首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously reported that the hormone insulin can modulate synaptic function of dopamine neurons. To evaluate whether insulin can alter performance of a task which is dependent on intact dopaminergic signaling, we tested rats in a five minute lick rate task, with a range of concentrations of sucrose or oil solutions. Rats received either ip (t -15 min) saline or the D2 receptor antagonist raclopride (50 microg/kg), and intraventricular (t -4 h) saline or insulin (5 mU). Although ineffective on its own, insulin combined with raclopride treatment resulted in significant suppression of sucrose lick rates compared to the saline/saline group. The overall results are consistent with our hypothesis that insulin may modify performance in tasks that are dependent on dopaminergic signaling.  相似文献   

2.
Associations between nicotine in cigarettes and food consumption may alter the incentive value of food such that food cue-reactivity is exaggerated during abstinence from smoking. This effect may contribute to the weight gain associated with cessation of smoking. We examined the effects of nicotine (0.4 mg/kg base subcutaneous) paired (NPD) or unpaired (NUP) with 10% sucrose self-administration (SA; 0.2 ml/delivery, 1 h/day for 10 days) on SA response rate and intake as well as sucrose cue-reactivity following either 1 or 30 days of forced abstinence. Rats were administered the training dose of nicotine prior to a second, consecutive cue-reactivity session. NPD rats responded at over three times the rate for sucrose and earned nearly twice the number of sucrose deliveries as NUP rats or saline controls. Sucrose cue-reactivity was greater after 30 days versus 1 day of forced abstinence for all groups. History of nicotine exposure had no effect on sucrose cue-reactivity. However, the subsequent injection of nicotine increased sucrose cue-reactivity only in the NPD groups. There were no abstinent-dependent effects of nicotine challenge on sucrose cue-reactivity. A study conducted in parallel with water as the reinforcer revealed a less dramatic effect of nicotine on intake. There was no history or abstinence-dependent effects of nicotine on water cue-reactivity. Nicotine increases the reinforcing effects of sucrose and sucrose-paired cues when nicotine is present. An implication of these findings is that relapse to nicotine (cigarettes) could substantially elevate food cue-reactivity.  相似文献   

3.
Sipols AJ  Bayer J  Bennett R  Figlewicz DP 《Peptides》2002,23(12):2181-2187
The hormone insulin acts in the central nervous system (CNS) as a regulator of body adiposity and food intake. Recent work from our laboratory has provided evidence that one way by which insulin may decrease food intake is by decreasing the rewarding properties of food. Evidence from others suggests that endogenous opioids may mediate the palatable properties of foods, and insulin may decrease nonfood-related reward via interaction with some CNS kappa opioid systems. In the present study we examined the ability of insulin to interact with exogenous or endogenous kappa opioids to modulate feeding of palatable sucrose pellets by nondeprived rats. Insulin (5 mU intracerebroventricular (i.c.v.), t=−3 h) completely reversed the ability of the exogenous kappa agonist U50,488 (26 μg, i.c.v., t=−15 min) to stimulate 90-min sucrose feeding (211±32% reduced to 125±23% of 90-min baseline intake). Further, i.c.v. insulin (5 mU, t=−3 h) interacted with a subthreshold dose of the kappa receptor antagonist norbinaltorphimine (5 μg, i.c.v., t=−15 min) to decrease the 90-min sucrose intake baseline (77±11% versus 109±10% of 90 min baseline intake, insulin/norbinaltorphimine versus norbinaltorphimine). Together these studies provide new evidence that insulin in the CNS may decrease the action of CNS kappa opioid system(s) that mediate palatable feeding.  相似文献   

4.
Glucagon-like peptide 1-(7-36) amide (GLP-1) potently inhibits rat feeding behavior after central administration. Because third ventricular injection of GLP-1 appeared to be less effective than lateral ventricular injection, we have reexamined this issue. In addition, we attempted to identify brain regions other than the paraventricular nucleus of the hypothalamus that are sensitive toward GLP-1-induced feeding suppression. Finally, we examined the local role of endogenous GLP-1 by specific GLP-1 receptor blockade. After lateral ventricular injection, GLP-1 significantly inhibited food intake of 24-h-fasted rats in a dose-dependent fashion with a minimal effective dose of 1 microg. After third ventricular injection, GLP-1 (1 microg) was similarly effective in suppressing food intake, which extends previous findings. Intracerebral microinjections of GLP-1 significantly suppressed food intake in the lateral (LH), dorsomedial (DMH), and ventromedial hypothalamus (VMH), but not in the medial nucleus of the amygdala. The minimal effective dose of GLP-1 was 0.3 microg at LH sites and 1 microg at DMH or VMH sites. LH microinjections of exendin-(9-39) amide, a GLP-1 receptor antagonist, at 1 or 2.5 microg did not alter feeding behavior in 24-h-fasted rats. In satiated animals, however, a single LH injection of 1 microg exendin-(9-39) amide significantly augmented food intake, but only during the first 20 min (0.6 vs. 0.1 g). With three repeated injections of 2.5 microg exendin-(9-39) amide every 20 min, 1-h food intake was significantly increased by 300%. These data strongly support and extend the concept of GLP-1 as a physiological regulator of food intake in the hypothalamus.  相似文献   

5.
We have previously reported that administration of insulin into the arcuate nucleus of the hypothalamus decreases motivation for sucrose, assessed by a self-administration task, in rats. Because the pattern of central nervous system (CNS) activation in association with sucrose self-administration has not been evaluated, in the present study, we measured expression of c-Fos as an index of neuronal activation. We trained rats to bar-press for sucrose, according to a fixed-ratio (FR) or progressive-ratio (PR) schedule and mapped expression of c-Fos immunoreactivity in the CNS, compared with c-Fos expression in handled controls. We observed a unique expression of c-Fos in the medial hypothalamus (the arcuate, paraventricular, retrochiasmatic, dorsomedial, and ventromedial nuclei) in association with the onset of PR performance, and expression of c-Fos in the lateral hypothalamus and the bed nucleus of stria terminalis in association with the onset of FR performance. c-Fos expression was increased in the nucleus accumbens of both FR and PR rats. Our study emphasizes the importance of both hypothalamic energy homeostasis circuitry and limbic circuitry in the performance of a food reward task. Given the role of the medial hypothalamus in regulation of energy balance, our study suggests that this circuitry may contribute to reward regulation within the larger context of energy homeostasis.  相似文献   

6.
Adiponectin acts in the brain to decrease body weight   总被引:36,自引:0,他引:36  
Adiponectin (ADP) is an adipocyte hormone involved in glucose and lipid metabolism. We detected a rise in ADP in cerebrospinal fluid after intravenous (i.v.) injection, consistent with brain transport. In contrast to leptin, intracerebroventricular (i.c.v.) administration of ADP decreased body weight mainly by stimulating energy expenditure. Full-length ADP, mutant ADP with Cys39 replaced with serine, and globular ADP were effective, whereas the collagenous tail fragment was not. Lep(ob/ob) mice were especially sensitive to i.c.v. and systemic ADP, which resulted in increased thermogenesis, weight loss and reduction in serum glucose and lipid levels. ADP also potentiated the effect of leptin on thermogenesis and lipid levels. While both hormones increased expression of hypothalamic corticotropin-releasing hormone (CRH), ADP had no substantial effect on other neuropeptide targets of leptin. In addition, ADP induced distinct Fos immunoreactivity. Agouti (A(y)/a) mice did not respond to ADP or leptin, indicating the melanocortin pathway may be a common target. These results show that ADP has unique central effects on energy homeostasis.  相似文献   

7.
Our purposes were to 1) develop an animal model where intravenously (iv) administered d-glucose consistently inhibited antral motility, and 2) use this model to assess whether iv glucose acts to inhibit motility from a peripheral or a central nervous system site and to elucidate the factor(s) that determine(s) whether stomach motor function is sensitive to changes in blood glucose. Rats were anesthetized with alpha-chloralose-urethane, and antral motility was measured by a strain-gauge force transducer sutured to the antrum. In some cases, antral motility and gastric tone were measured by monitoring intragastric balloon pressure. Increases in blood glucose were produced by continuous iv infusion of 25% d-glucose at 2 ml/h. Inhibition of antral motility and gastric tone was observed when gastric contractions were induced by hypoglycemia (subcutaneously administered insulin, 2.5 IU/animal). In contrast, no inhibition of gastric motor function was observed when glucose infusion was tested on gastric contractions that were 1) spontaneously occurring, 2) evoked by iv administered bethanechol in vagotomized animals, and 3) evoked by the TRH analog RX77368, microinjected into the dorsal motor nucleus of the vagus. Using the model of insulin-induced hypoglycemia to increase gastric motor activity, we found that neither sectioning the hepatic branch of the vagus (n = 5), nor treating animals with capsaicin to destroy sensory vagal afferent nerves (n = 5) affected the ability of iv d-glucose to inhibit gastric motor function. Our results indicate that an important factor determining whether stomach motor function will be sensitive to changes in blood glucose is the method used to stimulate gastric contractions, and that the primary site of the inhibitory action of iv glucose on gastric motility is the central nervous system rather than the periphery.  相似文献   

8.
Intracerebroventricular administration of oxytocin (OT) and an OT agonist significantly decreased food intake in a dose-related manner in fasted rats. Central administration of an OT antagonist by itself (up to doses of 8 nmol) did not potentiate deprivation-induced food intake, but pretreatment with the OT receptor antagonist prevented the expected inhibition of food intake produced by OT and the OT agonist. Once-daily ICV injections of OT led to the development of tolerance to the inhibitory effects on food intake by the third day of treatment, but daily pretreatment with the OT antagonist prevented the development of this tolerance. In addition to causing decreased food intake, ICV administration of OT significantly increased grooming behavior but produced no dyskinesias. The inhibitory effect of OT on food intake was characterized by decreased amounts of food intake but a normal pattern of ingestion. The anorexia produced was central in nature and was not associated with altered plasma levels of hormones involved in caloric homeostasis or with changes in blood glucose. The OT agonist had relatively little effect on water intake when given in doses that significantly inhibited food intake. These results support the hypothesis that specific OT receptors within the central nervous system participate in the inhibition of feeding under certain conditions in rats.  相似文献   

9.
A catabolic and hypolipemic effect of glucagon has been described in normal animals. We therefore studied the role of glucagon in genetically obese, hyperlipemic rats. Twelve genetically obese hyperlipemic LA/N-cp/cp (corpulent) rats and 12 lean littermates were fed either 54% starch or 54% sucrose for 12 weeks. Plasma glucagon and insulin levels and glucagon and insulin binding to liver membranes were measured. Comparing all corpulent and lean animals regardless of diet, a significant (P less than 0.0001) phenotypical effect (cp/cp greater than lean) was observed in plasma insulin levels (464 +/- 54 vs 70.3 +/- 7.6 muu/ml, mean +/- SEM). Insulin binding (2.68 vs 16.1%/50 micrograms protein) and glucagon binding (25.6 vs 47.3%/50 micrograms protein) were both significantly lower (P less than 0.0001) in corpulent rats as compared to their lean littermates. Sucrose feeding had marginal effect on plasma insulin or insulin binding. It, however, decreased glucagon binding in corpulent rats but not in their controls. A significant negative correlation was observed between plasma insulin and insulin binding, while a positive correlation was seen for plasma glucagon and glucagon binding. A significant negative correlation was observed between plasma glucagon and lipogenic enzymes (glucose-6-phosphate dehydrogenase and malic enzyme) in liver and between glucagon binding and these enzymes. We propose that in these genetically obese rats, in addition to hyperinsulinemia, impaired glucagon activity as manifested by decreased glucagon binding to target cells may be an important contributor to the hyperlipemia and obesity. A further decrease in glucagon binding in rats fed sucrose indicates that sucrose, per se, may be an additional contributory factor.  相似文献   

10.
For humans and rodents, ingesting sucrose is rewarding. This experiment tested the prediction that the neural activity produced by sapid sucrose reaches reward systems via projections from the pons through the limbic system. Gastric cannulas drained ingested fluid before absorption. For 10 days, the rats alternated an hour of this sham ingestion between sucrose and water. On the final test day, half of them sham drank water and the other half 0.6 M sucrose. Thirty minutes later, the rats were killed and their brains immunohistochemically stained for Fos. The groups consisted of controls and rats with excitotoxic lesions in the gustatory thalamus (TTA), the medial (gustatory) parabrachial nucleus (PBN), or the lateral (visceral afferent) parabrachial nucleus. In controls, compared with water, sham ingesting sucrose produced significantly more Fos-positive neurons in the nucleus of the solitary tract, PBN, TTA, and gustatory cortex (GC). In the ventral forebrain, sucrose sham licking increased Fos in the bed nucleus of the stria terminalis, central nucleus of amygdala, and the shell of nucleus accumbens. Thalamic lesions blocked the sucrose effect in GC but not in the ventral forebrain. After lateral PBN lesions, the Fos distributions produced by distilled H(2)O or sucrose intake did not differ from controls. Bilateral medial PBN damage, however, eliminated the sucrose-induced Fos increase not only in the TTA and GC but also in the ventral forebrain. Thus ventral forebrain areas associated with affective responses appear to be activated directly by PBN gustatory neurons rather than via the thalamocortical taste system.  相似文献   

11.
12.
13.
14.
The satiating effects of cholecystokinin-octapeptide (CCK-8) and bombesin (BBS) when injected alone and in combination were compared in intact rats. When injected alone, both CCK-8 and BBS elicited a dose-related decrease of 30-minute food intake. Injections of BBS were less potent than the equivalent doses of CCK-8 in producing satiety. BBS reached an asymptotic level of suppression of approximately 40 percent at a dose of 2 micrograms/kg, whereas injections of 4 micrograms/kg of CCK-8 resulted in a 72 percent suppression of food intake. When the two peptides were administered in a single injection, the resulting suppression of food intake was equivalent to that which would be predicted if their effects were completely additive. These results support the hypothesis that CCK-8 and BBS act via independent mechanisms to induce satiety. A preliminary model of peptidergic satiety, based on this hypothesis, is proposed.  相似文献   

15.
The testis expresses a variety of cadherin superfamily members including classic cadherins and protocadherins. This report describes the first localization of a protocadherin protein in testis and sperm. After cloning rat cDNAs for protocadherin alpha3 and alpha4, isoform-specific polyclonal antibodies were generated against protocadherin alpha3. Western blotting of rat testis showed that protocadherin alpha3 was solubilized completely by Triton X-100, in contrast to the adhesion junction components N-cadherin, beta-catenin, and p120 catenin. Corroborating this data, protocadherin alpha3 was immunolocalized to the spermatid acrosomal area, intercellular bridge, and flagellum, but not classic cadherin-based adhesion junctions. Acrosome-associated protocadherin alpha3 was first detected at step 8 of spermiogenesis, and this association remained on cauda epididymal sperm. Acrosome immunostaining was reduced, but present, in acrosome-reacted sperm. Spermatid intercellular bridges became positive for protocadherin alpha3 coincident with the appearance of plectin, occurring at spermiogenic steps 8 to 9, and elongate spermatid bridges remained positive throughout spermatogenesis. The developing flagellum was uniformly immunostained for protocadherin alpha3 up to approximately spermiogenic step 17. Subsequently, flagellar immunostaining was confined to the principal piece, and this pattern continued in cauda epididymal sperm. These data show that protocadherin alpha3 performs functions unique from classic cadherins in spermatogenesis and suggest a role for protocadherin alpha3 in organizing germ cell-specific structures including the intercellular bridge, flagellum, and acrosome.  相似文献   

16.
17.
Cocaine self-administration in rodents has been used widely as a preclinical model of cocaine use in humans. In laboratory animals, estradiol enhances behavioral sensitization to cocaine and the acquisition of cocaine self-administration in female rats. The rewarding effect of cocaine has been shown to be enhanced following behavioral sensitization in male rats. This experiment examined whether behavioral sensitization to cocaine would promote cocaine-taking behavior in female rats, and whether estradiol could further modulate cocaine-taking behavior in cocaine-sensitized rats. Ovariectomized female rats were pretreated with either cocaine or saline for 4 days per week for 3 weeks. Self-administration sessions started 2 weeks after the last dose of drug. Female Sprague-Dawley rats received either estradiol or oil 30 min prior to the start of each session and self-administration was carried out 5 days per week for 4 weeks. The dose of cocaine self-administered each week was as follows (in mg/kg/infusion): week 1, 0.1; week 2, 0.1; week 3, 0.15; and week 4, 0.4. The rats that received cocaine pretreatment took fewer days to acquire cocaine self-administration and took more cocaine than rats that received saline pretreatment. Estradiol enhanced cocaine intake during the last six self-administration sessions after acquisition but did not affect acquisition of self-administration at the lowest doses of cocaine used. In conclusion, cocaine sensitization promotes the acquisition of cocaine self-administration in female rats. Furthermore, prior cocaine experience is more powerful than estradiol at enhancing acquisition, while estradiol enhances intake of cocaine after acquisition of self-administration.  相似文献   

18.
The molecular complexity of the simple blowfly heart makes it an attractive preparation to delineate cardiovascular mechanisms. Blowfly cardiac activity consists of a fast, high-frequency signal phase alternating with a slow, low-frequency signal phase triggered by pacemakers located in the posterior abdominal heart and anterior thoracocephalic aorta, respectively. Mechanisms underlying FMRFamide-related peptides (FaRPs) effects on heart contractions are not well understood. Here, we report antisera generated to a FaRP, dromyosuppressin (DMS, TDVDHVFLRFamide), recognized neuronal processes that innervated the blowfly Protophormia terraenovae heart and aorta. Dromyosuppressin caused a reversible cardiac arrest. High- and low-frequency signals were abolished after which they resumed; however, the concentration-dependent resumption of the fast phase differed from the slow phase. Dromyosuppressin decreased the frequency of cardiac activity in a dose-dependent manner with threshold values between 5 fM and 0.5 fM (fast phase), and 0.5 fM and 0.1 fM (slow phase). Dromyosuppressin structure-activity relationship (SAR) for the decrease of the fast-phase frequency was not the same as the SAR for the decrease of the slow-phase frequency. The alanyl-substituted analog TDVDHVFLAFamide ([Ala9] DMS) was inactive on the fast phase, but active on the slow phase, a novel finding. FaRPs including myosuppressins are reported to require the C-terminal RFamide for activity. Our data are consistent with the conclusions DMS acts on posterior and anterior cardiac tissue to play a role in regulating the fast and slow phases of cardiac activity, respectively, and ligand-receptor binding requirements of the abdominal and thoracocephalic pacemakers are different.  相似文献   

19.
We investigated the effects of chronic stress combined with high sucrose intake on the morphology of the adrenal glands in young rats. Male Wistar rats were fed a standard chow diet and allocated into control (C; tap water), chronic restraint stress (St), 30% sucrose diet (S30) and 30% sucrose diet + chronic restraint stress (S30 + St) groups. St consisted of 1 h daily sessions, 5 days/week for 4 weeks. Chronic stress reduced the thickness of the zona glomerulosa (ZG) and zona fasciculata (ZF) in both right and left glands; the thickness of the zona reticularis (ZR) was increased in the right gland. Cell density was greater in the ZF and medulla of both right and left glands, whereas cell density increased in the ZR of only the left gland. The percentage of small cells was lower in the ZG, whereas more large cells were found in the left gland. A similar result was obtained for the ZF, ZR and medulla in both right and left glands. Chronic stress increased the area covered by blood vessels in the ZR of the right gland, but decreased the area in the ZR of the left gland. The area covered by blood vessels was reduced in the medulla of both right and left glands in rats subjected to chronic stress. Infiltration of immune cells was increased by chronic stress in all layers of the cortex of the left gland, but was reduced in the medulla of the right gland. A high sucrose diet reduced the thickness of the medulla in the left gland. Cell proliferation increased in the ZG of the right gland and the weight of the right adrenal gland increased. Reduced cell proliferation in the ZG of the left gland was associated with a reduction in the area covered by blood vessels. In addition, the area covered by blood vessels decreased in the medulla of both glands. Our findings demonstrate that exposure to chronic stress during early life causes morphometric changes in adrenal glands.  相似文献   

20.
Estradiol (E2) exerts an inhibitory effect on food intake in a variety of species. While compelling evidence indicates that central, rather than peripheral, estrogen receptors (ERs) mediate this effect, the exact brain regions involved have yet to be conclusively identified. In order to identify brain regions that are sufficient for E2's anorectic effect, food intake was monitored for 48 h following acute, unilateral, microinfusions of vehicle and two doses (0.25 and 2.5 μg) of a water-soluble form of E2 in multiple brain regions within the hypothalamus and midbrain of ovariectomized rats. Dose-related decreases in 24-h food intake were observed following E2 administration in the medial preoptic area (MPOA), arcuate nucleus (ARC), and dorsal raphe nucleus (DRN). Within the former two brain areas, the larger dose of E2 also decreased 4-h food intake. Food intake was not influenced, however, by similar E2 administration in the paraventricular nucleus, lateral hypothalamus, or ventromedial nucleus. These data suggest that E2-responsive neurons within the MPOA, ARC, and DRN participate in the estrogenic control of food intake and provide specific brain areas for future investigations of the cellular mechanism underlying estradiol's anorexigenic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号