首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents a non-invasive microphotometrical method for identification and the quantitative analysis of the compounds interacting with glutamate NMDA, AMPA, and KA-receptors. The method is based on the registration of ligand-gated and voltage-gated calcium channels activity using ratiometric fluorescent probe Fura-2. We have found conditions when repeated short-term (up to 30 s) applications of NMDA-, AMPA- and kainate-receptor agonists induce in most cells a calcium response almost identical to the first one. In the experiment we used the cell reaction to the first ligand application as a control, which significantly simplified the process of ligand titration. The optimal culture age was determined to enhance sensitivity of the method for each ligand. Certain rules of signal normalization were established to compare the results of different experiments and to obtain more precise values of activation and inhibition constants. It has been shown that the variability of calcium responses of individual neurons to the glutamate receptor agonists significantly depends on the degree and kinetics of their desensitization. The AMPA and KA-receptor ligands were characterized in the experiments performed in the presence of desensitization inhibitors cyclothiazide and concanavalin A, respectively. The inhibitors increased the amplitude of the response and converted the transient responses into the step ones. The method permits the detection of receptor ligands under study in an unknown sample, as well as determination of the activation and inhibition constants and the type of the inhibition. The method combines, high sensitivity, specificity and performance due to the possibility of analyzing individual activities of hundreds of cells simultaneously. The method can be used to obtain both the averaged response for all of the studied neurons and the responses of the selected cell populations or single neurons.  相似文献   

2.
Previously we have shown that in culture of rat hippocampal neurons, the calcium responses of individual cells (changes of cytoplasmic free Ca2+ concentration in response to agonists of glutamate kainate receptors) differed in shape and amplitude (Kononov A.V., Bal’ N.V., Zinchenko V.P. 2011. Biochemistry (Moscow) Suppl. Series A: Membrane and Cell Biology. 5 (2), 162–170). In the majority of neurons, the amplitudes of calcium response were regularly distributed, although there were a small number of cells that generated the desensitization-free signals of far greater amplitudes. In these cells, the desensitization inhibitors did not increase the amplitude of calcium response. We identified these neurons and revealed their function. The agonists of kainate receptors inhibited the synchronized spontaneous Ca2+ oscillations, decreased the baseline calcium level in the majority of neurons, and considerably elevated it in some of them. After washout of the agonists, the oscillations were restored in all neurons only after a certain time lag determined by the period needed for calcium concentration to decrease to subbasal level in specific neurons with high calcium signal amplitude. This observation indicates the command role of these neurons in synchronizing the activity of the entire population. To identify the subtype of KA receptors in these neurons, we used especially selective agonists and showed that KA receptors of the neurons characterized with desensitization-free calcium signals of unusually great amplitude contained GluR5/GLUK1 subunits. These receptors are known to be located mostly in the presynaptic membrane, where they promote exocytosis of neurotransmitters due to elevation of the Ca2+ conductivity. Having marked the positions of these neurons, we fixed the preparation and stained the cells with fluorescently labeled antibodies raised against glutamate decarboxylase, an enzyme which is selectively expressed in GABAergic neurons. The experiments demonstrated that antibodies were localized only in the neurons, where the kainate receptor agonist evoked desensitization-free calcium responses of especially large amplitude. Thus, GABAergic neurons control the synchronous activity of a large number of neurons via glutamate-evoked activation of specific presynaptic kainate receptors with GluR5/GLUK1 subunits leading to desensitization-free calcium signals of especially large amplitude.  相似文献   

3.
大鼠新鲜分离DRG神经元胞体膜谷氨酸受体亚型及其分布   总被引:1,自引:0,他引:1  
本文目的是研究DRG神经元膜谷氨酸受体亚型的分布及其共存情况。实验在DRG分离细胞上应用膜片带技术记录NMDA-,KA-和QA/AMPA-激活电流。在受检的37个细胞中70.3%的细胞对NMDA敏感;18.9%的细胞对KA敏感;56.8%的细胞对QA敏感。其分布的情况是:单独存在一种受体的细胞为15个;二种受体共存的细胞为13个;三种受体共存的细胞为4个.另外有4个细胞三种受体均无。  相似文献   

4.
Tzschentke TM 《Amino acids》2002,23(1-3):147-152
Summary.  Glutamate is the most widely distributed excitatory transmitter in the central nervous system (CNS). It is acting via large – and still growing – families of receptors: NMDA-, AMPA-, kainate-, and metabotropic receptors. Glutamate has been implicated in a large number of CNS disorders, and it is hoped that novel glutamate receptor ligands offer new therapeutic possibilites in disease states such as chronic pain, stroke, epilepsy, depression, drug addiction and dependence or Parkinson's disease. While an extensive preclinical literature exists showing potential beneficial effects of NMDA-, AMPA-, kainate- and metabotropic receptor ligands, only NMDA receptor antagonists have been characterized clinically to any appreciable degree. In these trials it has been shown that while several compounds are therapeutically active, they also produce serious side effects at therapeutic doses. Current interest largely centers on the development of receptor subtype-selective compounds, namely compounds selective for receptors containing the NR2B subunit. Preclinical findings and the first clinical results are encouraging, and it may be that such subunit-selective compounds may have a sufficiently wide therapeutic window to be safe for human use. Received July 6, 2001 Accepted August 6, 2001 Published online August 9, 2002  相似文献   

5.
Abstract: Activation of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subtype of ionotropic glutamate receptors has been shown to result in a rapid desensitization of the receptor in the presence of certain agonists. One effect of AMPA receptor desensitization in the hippocampus may be to decrease the efficacy of AMPA receptor agonists at stimulating the release of norepinephrine from noradrenergic terminals. Recently, cyclothiazide was reported to inhibit AMPA receptor desensitization by acting at a distinct site on AMPA receptors. We have examined the effect of cyclothiazide on AMPA- and kainate (KA)-induced norepinephrine release from rat hippocampal slices to determine whether cyclothiazide would increase the efficacy of AMPA-induced [3H]norepinephrine release by inhibiting AMPA receptor desensitization. Cyclothiazide was observed to potentiate markedly both AMPA- and KA-induced [3H]norepinephrine release. This potentiation is selective for AMPA/KA receptors as cyclothiazide did not potentiate N -methyl- d -aspartate-induced [3H]norepinephrine release or release induced by the nonspecific depolarizing agents veratridine and 4-aminopyridine. These results demonstrate that AMPA receptor-mediated modulation of [3H]norepinephrine release from rat brain slices is a useful approach to studying the cyclothiazide modulatory site on the AMPA receptor complex.  相似文献   

6.
An organotypic cell culture (OCC) model of the rat hypothalamic paraventricular nucleus (PVN) was established to monitor intracellular calcium levels ([Ca(2+)](i)) of magnocellular neurons in response to glutamate and nitric oxide (NO). The histoarchitectural organization of these cultures was characterized either by immunohistochemical labeling of vasopressin, neuronal nitric oxide synthase (nNOS) and the neuronal marker NeuN or by the enzyme histochemical NADPH-diaphorase staining. A distinct NeuN positive cell population in 14-days old OCC's was confirmed as being the PVN by its vasopressin- and nNOS-immunostained neurons as well as by its NADPH-diaphorase labeling. Life cell imaging was performed using the [Ca(2+)](i) sensor Fluo-4 to measure [Ca(2+)](i) transients in response to bath applications of glutamate, high potassium (60 mM), and ATP. The glutamate-induced [Ca(2+)](i) response was mimicked by AMPA but not NMDA in the PVN. NMDA, however, elicited a [Ca(2+)](i) transient in a different area of the OCC that corresponds to the suprachiasmatic nucleus indicating the potential effectiveness of the stimulus. The AMPA-receptor blocker NBQX abolished the glutamate-induced response in the PVN. An inhibition of endogenous NO production by the NOS inhibitor L-NAME decreased the amplitude of AMPA- and glutamate-induced [Ca(2+)](i) rises. Taken together, these data suggest that AMPA mediates the glutamate-induced [Ca(2+)](i) rises within the PVN, where endogenous NO is able to modulate such glutamate signaling in OCC.  相似文献   

7.
A method for detecting and characterizing possible ligands of neuronal GABA(A) receptors has been developed, which is based on measuring the calcium response to GABA by the fluorescence of a two-wavelength Ca-sensitive probe Fura-2. In a young (2–4 days) rat hippocampal cell culture, GABA induced depolarization and a transient increase in Ca2+ concentration in the cytosol of neurons due to activation of voltage-dependent calcium channels. A brief application of GABA could attenuate the calcium response to a subsequent addition of depolarizing agents (GABA or KCl). However, at modest amplitudes of calcium response to GABA, the reduction of the subsequent effect of KCl was insignificant, and the amplitudes of responses to KCl and to GABA proved to be linearly correlated, with a slope of ∼3.4. Therefore, the GABA calcium signals could be normalized in order to compare experiments performed on different days and different cultures. With such normalization, we estimated the EC50 for GABA in neurons at ∼2.23 μM and the Hill coefficient at ∼1.9. A blocker of voltage-dependent calcium channels nifedipine suppressed the calcium responses both to KCl and to GABA, so that the linear relationship between their amplitudes was retained. To further validate the method, the IC50 and the type of inhibition were verified for known noncompetitive and competitive antagonists of GABA(A) receptors.  相似文献   

8.
Neuronal kainate receptors are assembled from subunits with dissimilar specificities for agonists and antagonists. The composite biophysical behavior of heteromeric kainate receptors is determined by intersubunit interactions whose nature is unclear. Here we use dysiherbaine, a selective kainate receptor agonist, to show that GluR5 subunits assembled in heteromeric GluR5/KA-2 kainate receptor complexes can gate current without concomitant activation of their partner KA-2 subunits. A long-lasting interaction between dysiherbaine and GluR5 subunits elicits a tonic current from GluR5/KA-2 receptors; subsequent cooperative gating of KA-2 subunits can be elicited by both agonists, such as glutamate, and some classically defined antagonists, such as CNQX. This study demonstrates that each type of subunit within a heteromeric kainate receptor contributes a distinct conductance upon activation by agonist binding, and therefore provides insight into the biophysical function of ionotropic glutamate receptors.  相似文献   

9.
The effect of persistent hypertension on neuronal activity and synaptic transmission has been studied on olfactory cortex slices of SHR rats. The profilies of focal potentials in hypertensive rats demonstrated a short duration of the 2-amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)-propanoic acid (AMPA) component of excitatory postsynaptic potential (EPSP), a small amplitude and long duration of the N-methyl D-aspartate (NMDA) component of EPSP, and a large amplitude of the GABAB-dependent slow inhibitory postsynaptic potentials. The sensitivity of glutamate receptors responsible for the generation of AMPA- and NMDA-mediated EPSPs was low after the exposure to 1 mM L-glutamate. The amplitudes of the AMPA- and NMDA-mediated EPSPs decreased. Tetanization of slices from hypertensive rats induced a short-term potentiation followed by a depression. The data obtained indicate that persistent hypertension has depressive effects on the basic glutamatergic and GABAergic parameters of synaptic activity of neurons as well as on learning and memory. Apparently, these processes were evoked by glutamate excitotoxicity in the brain of hypertensive rats.  相似文献   

10.
The purpose of this paper was to examine the function of N-methyl-D-aspartate (NMDA) glutamate receptor in cortical neurons on amino acid neurotransmitters release as well as the fraction of neurons implicated in the response of this receptor. Local stimulation of these cells at different concentrations of NMDA, agonist of this ionotropic glutamate receptor, produced a dose dependent release of aspartate, glutamate, glycine and GABA. These effects were blocked by DAP5, an antagonist of the NMDA receptor. The amino acid Ca2+ dependent release mediated by the NMDA receptor, is induced by the opening of voltage-dependent Ca2+ channels that this receptor promotes. Ca++ movements were explored in single cells loaded with fura-2. When single cells were stimulated with 100 μM NMDA, the calcium recording performed showed that 82% of the cells responded to this agonist increasing the intracellular calcium concentration, although the amplitude of these increments was variable. The results suggest that NMDA-elicited neurotransmitter release from cortical neurons involves Ca2+-dependent and Ca2+-independent components, as well as neuron depolarisation, and different VDCC subtypes of N, P/Q or L depending of the amino acid neurotransmitter release elicited by this receptor.  相似文献   

11.
A new ionotropic glutamate receptor subunit termed KA-2, cloned from rat brain cDNA, exhibits high affinity for [3H]kainate (KD approximately 15 nM). KA-2 mRNA is widely expressed in embryonic and adult brain. Homomeric KA-2 expression does not generate agonist-sensitive channels, but currents are observed when KA-2 is coexpressed with GluR5 or GluR6 subunits. Specifically, coexpression of GluR5(R) and KA-2 produces channel activity, whereas homomeric expression of either subunit does not. Currents through heteromeric GluR5(Q)/KA-2 channels show more rapid desensitization and different current-voltage relations when compared with GluR5(Q) currents. GluR6/KA-2 channels are gated by AMPA, which fails to gate homomeric GluR6 receptor channels. These results suggest possible in vivo partnership relations for high affinity kainate receptors.  相似文献   

12.
In our experiments on rat dorsal root ganglia (DRG) neurons, we studied the effects of an antiepileptic agent, gabapentin, on calcium transients evoked by depolarization of the membrane using the fluorescence calciumsensitive dye Fura-2/AM. Application of gabapentin to neurons with large-diameter somata practically did not change the characteristics of calcium transients. In mid-sized neurons, the amplitude of transients decreased, on average, by 27% with respect to the control, while in small-sized neurons the transients changed insignificantly (on average, less than by 7%). The mid-sized neurons were additionally subjected to the capsaicin test, which allowed us to differentiate primary nociceptive neurons of this group where TRPV1-type channels are expressed. In capsaicin-sensitive neurons, application of gabapentin led to a decrease in the amplitude of calcium transients, on average, by 37%, while such a decrease was only 16% in capsaicininsensitive neurons. Based on our own data and findings of other researchers on the ability of gabapentin to demonstrate affine binding with the accessory α2δ subunit of voltage-dependent calcium channels and also on the peculiarities of expression of these channels in somatosensory neurons of the corresponding types, we discuss the probable pattern of expression of subunits of the α2δ-1 subtype in DRG cells of different sizes. We demonstrated that the effects of gabapentin on calcium transients in nociceptive and hypothetically nonnociceptive mid-sized DRG neurons are selective (the effects in neurons involved in the sensation of acute pain are probably more intense). Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 281–287, July–August, 2008.  相似文献   

13.
Locus coeruleus (LC) neurons in a rat brain slice preparation were superfused with a Mg2+-free and bicuculline-containing external medium. Under these conditions, glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) were recorded by means of the whole-cell patch-clamp method. ATP, as well as its structural analogue 2-methylthio ATP (2-MeSATP), both caused transient inward currents, which were outlasted by an increase in the frequency but not the amplitude of the sEPSCs. PPADS, but not suramin or reactive blue 2 counteracted both effects of 2-MeSATP. By contrast, α,β-methylene ATP (α,β-meATP), UTP and BzATP did not cause an inward current response. Of these latter agonists, only BzATP slightly facilitated the sEPSC amplitude and strongly potentiated its frequency. PPADS and Brilliant Blue G, as well as fluorocitric acid and aminoadipic acid prevented the activity of BzATP. Furthermore, BzATP caused a similar facilitation of the miniature (m)EPSC (recorded in the presence of tetrodotoxin) and sEPSC frequencies (recorded in its absence). Eventually, capsaicin augmented the frequency of the sEPSCs in a capsazepine-, but not PPADS-antagonizable, manner. In conclusion, the stimulation of astrocytic P2X7 receptors appears to lead to the outflow of a signalling molecule, which presynaptically increases the spontaneous release of glutamate onto LC neurons from their afferent fibre tracts. It is suggested, that the two algogenic compounds ATP and capsaicin utilise separate receptor systems to potentiate the release of glutamate and in consequence to increase the excitability of LC neurons.  相似文献   

14.
Domoic acid acts at both kainic acid (KA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-sensitive glutamate receptors and induces tolerance against subsequent domoic acid insult in young but not aged rat hippocampus. To determine the receptor specificity of this effect, tolerance induction was examined in hippocampal slices from young and aged rats. Slices were preconditioned by exposure to low-dose KA to activate kainate receptors, or the AMPA-receptor selective agonist (S)-5-fluorowillardiine (FW), and following washout, tolerance induction was assessed by administration of high concentrations of KA or FW (respectively). FW preconditioning failed to induce tolerance to subsequent FW challenges, while KA-preconditioned slices were significantly resistant to the effects of high-dose KA. KA preconditioning failed to induce tolerance in aged CA1. Given the lasting nature of the tolerance effect, we examined G-protein-coupled receptor function. A number of ionotropic KA receptor agonists and antagonists significantly reduced constitutive GTPase activity in hippocampal membranes from young but not aged rats. Furthermore, in young CA1, low concentrations of the AMPA/KA blocker GYKI-52466 also induced tolerance to high-dose KA. Our findings suggest that tolerance is triggered by a selective reduction in constitutive KA-sensitive G-protein activity, and that this potential neuroprotective mechanism is lost with age.  相似文献   

15.
J E Huettner 《Neuron》1990,5(3):255-266
Primary afferent C fibers in rat dorsal roots are depolarized by the excitatory amino acids kainate and domoate. Under whole-cell voltage clamp, kainate and domoate increase membrane conductance in a subpopulation of freshly dissociated DRG neurons. In contrast to kainate currents observed in CNS neurons, responses to kainate and domoate in DRG cells desensitize with prolonged agonist exposure. Half-maximal activation is achieved with much lower concentrations of kainate and domoate in sensory neurons than in CNS neurons from cerebral cortex. Rapid applications of glutamate, quisqualate, and AMPA evoke a transient current in DRG neurons and desensitize cells to subsequent applications of kainate or domoate. Brief incubation with the lectin concanavalin A eliminates desensitization to excitatory amino acids; after treatment with concanavalin A, all five agonists gate sustained currents of similar amplitude via the same receptor.  相似文献   

16.
This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold.  相似文献   

17.
Actions of excitatory amino acids on mesencephalic trigeminal neurons   总被引:4,自引:0,他引:4  
Mesencephalic trigeminal (MeV) neurons are primary sensory neurons of which the cell soma is located within the brainstem, and is associated with synaptic contacts. In previous studies it has been reported that these cells are resistant to kainic acid excitotoxicity, and have little or no responsiveness to exogenously applied glutamate or selective agonists. In an in vitro slice preparation with intracellular recording, we have found that these cells respond to pressure-applied glutamate, N-methyl-D-aspartic acid (NMDA), kainate (KA), and (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). The kainate and AMPA responses appear to be mediated by different receptors, at least in part, since they exhibit differing sensitivity to an AMPA receptor selective antagonist. The agonists generally evoke larger responses than glutamate and exhibit a long-duration desensitization requiring approximately 10 min for full recovery. Some cross-desensitization between the glutamate agonists is also observed. Mesencephalic trigeminal neurons exhibit high-frequency oscillatory activity during depolarizations that approach threshold potentials, and these could combine with transmitter-induced depolarizations to enhance the excitability of these cells. Previous reports of nonsensitivity to glutamate and to kainate excitotoxicity are attributable to relatively small responses, and to the desensitization expressed by these neurons.  相似文献   

18.
Changes in cytosolic free Ca2+ concentrations in response to glutamate receptor agonists and their interactions were studied in rat cerebellar granule cells grown on coverslips. The intracellular Ca2+ as measured with fura-2 increased by applying kainate (KA), quisqualate (QU), and N-methyl-D-aspartate (NMDA). The effect of KA could not be blocked by the NMDA receptor blocker 2-amino-5-phosphonovaleric acid (AP5). The KA- and QU-induced increase in intracellular free Ca2+ was also observed in a Na(+)-free medium, indicating that this response is not secondarily due to the depolarization. The effect of 10 microM QU on the KA-induced changes in cytosolic free Ca2+ was additive only at low KA concentrations, but QU at 0.1 mM totally blocked the response to KA. In the presence of 10 microM KA, the dose-response curve of QU became biphasic, whereas with 50 microM KA, a reduction of the response was seen around 1-100 microM QU. The effect of NMDA on the QU-induced response was additive only at low QU concentrations. It is proposed that rat cerebellar granule cells in primary culture express separate receptor-channel complexes for NMDA, QU, and KA, but interactions between agonists for these receptor sites exist. Thus, QU when present at intermediate concentrations seems to interact with the KA type of receptor, causing its desensitization. At high QU concentrations, an interaction of QU with the NMDA receptor site is apparent.  相似文献   

19.
1. The effects of three metabotropic glutamate receptor (mGluR) agonists were tested in two pathways of rat piriform cortex. The group I, II and III mGluR agonists used were RS-3,5-dihydroxyphenenylglycine (DHPG) (10–100 μM), (2S,1′S,2′S)-2-Carboxycyclopropyl (L-CCG) (20–100 μM) and L(+)-2-amino-4-phosphonobutyric acid (L-AP4) (5–500 μM), respectively.2. The effects of the three groups of agonists on synaptic transmission in the two piriform cortex pathways also were examined. All three agonists reduced the amplitude of the monosynaptic EPSPs generated by stimulation of the lateral olfactory tract (LOT) or of the association fiber pathway (ASSN). This was always accompanied by an increase in paired pulse facilitation.3. Group I and II mGluR agonists had similar synaptic effects on the two pathways, while the group III mGluR agonist suppressed the LOT pathway more than the association pathway.4. The group II and III mGluR agonists had no effect on passive membrane properties of pyramidal neurons. Group I agonists depolarized the pyramidal neuron membrane potential, and enhanced both membrane resistance and noise.5. Our data suggest that all three types of mGluRs modulate synaptic transmission in both of these pathways in piriform cortex. Only group I agonists alter post-synaptic membrane properties, while all three types of receptor regulate synaptic transmission. Groups I and II are equally potent in the LOT and association fiber pathways, while group III receptors are more potent in the LOT than the association fiber pathways.  相似文献   

20.
A contribution of necrosis and apoptotis as well as the particular apoptosis pathways in neuro-degeneration induced by glutamate and selective glutamate receptor agonists, NMDA and kainate, were studied. In experiments on primary neuron cultures of 7 days in vitro from embryonic rat cortex, the necrosis and apoptosis were recognized using vital fluorescence acridine orange and ethidium bromide staining. Immunostaining was used to visualize apoptotic peptides such as P53, Cas-3 and AIF. Death of neurons occurred by both necrosis and apoptosis following 240 min 3 mM glutamate, 30 microM NMDA and 30 microM kainate exposure. Quantities of necrotic neurons in the presence of NMDA and kainate were substantially reduced when compared to the glutamate action. The glutamate effects were realized through predominant activation of AMPA- and kainate receptors, since it could be greatly suppressed by 30 microM CNQX. AIF but not Cas-3, was found in a large amount of neurons when apoptosis was evoked by the selective NMDA receptor activation. On the contrary, during apoptosis induced by glutamate and kainate, many cells contained Cas-3 in nuclei rather than the AIF. The data suggest that apoptosis induced by the NMDA receptor activation develops through the caspase-3-independent pathway that involves direct AIF accumulation in nuclei. The AMPA/kainate receptor mediated apoptosis includes the caspase-3-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号