首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After incubation of 3beta-hydroxy-5-[17,21,21,21-2H]-pregnen-20-one with the microsomal fraction of boar testis, the metabolites were analyzed by gas chromatography and gas chromatography-mass spectrometry. The following metabolites were identified: 3beta,17alpha-dihydroxy-5-[21,21,21-3H]pregnen-20-one, 3beta-hydroxy-5-androsten-17-one, 5-androstene-3beta,17beta-diol, and 5-[17beta-2H]androstene-3beta,17alpha-diol. The presence of a 2H atom at the 17beta position of 5-androstene-3beta,17alpha-diol was confirmed by oxidizing the steroid with 3beta-hydroxy-steroid dehydrogenase of Pseudomonas testosteroni to obtain 17alpha-hydroxy-4-[2H]androsten-3-one and then by oxidizing the latter steroid with chromic acid to obtain nonlabeled 4-androstene-3,17-dione. Among these metabolites, the first three can be interpreted to be synthesized by a well documented pathway, including 17alpha-hydroxylation followed by side chain cleavage as follows: 3beta-hydroxy-5-[17,21,21,21-2H]pregnen-20-one leads to 3beta,17alpha-dihydroxy-2-[21,21,212H]-pregnen-20-one leads to 3beta-hydroxy-5-androsten-17-one leads to 5-androstene-3beta,17beta-diol. On the other hand, 5-androstene-3beta,17alpha-diol, which contained a 2H atom at the 17beta position, is not likely to be synthesized via above mentioned pathway in which nonlabeled 3beta-hydroxy-5-androsten-17-one is formed as the first C19-steroid. It seems that an alternate side chain cleavage mechanism leading from pregnenolone to 17alpha-hydroxy-C19-steroid exists in boar testis.  相似文献   

2.
Human placental estradiol-17beta dehydrogenase is rapidly inactivated upon treatment with 3-bromoacetoxyestrone. Pseudo-first order kinetic data are obtained and inactivation is accompanied by incorporation of 1 mol of 3-acetoxyestrone/mol of subunit (Mr =34,000). Treatment of the inactivated enzyme with (4S)-[4-2H]DPNH results in the formation of covalently bound [17alpha-2H]estradiol-17beta, which can be released by hydrolysis and identified by gas chromatography-mass sepctrometry. When (4R)-[4-2H]DPNH was used, deuterium was not transferred. Thus, the normal stereochemistry of hydridetransfer is preserved for both partners. After treatment with p-mercuribenzoate, affinity-labeled estradiol-17beta dehyrogenase is no longer able to caralyze reduction its covalently bound estrone; in the presence of DPNH and native enzyme, however, reduction occurs, demonstrating that affinity-labeled enzyme can itself serve as subtrate for native estradiol-17beta dehydrogenase. The reversible enzymatic interconversion of covalently bound estrone was demonstrated using a transhydrogenase assay. The ability of an enzyme to catalyze its normal reaction with a covalently bound substrate is termed catalytic competence, and is considered to be a new criterion for affinity labeling.  相似文献   

3.
1. [28-3H]Stigmast-5-ene-3 beta, 28-diol and [23,23,25-3H]stigmast-5-ene-3 beta, 24-diol were synthesized. 2. Each of the samples was mixed with beta-[4-14C]sitosterol and administered to Tenebrio molitor larvae. 3. The former compound is not utilized by the insect; the latter, although metabolized to 24(28)-ethylidene sterols and cholesterol, is not a beta-sitosterol metabolite. 4. The above results are discussed in relation to the mechanism of formation of the 24(28)-double bond in beta-sitosterol metabolism in T. molitor.  相似文献   

4.
Photolabeling of nucleotide binding sites in nucleotide-depleted mitochondrial F1 has been explored with 2-azido [alpha-32P]adenosine diphosphate (2-N3[alpha-32P] ADP). Control experiments carried out in the absence of photoirradiation in a Mg2+-supplemented medium indicated the presence of one high affinity binding site and five lower affinity binding sites per F1. Similar titration curves were obtained with [3H]ADP and the photoprobe 3'-arylazido-[3H]butyryl ADP [( 3H]NAP4-ADP). Photolabeling of nucleotide-depleted F1 with 2-N3[alpha-32P]ADP resulted in ATPase inactivation, half inactivation corresponding to 0.6-0.7 mol of photoprobe covalently bound per mol F1. Only the beta subunit was photolabeled, even under conditions of high loading with 2-N3[alpha-32P]ADP. The identification of the sequences labeled with the photoprobe was achieved by chemical cleavage with cyanogen bromide and enzymatic cleavage by trypsin. Under conditions of low loading with 2-N3[alpha-32P]ADP, resulting in photolabeling of only one vacant site in F1, covalently bound radioactivity was located in a peptide fragment of the beta subunit spanning Pro-320-Met-358 identical to the fragment photolabeled in native F1 (Garin, J., Boulay, F., Issartel, J.-P., Lunardi, J., and Vignais, P. V. (1986) Biochemistry 25, 4431-4437). With a heavier load of photoprobe, leading to nearly 4 mol of photoprobe covalently bound per mol F1, an additional region of the beta subunit was specifically labeled, corresponding to a sequence extending from Gly-72 to Arg-83. The isolated beta subunit also displayed two binding sites for 2-N3-[alpha-32P]ADP. When F1 was first photolabeled with a low concentration of NAP4-ADP, leading to the covalent binding of 1.5 mol of NAP4-ADP/mol F1, with the bound NAP4-ADP distributed equally between the alpha and beta subunits, a subsequent photoirradiation in the presence of 2-N3[alpha-32P]ADP resulted in covalent binding of the 2-N3[alpha-32P]ADP to both alpha and beta subunits. It is concluded that each beta subunit in mitochondrial F1 contains two nucleotide binding regions, one of which belongs to the beta subunit per se, and the other to a subsite shared with a subsite located on a juxtaposed alpha subunit. Depending on the experimental conditions, the subsite located on the alpha subunit is either accessible or masked. Unmasking of the subsite in the three alpha subunits of mitochondrial F1 appears to proceed by a concerted mechanism.  相似文献   

5.
The N-acetylglucosaminyltransferases probably involved in the biosynthesis in vitro of Ii core glycosphingolipids have been solubilized from a membrane preparation of mouse lymphoma P-1798 and partially characterized. The detergent-extracted membrane supernatant contains both beta 1-3- and beta 1-6-N-acetylglucosaminyltransferase activities that transfer [3H]GlcNAc from UDP-[3H]GlcNAc to the terminal galactose of neolactotetraosylceramide (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-ceramide; nLcOse4ceramide), to form the Ii core structures. The linkage of [3H]N-acetylglucosamine incorporated into the terminal galactose of nLcOse4Cer was determined from identification of 2,4,6-tri-O-methyl[3H]galactose and 2,3,4-tri-O-methyl[3H]galactose after hydrolysis of the permethylated enzymatic products, GlcNAc beta-[3H]Gal-GlcNAc-Gal-Glc-ceramide. In addition to the presence of beta-N-acetylglucosaminyltransferases, we have detected a galactosyltransferase activity in this soluble supernatant fraction that catalyzes the transfer of [14C]galactose from UDP-[14C]galactose to lactotriaosylceramide (GlcNAc beta 1-3Gal beta 1-4Glc-ceramide; LcOse3ceramide) to form nLcOse4ceramide, the acceptor in the N-acetylglucosaminyltransferase-catalyzed reaction.  相似文献   

6.
Incubation of UDP-GlcNAc and radiolabeled GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (1) with human serum resulted in the formation of the branched hexasaccharide GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (2) in yields of up to 22.2%. The novel reaction represents midchain branching of the linear acceptor; the previously known branching reactions of oligo-(N-acetyllactosaminoglycans) involve the nonreducing end of the growing saccharide chains. The structure of 2 was established by use of appropriate isotopic isomers of it for degradative experiments. The hexasaccharide 2 was cleaved by an exhaustive treatment with jack bean beta-N-acetylhexosaminidase, liberating two GlcNAc units and the tetrasaccharide Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (3). Endo-beta-galactosidase from Bacteroides fragilis cleaved 2 at one site only, yielding the disaccharide GlcNAc beta 1-3Gal (4) and the branched tetrasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (5). The structure of 5 was established by partial acid hydrolysis and subsequent identification of the disaccharide GlcNAc beta 1-6Gal (6), together with the trisaccharides GlcNAc beta 1-6Gal beta 1-4GlcNAc (7) and GlcNAc beta 1-3(GlcNAc beta 1-6)Gal (8) among the cleavage products. Galactosylation of 2 with bovine milk beta 1,4-galactosyltransferase and UDP-[6-3H]Gal gave the octasaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3 Gal beta 1-4GlcNAc beta 1-3([6-3H]-Gal beta 1-4GlcNAc beta 1-6)[U-14C] Gal beta 1-4GlcNAc (17), which could be cleaved with endo-beta-galactosidase into the trisaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3Gal (18) and the branched pentasaccharide GlcNAc beta 1-3-([6-3H]Gal beta 1-4GlcNAc beta 1-6) [U-14C]Gal beta 1-4GlcNAc (19). Partial hydrolysis of 2 with jack-bean beta-N-acetylhexosaminidase gave the linear pentasaccharide 1 and the branched pentasaccharide Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (20). The serum beta 1,6-GlcNAc transferase catalyzed also the formation of GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc (11) from UDP-GlcNAc and GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc (10). The pentasaccharide Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (16), too, served as an acceptor for the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
A novel glucuronyltransferase (GlcAT-1) has been detected in embryonic chicken brains. This enzyme catalyzes the biosynthesis in vitro of glucuronic acid containing glycolipids starting from neolactotetraosylceramide (nLcOse4Cer) and neolactohexaosylceramide (nLcOse6Cer). The activity is present primarily in the Golgi-rich membrane fraction and can be extracted (60%) from the membrane using a neutral detergent, Nonidet P-40, at pH 7.0. The detergent-solubilized GlcAT-1 is stable (70%) at -20 degrees C for at least 4 months. Both membrane-bound GlcAT-1 and solubilized GlcAT-1 show similar pH optima, 6.5-7.0, in HEPES buffer. The Km values were 15 and 200 microM with UDP-[14C] GlcA and nLcOse4Cer, respectively, when the detergent-solubilized supernatant fraction was used as enzyme source. The purified 14C radioactive product that comigrated with chemically characterized GlcA beta 1-3nLcOse4Cer (GlcA-nLc4) also yielded a positive immunostain with monoclonal antibody (human IgM-RI). The anomeric linkage was established as beta-linked GlcA to the terminal galactose of the substrate, as evidenced by 90-99% cleavage of the terminal [14C] GlcA by purified Helix pomatia and limpet glucuronidases. Permethylation studies of the radioactive product obtained from [6-3H]Gal beta 1-4LcOse3Cer and non-radioactive UDP-GlcA showed the presence of 2,4,6-tri-O-methylgalactose in the hydrolyzed enzymatic product. These studies established the structure of the biosynthesized product from nLcOse4Cer as GlcA beta 1-3Gal beta 1-4 GlcNAc beta 1-3Gal beta 1-4Glc-ceramide.  相似文献   

8.
The phosphorylation of thymidine, deoxycytidine, deoxyadenosine and deoxyguanosine was studied during the embryogenesis of the sea urchin Hemicentrotus pulcherrimus. [3H]Thymidine was taken up, phosphorylated and accumulated mostly as [3H]thymidine triphosphate in the early cleavage stage embryos. As the embryos developed, the formation of [3H]thymidine triphosphate decreased and most of the [3H]thymidine taken up by the blastulae remained be phosphorylated. When [3H]deoxycytidine was added to the cleaving embryos, the resultant labeled pool consisted of almost equal amounts of [3H]deoxycytidine monophosphate and [3H]deoxycytidine triphosphate. The formation of [3H]deoxycytidine monophosphate increased up to 10 hr following fertilization and then decreased, while the formation of [3H]deoxycytidine triphosphate decreased for 10 hr following fertilization and then gradually increased. [3H]Deoxyadenosine was rapidly phosphorylated to monophosphate derivative in the cleavage stage embryos. The formation of [3H]deoxyadenosine triphosphate increased rapidly after cleavage stage with a concomitant decrease of [3H]deoxyadenosine monophosphate. The activity of phosphorylation in [3H]deoxyguanosine to triphosphate derivative increased rapidly reaching a plateau 10 hr after fertilization. At this point, 80 % of the [3H]deoxyguanosine was recovered as [3H]deoxyguanosine triphosphate. Based on the above results, it was concluded that the profile of production of each deoxyribonucleoside triphosphate changed during the embryogenesis of the sea urchin, and the in vivo rate-limiting step of phosphorylation of the individual deoxyribonucleoside was assumed to be different.  相似文献   

9.
Cloacin DF12 cleavage of Escherichia coli f[3H]MettRNA-AUG-ribosome complexes affects this substrate for in vitro peptide chain termination. Codon-directed release factors' (RF) 1 and 2 release of f[3H]methionine is inhibited by cloacin. Since cloacin inhibits RF1 and -2 binding to ribosomes but not RF-directed f[3H]methionine release from f[3H]met-tRNA-AUG-ribosome complexes when reactions contain 20% ethanol, we conclude that cloacin DF 13 inhibits formation of the termination codon recognition complex. Thus, cleavage of the 3'-OH 49-nucleotide sequence of the 16 S rRNA perturbs the codon-directed binding of RF to ribosomes.  相似文献   

10.
The interaction of three types of chromium(III) complexes, [Cr(salen) (H2O2]+, [Cr(en)3]3+, and [Cr(EDTA) (H2O)]- with AGP has been investigated. [Cr(salen) (H2O2]+, [Cr(en)3]3+ and [Cr(EDTA) (H2O]- bind to Human alpha1-acid glycoprotein with a protein:metal ratio of 1:8, 1:6, and 1:4, respectively. The binding constant, K(b) was estimated to be 1.37 +/- 0.12 x 10(5) M(-1), 1.089 +/- 0.05 x 10(5) M(-1) and 5.3 +/- 0.05 x 10(4) M(-1) for [Cr(salen) (H2O2]+, [Cr(en)3]3+, and [Cr(EDTA) (H2O)]-, respectively. [Cr(en)3]3+ has been found to induce structural transition of AGP from the native twisted beta sheet to a more compact alpha-helix. The complexes, [Cr(salen) (H2O2]+ and [Cr(EDTA) (H2O]-, in the presence of H2O2, have been found to bring about nonspecific cleavage of AGP, whereas [Cr(en)3]3+ does not bring about any protein damage. Treatment of [Cr(salen) (H2O)2]+-protein adduct with iodosyl benzene on the other hand led to site specific cleavage of the protein. These results clearly demonstrate that protein damage brought about by chromium(III) complexes depends on the nature of the coordinated ligand, nature of the metal complex, and the nature of the oxidant.  相似文献   

11.
The effects of 50 microM of progesterone (P4), estradiol (E2), estrone (E1), estriol (E3), dehydroepiandrosterone (DHIA), androstenedione (delta 4) and testosterone (T) on the bioconversion of [3H]pregnenolone (6 nM) to [3H]P4 were investigated by incubating 200 mg of tissue fragments as well as equivalent aliquots of microsomes from human term placenta during 30 min. All the steroids assayed, except E3, significantly inhibited the [3H]P4 formation in a microsome incubation system with respect to the control assay (P less than 0.001). Conversely in a tissue incubation system. P4, E1 as well as E3 had no effect on [3H]pregnenolone bioconversion while E2 slightly decreased the [3H]P4 formation (P less than 0.05) compared with the control. A significant inhibition was observed in this system with the other steroids (P less than 0.001). To investigate these apparent different results of inhibition-noninhibition of the same steroids irrespective of the system of incubation used, the effects of P4, E2 and T on 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta-HSD) activity were studied in tissue fragments and microsomes in kinetic terms. The results found indicate that these steroids inhibited in a competitive fashion the 3 beta-HSD activity in both systems. The different Ki values found in tissue fragments and microsomes respectively for P4 (1.8 microM vs 0.5 microM), E2 (2.3 microM vs 0.6 microM) and T (0.25 microM vs 0.3 microM) explain the bioconversion results obtained in presence of 50 microM of the same steroids. These results include inhibition of [3H]P4 formation by T in tissue fragments as well as in microsomes whereas P4 and E2 inhibited the [3H]P4 formation only in microsomes. Furthermore, the comparison of these Ki values with the available data of intraplacental and circulating concentrations of the same steroids in human term pregnancy suggest that only P4 would be expected to cause marked 3 beta-HSD inhibition in physiological conditions.  相似文献   

12.
Our previous works have shown that bone marrow stromal cells secrete thymosin beta4 (Tbeta4) and AcSDKP. Tbeta4 and AcSDKP are existed in the conditioned medium of bone marrow endothelial cells. They exerted inhibitory effects on hematopoietic cells and then had protective effect on the early hematopoietic cells, which were cultured in the presence of hematopoietic stimulators. Thymosin beta4 consists of 43 peptides with a molecular weight of 4963. It contains at its N-terminal end the sequence of the acetylated tetrapeptide Ac-N-Ser-Asp-Lys-Pro (AcSDKP). This study was performed to evaluate the effect of Tbeta4 and AcSDKP on the growth of HL-60 cells. It was showed that Tbeta4 (10(-11)-10(-7)mol/L) and AcSDKP (10(-11)-10(-7)mol/L) had the dose-dependent inhibitory effect on the proliferation of HL-60 cells. Based on cell morphology and NBT reduction, Tbeta4 and AcSDKP induced differentiation of HL-60 cells. Morphologic and DNA fragment analysis proved that Tbeta4 and AcSDKP induced apoptosis of HL-60 cells. In order to analyze the mechanism of the effects of Tbeta4 and AcSDKP, intracellular free Ca(2+) concentration ([Ca(2+)](i)) of HL-60 leukemic cells was tested and Atlas cDNA Expression Array was performed. The results showed that Tbeta4 and AcSDKP could increased [Ca(2+)](i) by stimulating the release of Ca(2+) from intracellular Ca(2+) pool. Moreover, AcSDKP could also elicit a potent extracelluar calcium influx in HL-60 cells. Tbeta4 could also change apoptotic-related gene expression in leukemic cells, and resulted in the inhibition of proliferation and induction of differentiation and apoptosis of leukemic cells.  相似文献   

13.
Angiotensin II Inactivation Process in Cultured Mouse Spinal Cord Cells   总被引:3,自引:2,他引:1  
The pattern of hydrolysis of [3H]angiotensin II ( [3H]AII; 20 nM) by intact cells was studied on cultured mouse spinal cord cells. Degradation products were identified by HPLC analysis after incubation for 2 h at 37 degrees C. In the absence of peptidase inhibitors, 70% of [3H]AII was degraded, and the main labeled metabolite was [3H]tyrosine (40% of total radioactivity). Minor quantities of [3H]AII1-5 and [3H]AII4-8 were formed. Results obtained in the presence of various inhibitors indicate that several enzymes were involved in the AII-hydrolyzing process. Dipeptidyl aminopeptidase III (EC 3.4.14.4) could play a critical role, as suggested by the formation of [3H]Val3-Tyr4 and [3H]-Tyr4-Ile5 in the presence of bestatin (2 X 10(-5) M). This hypothesis was confirmed by the potency of dipeptidyl amino-peptidase III inhibitors to inhibit both [3H]AII hydrolysis and formation of these 3H-labeled dipeptides. An arylamidase-like activity could also be participating in [3H]AII hydrolysis, because higher concentrations of bestatin (10(-4) M) in association with dipeptidyl aminopeptidase III inhibitors totally inhibited [3H]tyrosine formation, increased protection of [3H]AII and [3H]AII1-7 formed, and provoked a slight accumulation of [3H]AII2-8. These results suggest that the formation of [3H]AII2-8 is due to the action of a bestatin-insensitive acidic aminopeptidase and that the Pro7-Phe8 cleavage is also a step of AII hydrolysis, resulting from the action of an unidentified peptidase different from prolyl endopeptidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Bovine thyroid microsomes are able to phosphorylate exogenous [1-3H]dolichol as well as endogenous dolichol. The properties and specificity of the dolichol kinase activity have been studied by following the phosphorylation of [1-3H]dolichol to [1-3H]DMP as well as the formation of [32P]DMP from endogenous dolichol and [gamma-32P]CTP. The dolichol kinase activity was not linear with respect to time and exhibited a neutral pH-optimum. Product formation was directly proportional to microsomal protein concentration up to 2.5 mg protein/incubation. The enzyme was found to depend on divalent cations for activity: Mg2+-ions being much more effective than Ca2+- and Mn2+-ions. In accordance, EDTA was strongly inhibitory. The enzyme exhibited specificity for CTP as phosphoryl donor and was found to be inhibited by the reaction product CDP. The apparent Km-value for exogenous dolichol amounted to 4 microM. Those for CTP were estimated to be 3.88 and 10.75 mM with exogenous [1-3H]dolichol depending on the source of CTP. With endogenous dolichol Km-values for CTP of 27.8 and 6.1 microM were calculated in respectively the absence and presence of 5 mM VO4(3-). Triton X-100 (0.15%) was necessary in the [1-3H]dolichol kinase assay (only 3% of enzymatic activity in the absence of detergent), while with [gamma-32P]CTP dolichol kinase detergent was only of minor influence (30% stimulation at 0.02% Triton X-100). The levels of the enzymatic activity could be doubled by the inclusion of 18-21 mM NaF [( 1-3H]dolichol kinase) as phosphatase inhibitor: VO4(3-) had practically no effect. In contrast with [gamma-32P]CTP dolichol kinase, the enzymatic activity could be enhanced 4-fold by addition of 5 mM VO4(3-) while F- resulted into no appreciable effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
T Szumilo  G P Kaushal  A D Elbein 《Biochemistry》1987,26(17):5498-5505
The presence of an N-acetylglucosaminyltransferase (GlcNAc-transferase) capable of adding a GlcNAc residue to GlcNAcMan3GlcNAc was demonstrated in mung bean seedlings. This enzyme was purified about 3400-fold by using (diethylaminoethyl)cellulose and phosphocellulose chromatographies and chromatography on Concanavalin A-Sepharose. The transferase was assayed by following the change in the migration of the [3H]mannose-labeled GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc on Bio-Gel P-4, or by incorporation of [3H]GlcNAc from UDP-[3H]GlcNAc into a neutral product, (GlcNAc)2Man3GlcNAc. Thus, the purified enzyme catalyzed the addition of a GlcNAc to that mannose linked in alpha 1,6 linkage to the beta-linked mannose. GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc was an excellent acceptor while Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, Man alpha 1,6(Man alpha 1,3)Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, and Man alpha 1,6(Man apha 1,3)Man alpha 1,6[GlcNAcMan alpha 1,3]Man beta 1,4GlcNAc were not acceptors. Methylation analysis and enzymatic digestions showed that both terminal GlcNAc residues on (GlcNAc)2Man3GlcNAc were attached to the mannoses in beta 1,2 linkages. The GlcNAc transferase had an almost absolute requirement for divalent cation, with Mn2+ being best at 2-3 mM. Mn2+ could not be replaced by Mg2+ or Ca2+, but Cd2+ showed some activity. The enzyme was also markedly stimulated by the presence of detergent and showed optimum activity at 0.15% Triton X-100. The Km for UDP-GlcNAc was found to be 18 microM and that for GlcNAcMan3GlcNAc about 16 microM.  相似文献   

16.
The natural tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) is generated from the N-terminus of thymosin-β4 through enzymatic cleavage by prolyl oligopeptidase (POP). AcSDKP regulation of proliferation of different cells is implicated in hematopoiesis and angiogenesis. This tetrapeptide present in almost all cells was recently detected at elevated concentrations in neoplastic diseases. However, previously reported in vitro and in vivo studies indicate that AcSDKP does not contribute to the pathogenesis of cancers. Here we show that exogenous AcSDKP exerts no effect on the proliferation of actively dividing malignant cells. Using S17092, a specific POP inhibitor (POPi), to suppress the biosynthesis of AcSDKP in U87-MG glioblastoma cells characterized by high intracellular levels of this peptide, we found that all tested doses of POPi resulted in an equally effective depletion of AcSDKP, which was not correlated with the dose-dependent decreases in the proliferation rate of treated cells. Interestingly, addition of exogenous AcSDKP markedly reversed the reduction in the proliferation of U87-MG cells treated with the highest dose of POPi, and this effect was associated with activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. However, extracellular-regulated protein kinase (ERK) activation was unaltered by S17092 and AcSDKP co-treatment. Knockdown of individual PI3K catalytic subunits revealed that p110α and p110β contributed differently to AcSDKP regulation of U87-MG cell proliferation. Disruption of p110α expression by small interfering RNA (siRNA) abrogated AcSDKP-stimulated Akt phosphorylation, whereas knockdown of p110β expression exhibited no such effect. Our findings indicate for the first time that the PI3KCA/Akt pathway mediates AcSDKP regulation of cell proliferation and suggest a role for this ubiquitous intracellular peptide in cell survival.  相似文献   

17.
The 1H-NMR spectroscopy was used to study the anomeric configuration of N-acetyl-D-neuraminic acid released by the action of neuraminidase. The hydrolysis of NeuAcalpha 2 leads to 3 Gal-beta 1 leads to 4Glc (20mM) by the enzymes of Clostridium perfringens and Arthrobacter ureafaciens (50 mU, 150 mU and 800 mU, respectively) in 50mM Na/K-phosphate buffer pD 5.4 was observed by recording the spectra. On the basis of the characteristic signals of the protons at C-3 (alphaNeuAc: delta[H(3e)] = 2.72, delta[H(3a)] = 1.64; betaNeuAc: delta[H(3e)] = 2.25, delta[H(3a)] = 1.84) the product of the enzymatic cleavage was identified to be the N-acetylneuraminic acid in the alpha-anomeric form. Two hypotheses are discussed to explain how the enzymatic hydrolysis may occur and how N-acetyl-alpha-D-neuraminic acid leaves the catalytic site of the neuraminidases with retention of the C-2 configuration.  相似文献   

18.
We have previously cloned rat MRP3 as an inducible transporter in the liver (Hirohashi, T., Suzuki, H., Ito, K., Ogawa, K., Kume, K., Shimizu, T., and Sugiyama, Y. (1998) Mol. Pharmacol. 53, 1068-1075). In the present study, the function of rat MRP3 was investigated using membrane vesicles isolated from LLC-PK1 and HeLa cell population transfected with corresponding cDNA. The ATP-dependent uptake of both 17beta estradiol 17-beta-D-glucuronide ([3H]E217betaG) and glucuronide of [14C] 6-hydroxy-5, 7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040), but not that of [3H]leukotriene C4 and [3H]2, 4-dinitrophenyl-S-glutathione, was markedly stimulated by MRP3 transfection in both cell lines. The Km and Vmax values for the uptake of [3H]E217betaG were 67 +/- 14 microM and 415 +/- 73 pmol/min/mg of protein, respectively, for MRP3-expressing membrane vesicles and 3.0 +/- 0.7 microM and 3.4 +/- 0.4 pmol/min/mg of protein, respectively, for the endogenous transporter expressed on HeLa cells. [3H]E217betaG had also a similar Km value for MRP3 when LLC-PK1 cells were used as the host. All glucuronide conjugates examined (E3040 glucuronide, 4-methylumbelliferone glucuronide, and naphthyl glucuronide) and methotrexate inhibited MRP3-mediated [3H]E217betaG transport in LLC-PK1 cells. Moreover, [3H]methotrexate was transported via MRP3. The inhibitory effect of estrone sulfate, [3H]2,4-dinitrophenyl-S-glutathione, and [3H]leukotriene C4 was moderate or minimal, whereas N-acetyl-2,4-dinitrophenylcysteine had no effect on the uptake of [3H]E217betaG. The uptake of [3H]E217betaG was enhanced by E3040 sulfate and 4-methylumbelliferone sulfate. Thus we were able to demonstrate that several kinds of organic anions are transported via MRP3, although the substrate specificity of MRP3 differs from that of MRP1 and cMOAT/MRP2 in that glutathione conjugates are poor substrates for MRP3.  相似文献   

19.
An analog of 20alpha-hydroxycholesterol, (20R)-20-phenyl-5-pregnene-3beta,20-diol, which is completely substituted at C-22 was prepared with radioisotopes at various positions. The analog labeled with 3H at C-M and 14C at C-4 and C-IU was converted into radioactive pregnenolone by an enzyme preparation derived from adrenal mitochondria. Cleavage of the phenyl analog labeled with 3H in the aromatic ring by the same enzyme preparation led to the formation of [3H]phenol. Using the substrate doubly labeled with 14C at C-4 and 3H in the aromatic ring, it appeared that the products of the reactions, pregnenolone and phenol, were formed in equal amounts. During incubation of the side chain labeled substrate, another labeled fragment was formed. It was identified as acetophenone, a product resulting from cleavage of the C17,20 bond. The steroidal fragment corresponding to this C8 ketone was traced using nuclear label analog. From its nonpolar chromatographic properties it appears to be a C-17-deoxy-C19 steroid.  相似文献   

20.
Reaction of Bacillus cereus phosphonoacetaldehyde hydrolase (phosphonatase) with phosphonoacetaldehyde or acetaldehyde in the presence of NaBH4 resulted in complete loss of enzymatic activity. Treatment of phosphonatase with NaBH4 in the absence of substrate or product had no effect on catalysis. Inactivation of phosphonatase with [3H]NaBH4 and phosphonoacetaldehyde, NaBH4 and [14C]acetaldehyde, or NaBH4 and [2-3H]phosphonoacetaldehyde produced in each instance radiolabeled enzyme. The nature of the covalent modification was investigated by digesting the radiolabeled enzyme preparations with trypsin and by separating the tryptic peptides with HPLC. Analysis of the peptide fractions revealed that incorporation of the 3H- or 14C-radiolabel into the protein was reasonably selective for an amino acid residue found in a peptide fragment observed in each of the three trypsin digests. Sequence analysis of the 3H-labeled peptide fragment isolated from the digest of the [2-3H]phosphonoacetaldehyde/NaBH4-treated enzyme identified N epsilon-ethyllysine as the radiolabeled amino acid. The ability of the phosphonatase competitive inhibitor (Ki = 230 +/- 20 microM) acetonylphosphonate to protect the enzyme from phosphonoacetaldehyde/NaBH4-induced inactivation suggested that the reactive lysine residue is located in the enzyme active site. Comparison of the relative effectiveness of phosphonoacetaldehyde and acetaldehyde as phosphonatase inactivators showed that the N-ethyllysine imine that is reduced by the NaBH4 is derived from the corresponding N-(phosphonoethyl) imine. On the basis of these findings, a catalytic mechanism for for phosphonatase is proposed in which phosphonoacetaldehyde is activated for P-C bond cleavage by formation of a Schiff base with an active-site lysine. Accordingly, an N-ethyllsysine enamine rather than the high-energy acetaldehyde enolate anion is displaced from the phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号