated that pressure can be used to manipulate the size of some reversed micelles, and the EPR data indicated that for this system such pressure tuning of micellar properties will not adversely affect the structure of solubilized enzyme. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
The multidrug efflux system AcrA-AcrB-TolC of Escherichia coli expels a wide range of drugs directly into the external medium from the bacterial cell. The mechanism of the efflux process is not fully understood. Of an elongated shape, AcrA is thought to span the periplasmic space coordinating the concerted operation of the inner and outer membrane proteins AcrB and TolC. In this study, we used site-directed spin labeling (SDSL) EPR (electron paramagnetic resonance) spectroscopy to investigate the molecular conformations of AcrA in solution. Ten AcrA mutants, each with an alanine to cysteine substitution, were engineered, purified, and labeled with a nitroxide spin label. EPR analysis of spin-labeled AcrA variants indicates that the side chain mobilities are consistent with the predicted secondary structure of AcrA. We further demonstrated that acidic pH induces oligomerization and conformational change of AcrA, and that the structural changes are reversible. These results suggest that the mechanism of action of AcrA in drug efflux is similar to the viral membrane fusion proteins, and that AcrA actively mediates the efflux of substrates.  相似文献   

20.
Wegener C  Tebbe S  Steinhoff HJ  Jung H 《Biochemistry》2000,39(16):4831-4837
With respect to the functional importance attributed to the N-terminal part of the Na(+)/proline transporter of Escherichia coli (PutP), we report here on the structural arrangement and functional dynamics of transmembrane domains (TMs) II and III and the adjoining loop regions. Information on membrane topography was obtained by analyzing the residual mobility of site-specifically-attached nitroxide spin label and by determination of collision frequencies of the nitroxide with oxygen and a polar metal ion complex using electron paramagnetic resonance (EPR) spectroscopy. The studies suggest that amino acids Phe45, Ser50, Ser54, Trp59, and Met62 are part of TM II while Gly39 and Arg40 are located at a membrane-water interface probably forming the cytoplasmic cap of the TM. Also Ala67 and Glu75 are at a membrane-water interface, suggesting a location close to the periplasmic ends of TMs II and III, respectively. Ser71 between these residues is clearly in a water-exposed loop (periplasmic loop 3). Spin labels attached to positions 80, 86, and 91 show EPR properties typical for a TM location (TM III). Leu97 may be part of a structured loop region while Ala107 is clearly located in a water-exposed loop (cytoplasmic loop 4). Finally, spin labels attached to the positions of Asp33 and Leu37 are clearly on the surface of the transporter and are directed into an apolar environment. These findings strongly support the recently proposed 13-helix model of PutP [Jung, H., Rübenhagen, R., Tebbe, S., Leifker, K., Tholema, N., Quick, M., and Schmid, R. (1998) J. Biol. Chem. 273, 26400-26407] and suggest that TMs II and III of the transporter are formed by amino acids Ser41 to Gly66 and Ser76 to Gly95, respectively. In addition to the topology analysis, it is shown that binding of Na(+) and/or proline to the transporter alters the mobility of the nitroxide group at the positions of Leu37 and Phe45. From these findings, it is concluded that binding of the ligands induces conformational alterations of PutP that involve at least parts of TM II and the preceding cytoplasmic loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号