首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Yang SZ  Lin FT  Lin WC 《EMBO reports》2008,9(9):907-915
Microcephalin (MCPH1) has a crucial role in the DNA damage response by promoting the expression of Checkpoint kinase 1 (CHK1) and Breast cancer susceptibility gene 1 (BRCA1); however, the mechanism of this regulation remains unclear. Here, we show that MCPH1 regulates CHK1 and BRCA1 through the interaction with E2F1 on the promoters of both genes. MCPH1 also regulates other E2F target genes involved in DNA repair and apoptosis such as RAD51, DDB2, TOPBP1, p73 and caspases. MCPH1 interacts with E2F1 on the p73 promoter, and regulates p73 induction and E2F1-induced apoptosis as a result of DNA damage. MCPH1 forms oligomers through the second and third BRCT domains. An MCPH1 mutant containing only its oligomerization domain has a dominant-negative role by blocking MCPH1 binding to E2F1. It also inhibits p73 induction in DNA damage and E2F1-dependent apoptosis. Taken together, MCPH1 cooperates with E2F1 to regulate genes involved in DNA repair, checkpoint and apoptosis, and might participate in the maintenance of genomic integrity.  相似文献   

4.
Camptothecin (CPT) and Nutlin-3 caused apoptosis by increasing p53 protein and its activation in intestinal epithelial cells (IEC-6). We studied the effectiveness of these inducers on apoptosis in human colon cancer cells (Caco2) lacking p53 expression. CPT failed to activate caspase-3 and cause apoptosis in these cells. The absence of p53 expression, higher basal Bcl-xL and lower Bax proteins prevented CPT-induced apoptosis. However, the Mdm2 antagonist Nutlin-3 induced apoptosis in a dose dependent manner by activating caspases-9 and -3. Nutlin-3 prevented the activation of AKT via PTEN-mediated inhibition of the PI3K pathway. Nutlin-3 increased the phosphorylation of retinoblastoma protein causing E2F1 release leading to induction of Siva-1. Nutlin-3-mediated degradation of Mdm2 caused the accumulation of p73, which induced the expression of p53 up-regulated modulator of apoptosis (PUMA). E2F1 and p73 knockdown decreased the expression of Siva and PUMA, respectively and abolished Nutlin-3-induced caspase-3 activation. Cycloheximide (CHX) inhibited Nutlin-3-induced Siva, Noxa, and PUMA expression and inhibited apoptosis in IEC-6 and Caco2 cells. These results indicate that translation of mRNAs induced by Nutlin-3 is critical for apoptosis. In summary, apoptosis in Caco2 cells lacking functional p53 occurred following the disruption of Mdm2 binding with p73 and Rb leading to the expression of pro-apoptotic proteins, PUMA, Noxa, and Siva-1.  相似文献   

5.
The E2F1 gene well known is its pivotal role in regulating the entry from G1 to S phase, while the salvage antitumoral pathway which implicates it, especially in the absence of p53, is not fully characterized. We therefore attempted to identify the up‐ and down‐stream events involved in the activation of the E2F1‐dependent pro‐apoptotic pathway. For this purpose, a amonafide analogue, 7‐d (2‐(3‐(2‐(Dimethylamino)ethylamino)propyl)‐6‐(dodecylamino)‐1H‐benzo[de]isoquinoline‐1,3(2H)‐dione) was screened, which exhibited high antitumor activity against p53‐deficient human Chronic Myelogenous Leukemia (CML) K562 cells. Analysis of flow cytometry and western blots of K562 cells treated with 7‐d revealed an appreciable G2/M cycle arrest and apoptosis in a dose and time‐dependent manner via p53‐independent pathway. A striking increase in “Comet tail” formation and γ‐H2AX expression showed that DNA double strand breaks (DSB) were caused by 7‐d treatment. ATM/ATR signaling was reported to connect E2F1 induction with apoptosis in response to DNA damage. Indeed, 7‐d‐induced G2/M arrest and apoptosis were antagonized by ATM/ATR signaling inhibitor, Caffeine, which suggested that ATM/ATR signaling was activated by 7‐d treatment. Furthermore, the increased expression of E2F1, p73, and Apaf‐1 and p73 dissociation from HDM2 was induced by 7‐d treatment, however, knockout of E2F1 expression reversed p73, Apaf‐1, and p21Cip1/WAF1 expression, reactivated cell cycle progression, and inhibited 7‐d‐induced apoptosis. Altogether our results for the first time indicate that 7‐d mediates its growth inhibitory effects on CML p53‐deficient cells via the activation of an E2F1‐dependent mitochondrial and cell cycle checkpoint signaling pathway which subsequently targets p73, Apaf‐1, and p21Cip1/WAF1. J. Cell. Biochem. 113: 3165–3177, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
8.
Deregulation of the Rb-E2F pathway occurs in many cancers and results in aberrant cell proliferation as well as an increased propensity to undergo apoptosis. In most cases, apoptosis in response to Rb inactivation involves the activation of p53 but the molecular details of the signaling pathway connecting Rb loss to p53 are poorly understood. Here we demonstrate that the E1A oncoprotein, which binds and inhibits Rb family members, induces the accumulation and phosphorylation of p53 through the DNA damage-responsive ATM kinase. As a result, E1A-induced apoptosis is significantly impaired in cells lacking ATM. In contrast, inactivation of ARF, which is widely believed to activate p53 in response to oncogenic stress, has no effect on p53 induction and only a modest effect on apoptosis in response to E1A. Both E2F1 and E2F3 contribute to ATM-dependent phosphorylation of p53 and apoptosis in cells expressing E1A. However, deregulated E2F3 activity is implicated in the DNA damage caused by E1A while E2F1 stimulates ATM- and NBS1-dependent p53 phosphorylation and apoptosis through a mechanism that does not involve DNA damage.  相似文献   

9.
10.
11.
12.
13.
MicroRNAs (miRNAs) regulate gene expression by repressing translation or directing sequence-specific degradation of complementary mRNA. Here, we report that expression of miR-205 is significantly suppressed in melanoma specimens when compared with nevi and is correlated inversely with melanoma progression. miRNA target databases predicted E2F1 and E2F5 as putative targets. The expression levels of E2F1 and E2F5 were correlated inversely with that of miR-205 in melanoma cell lines. miR-205 significantly suppressed the luciferase activity of reporter plasmids containing the 3'-UTR sequences complementary to either E2F1 or E2F5. Overexpression of miR-205 in melanoma cells reduced E2F1 and E2F5 protein levels. The proliferative capacity of melanoma cells was suppressed by miR-205 and mediated by E2F-regulated AKT phosphorylation. miR-205 overexpression resulted in induction of apoptosis, as evidenced by increased cleaved caspase-3, poly-(ADP-ribose) polymerase, and cytochrome c release. Stable overexpression of miR-205 suppressed melanoma cell proliferation, colony formation, and tumor cell growth in vivo and induced a senescence phenotype accompanied by elevated expression of p16INK4A and other markers for senescence. E2F1 overexpression in miR-205-expressing cells partially reversed the effects on melanoma cell growth and senescence. These results demonstrate a novel role for miR-205 as a tumor suppressor in melanoma.  相似文献   

14.
Early studies suggested both TR3 orphan receptor (TR3) and apoptosis mediator E2F1 might play an important role in mediating prostate cancer cell apoptosis. Their linkage and relationship, however, remain unclear. Here we found that 12-O-tetradecanoylphorbol-13-acetate (TPA) could induce cell apoptosis via induction of TR3 and E2F1 expression in LNCaP prostate cancer cells. Addition of antisense E2F1 could partially rescue the TR3-mediated cell apoptosis, and transfection of the TR3 dominant-negative plasmid could block the TR3-induced E2F1 expression. These data suggest that TPA is able to induce LNCaP cell apoptosis via induction of TR3 resulting in the induction of E2F1. Promoter reporter assays show that TR3 can induce E2F1 expression via binding to the TR3 response element (TR3RE) in the E2F1 promoter -316 to -324 bp region. TR3 can bind specifically to this TR3RE with a Kd of 6.29 nm, and mutations of this E2F1-TR3RE can partially block the TR3-mediated E2F1 expression. Taken together, these data suggest that TPA is able to induce cell apoptosis via a TPA --> TR3 --> E2F1 --> apoptosis pathway in LNCaP cells. Further studies of how to modulate this pathway may allow us to better understand how to control the prostate cancer growth.  相似文献   

15.
Aberrant activation of the Rb/E2F1 pathway in cycling cells, in response to mitogenic or nonmitogenic stress signals, leads to apoptosis through hyperphosphorylation of Rb. To test whether in postmitotic neurons the Rb/E2F1 pathway can be activated by the nonmitogenic stress signaling, we examined the role of the p38 stress-activated protein kinase (SAPK) in regulating Rb phosphorylation in response to Fas (CD95/APO1)-mediated apoptosis of cultured cerebellar granule neurons (CGNs). Anti-Fas antibody induced a dramatic and early activation of p38. Activated p38 was correlated with the induction of hyperphosphorylation of both endogenous and exogenous Rb. The p38-selective inhibitor, SB203580, attenuated such an increase in pRb phosphorylation and significantly protected CGNs from Fas-induced apoptosis. The cyclin-dependent kinase-mediated Rb phosphorylation played a lesser role in this neuronal death paradigm, since cyclin-dependent kinase inhibitors, such as olomoucine, roscovitine, and flavopiridol, did not significantly prevent anti-Fas antibody-evoked neuronal apoptosis. Hyperphosphorylation of Rb by p38 SAPK resulted in the release of Rb-bound E2F1. Increased E2F1 modulated neuronal apoptosis, since E2F1-/- CGNs were significantly less susceptible to Fas-mediated apoptosis in comparison with the wild-type CGNs. Taken together, these studies demonstrate that neuronal Rb/E2F1 is modulated by the nonproliferative p38 SAPK in Fas-mediated neuronal apoptosis.  相似文献   

16.
17.
18.
Genotoxic stress triggers apoptosis through multiple signaling pathways. Recent studies have demonstrated a specific induction of E2F1 accumulation and a role for E2F1 in apoptosis upon DNA damage. Induction of E2F1 is mediated by phosphorylation events that are dependent on DNA damage-responsive protein kinases, such as ATM. How ATM phosphorylation leads to E2F1 stabilization is unknown. We now show that 14-3-3 tau, a phosphoserine-binding protein, mediates E2F1 stabilization. 14-3-3 tau interacts with ATM-phosphorylated E2F1 during DNA damage and inhibits E2F1 ubiquitination. Depletion of 14-3-3 tau or E2F1, but not E2F2 or E2F3, blocks adriamycin-induced apoptosis. 14-3-3 tau is also required for expression and induction of E2F1 apoptotic targets, such as p73, Apaf-1, and caspases, during DNA damage. Together, these data demonstrate a novel function for 14-3-3 tau in the regulation of E2F1 protein stability and apoptosis during DNA damage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号