首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome loss or gain is associated with a large number of solid cancers, providing genomic plasticity and thus adaptability to cancer cells. Numerical centrosome abnormalities arising from centrosome over-duplication or failed cytokinesis are a recognized cause of aneuploidy. In higher eukaryotic cells, the centrosome duplicates only once per cell cycle to ensure the formation of a bipolar mitotic spindle that orchestrates the balanced distribution of the sister chromatids to the respective daughter cells. Here we delineate the events that allow abnormal centrosome duplication, resulting in mitotic errors and incorrect chromosome segregation in cells with sustained cyclin-dependent kinase (CDK) activity. We have identified NPM1 as a substrate for CDK6 activated by the Kaposi's sarcoma herpesvirus (KSHV) D-type cyclin and shown that p53-driven apoptosis occurs downstream of NPM1 phosphorylation as a checkpoint mechanism that prevents accumulation of cells with supernumerary centrosomes. Our findings provide evidence that abnormal chromosome segregation in KSHV-infected cells is a direct consequence of NPM1 phosphorylation and predict that genomic instability is an inevitable consequence of latent KSHV infection.  相似文献   

2.
Cancer cells contain an abnormal number of chromosomes (aneuploidy), which is a prevalent form of genetic instability in human cancers. Abnormal amplification of centrosomes and defects of spindle assembly checkpoint are the major causes of chromosome instability in cancer cells. Here we present biochemical evidence to suggest a role of ECRG2, a novel tumor suppressor gene, in maintaining chromosome stability. ECRG2 localized to centrosomes during interphase and kinetochores during mitosis. Further analysis revealed that ECRG2 participates in centrosome amplification in a p53-dependent manner. Depletion of ECRG2 not only destabilized p53, down-regulated p21, and increased the cyclin E/CDK2 activity, thus initiating centrosome amplification, but also abolished the ability of p53 localize to centrosomes. Overexpression of ECRG2 restored the p53-dependent suppression of centrosome duplication. Furthermore, ECRG2-depleted cells show severely disrupted spindle phenotype but fail to maintain the mitotic arrest due to minimal BUBR1 protein levels. Taken together, our results indicate that ECRG2 is important for ensuring centrosome duplication, spindle assembly checkpoint, and accurate chromosome segregation, and its depletion may contribute to chromosome instability and aneuploidy in human cancers.  相似文献   

3.
We have previously shown that a non-toxic noscapinoid, EM011 binds tubulin without altering its monomer/polymer ratio. EM011 is more active than the parent molecule, noscapine, in inducing G2/M arrest, inhibiting cellular proliferation and tumor growth in various human xenograft models. However, the mechanisms of mitotic-block and subsequent cell death have remained elusive. Here, we show that EM011-induced attenuation of microtubule dynamics was associated with impaired association of microtubule plus-end tracking proteins, such as EB1 and CLIP-170. EM011 treatment then led to the formation of multipolar spindles containing 'real' centrioles indicating drug-induced centrosome amplification and persistent centrosome declustering. Centrosome amplification was accompanied by an upregulation of Aurora A and Plk4 protein levels, as well as a surge in the kinase activity of Aurora A, suggesting a deregulation of the centrosome duplication cycle. Cell-cycle phase-specific experiments showed that the 'cytotoxicity-window' of the drug encompasses the late S-G2 period. Drug-treatment, excluding S-phase, not only resulted in lower sub-G1 population but also attenuated centrosome amplification and spindle multipolarity, suggesting that drug-induced centrosome amplification is essential for maximal cell death. Subsequent to a robust mitotic arrest, EM011-treated cells displayed diverse cellular fates suggesting a high degree of intraline variation. Some 'apoptosis-evasive' cells underwent aberrant cytokinesis to generate rampant aneuploidy that perhaps contributed to drug-induced cell death. These data indicate that spindle multipolarity induction by means of centrosome amplification has an exciting chemotherapeutic potential that merits further investigation.  相似文献   

4.
Centrosomes are the major microtubule nucleating center in the cell; they also contribute to spindle pole organization and play a role in cell cycle progression as well as completing cytokinesis. Here we describe the molecular characterization of a novel human gene, CEP55, located in 10q23.33 that is expressed in multiple tissues and various cancer cell lines. Sequence analysis of the cDNA predicted a protein of 464 amino acids with several putative coiled-coil domains that are responsible for protein-protein interactions. Indeed, we found homodimerization of CEP55 by coimmunoprecipitation. Subcellular localization analysis revealed that endogenous CEP55 as well as an EGFP-CEP55 fusion protein is present at the centrosome throughout mitosis, whereas it also appears at the cleavage furrow in late anaphase and in the midbody in cytokinesis. Neither nocodazole nor taxol interfered with centrosome association of endogenous CEP55, suggesting that it directly interacts with centrosome components rather than with microtubules. In microtubule regrowth assays, overexpression of CEP55 did not enhance or inhibit microtubule nucleation. Together, these data suggest a possible involvement of CEP55 in centrosome-dependent cellular functions, such as centrosome duplication and/or cell cycle progression, or in the regulation of cytokinesis.  相似文献   

5.
Centrosome amplification and chromosome abnormality are frequently identified in neoplasia and tumorigenesis. However, the mechanisms underlying these defects remain unclear. We here identify that MCT-1 is a centrosomal oncoprotein involved in mitosis. Knockdown of MCT-1 protein results in intercellular bridging, chromosome mis-congregation, cytokinesis delay, and mitotic death. Introduction of MCT-1 oncogene into the p53 deficient cells (MCT-1-p53), the mitotic checkpoint kinases and proteins are deregulated synergistically. These biochemical alterations are accompanied with increased frequencies of cytokinesis failure, multi-nucleation, and centrosome amplification in subsequent cell cycle. As a result, the incidences of polyploidy and aneuploidy are progressively induced by prolonged cell cultivation or further promoted by sustained spindle damage on MCT-1-p53 background. These data show that the oncoprotein perturbs centrosome structure and mitotic progression, which provide the molecular aspect of chromsomal abnormality in vitro and the information for understanding the stepwise progression of tumors under oncogenic stress.  相似文献   

6.
The centrosome is a unique organelle that functions as the microtubule organizing center in most animal cells. During cell division, the centrosomes form the poles of the bipolar mitotic spindle. In addition, the centrosomes are also needed for cytokinesis. Each mammalian somatic cell typically contains one centrosome, which is duplicated in coordination with DNA replication. Just like the chromosomes, the centrosome is precisely reproduced once and only once during each cell cycle. However, it remains a mystery how this protein-based structure undergoes accurate duplication in a semiconservative manner. Intriguingly, amplification of the centrosome has been found in numerous forms of cancers. Cells with multiple centrosomes tend to form multipolar spindles, which result in abnormal chromosome segregation during mitosis. It has therefore been postulated that centrosome aberration may compromise the fidelity of cell division and cause chromosome instability. Here we review the current understanding of how the centrosome is assembled and duplicated. We also discuss the possible mechanisms by which centrosome abnormality contributes to the development of malignant phenotype.  相似文献   

7.
Aneuploidy is one of the most frequent genetic alterations in solid tumors. It is commonly caused by cell division errors that are induced by oncogene activation or loss of tumor suppressor functions. In addition, certain viral oncoproteins have been implicated in the induction of chromosome copy number changes. Aneuploidy and inactivation of p53 frequently coincide in human cancers but there is increasing evidence that loss of p53 by itself is not a primary cause of aneuploidy. Nonetheless, p53 inactivation synergizes with additional oncogenic events to promote aneuploidy and may facilitate chromosomal imbalances through indirect mechanisms. This review summarizes the current knowledge about the association between aneuploidy and p53, and discusses two of the most controversial mechanisms that have been implicated in genomic instability associated with loss of p53: subversion of ploidy control and aberrant centrosome duplication.  相似文献   

8.
Failed cytokinesis leads to tetraploidy, which is an important intermediate preceding aneuploidy and the onset of tumorigenesis. The centrosome is required for the completion of cytokinesis through the transport of important components to the midbody; however, the identity of molecular components and the mechanism involved remains poorly understood. In this study, we report that the peptidyl prolyl isomerase cyclophilin A (cypA) is a centrosome protein that undergoes cell cycle-dependent relocation to the midzone and midbody during cytokinesis in Jurkat cells implicating a role during division. Depletion of cypA does not disrupt mitotic spindle formation or progression through anaphase; however, it leads to cytokinesis defects through an inability to resolve intercellular bridges, culminating in delayed or failed cytokinesis. Defective cytokinesis is also evident by an increased prevalence of midbody-arrested cells. Expression of wild-type cypA reverses the cytokinesis defect in knockout cells, whereas an isomerase mutant does not, indicating that the isomerisation activity of cypA is required for cytokinesis. In contrast, wild-type cypA and the isomerase mutant localize to the centrosome and midbody, suggesting that localization to these structures is independent of isomerase activity. Depletion of cypA also generates tetraploid cells and supernumerary centrosomes. Finally, colony formation in soft agar is impaired in cypA-knockout cells, suggesting that cypA confers clonogenic advantage on tumor cells. Collectively, this data reveals a novel role for cypA isomerase activity in the completion of cytokinesis and the maintenance of genome stability.  相似文献   

9.
Investigation of the mechanisms leading to aneuploidy and polyploidy is critical to cancer research. Previous studies have provided strong evidence of the importance of tetraploidization as an early step in tumorigenesis. In cancer cells, tetraploid cells may contribute to abnormal mitotic progression, which may be associated with cytokinesis failure. Tetraploidy leads to genomic instability due to centrosome and chromosome over-replication. Until now, the mechanism by which cells maintain tetraploid status has been unknown. Here, we identified a novel D box-containing protein, FLJ25439, which displays a dynamic expression profile during mitosis/cytokinesis with the midbody as the most prominent associated structure. To understand the function of FLJ25439, we established stable cell lines overexpressing FLJ25439. FLJ25439-overexpression cells grew slower and displayed a tetraploid DNA content in comparison with diploid parental cells. They also showed aberrant mitosis and dysregulated expression of p53, pRb and p21, suggesting a defect in cell cycle progression. To explore the molecular mechanisms responsible for FLJ25439-induced tetraploidization, we conducted a comparative analysis of the global protein expression patterns of wild type and overexpressors using proteomics and bioinformatics approaches. Protein category profiling indicated that FLJ25439 is involved in pathways related to anti-apoptosis, protein folding, the cell cycle, and cytoskeleton regulation. Specifically, genotoxic-stress- and ER stress-related chaperone proteins greatly contributed to the FLJ25439 overexpression phenotypes. The results of this study pave the way to our further understanding of the role of this novel cytokinesis-related protein in protecting cells from environmental stress and tetraploid formation.  相似文献   

10.
Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centrioles duplicate once per cell cycle, and duplication is coordinated by Polo-like kinase 4 (Plk4). We previously demonstrated that Plk4 accumulation is autoregulated by its own kinase activity. However, loss of heterozygosity of Plk4 in mouse embryonic fibroblasts has been proposed to cause cytokinesis failure as a primary event, leading to centrosome amplification and gross chromosomal abnormalities. Using targeted gene disruption, we show that human epithelial cells with one inactivated Plk4 allele undergo neither cytokinesis failure nor increase in centrosome amplification. Plk4 is shown to localize exclusively at the centrosome, with none in the spindle midbody. Substantial depletion of Plk4 by small interfering RNA leads to loss of centrioles and subsequent spindle defects that lead to a modest increase in the rate of cytokinesis failure. Therefore, Plk4 is a centriole-localized kinase that does not directly regulate cytokinesis.  相似文献   

11.
MDC1 and BRIT1 have been shown to function as key regulators in response to DNA damage. However, their roles in centrosomal regulation haven’t been elucidated. In this study, we demonstrated the novel functions of these two molecules in regulating centrosome duplication and mitosis. We found that MDC1 and BRIT1 were integral components of the centrosome that colocalize with γ-tubulin. Depletion of either protein led to centrosome amplification. However, the mechanisms that allow them to maintain centrosome integrity are different. MDC1-depleted cells exhibited centrosome overduplication, leading to multipolar mitosis, chromosome missegregation, and aneuploidy, whereas BRIT1 depletion led to misaligned spindles and/or lagging chromosomes with defective spindle checkpoint activation that resulted in defective cytokinesis and polyploidy. We further illustrated that both MDC1 and BRIT1 were negative regulators of Aurora A and Plk1, two centrosomal kinases involved in centrosome maturation and spindle assembly. Moreover, the levels of MDC1 and BRIT1 inversely correlated with centrosome amplification, defective mitosis, and cancer metastasis in human breast cancer. Together, MDC1 and BRIT1 may function as tumor-suppressor genes, at least in part by orchestrating proper centrosome duplication and mitotic spindle assembly.  相似文献   

12.
The turn of the 21st century had witnessed a surge of interest in the centrosome and its causal relation to human cancer development - a postulate that has existed for almost a century. Centrosome amplification (CA) is frequently detected in a growing list of human cancers, both solid and haematological, and is a candidate "hallmark" of cancer cells. Several lines of evidence support the progressive involvement of CA in the transition from early to advanced stages of carcinogenesis, being also found in pre-neoplastic lesions and even in histopathologically-normal tissue. CA constitutes the major mechanism leading to chromosomal instability and aneuploidy, via the formation of multipolar spindles and chromosomal missegregation. Clinically, CA may translate to a greater risk for initiation of malignant transformation, tumour progression, chemoresistance and ultimately, poor patient prognosis. As mechanisms underlying CA are progressively being unravelled, the centrosome has emerged as a novel candidate target for cancer treatment. This Review summarizes mainly the clinical studies performed to date focusing on the mechanisms underlying CA in human neoplasia, and highlights the potential utility of centrosomes in the diagnosis, prognosis and treatment of human cancers.  相似文献   

13.
The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3',5-dihydroxy-4',6,7-trimethoxyflavone) as an anti-mitotic flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.  相似文献   

14.
Centrosome amplification is a hallmark of cancer. However, despite significant progress in recent years, we are still far from understanding how centrosome amplification affects tumorigenesis. Boveri''s hypothesis formulated more than 100 years ago was that aneuploidy induced by centrosome amplification promoted tumorigenesis. Although the hypothesis remains appealing 100 years later, it is also clear that the role of centrosome amplification in cancer is more complex than initially thought. Here, we review how centrosome abnormalities are generated in cancer and the mechanisms cells employ to adapt to centrosome amplification, in particular centrosome clustering. We discuss the different mechanisms by which centrosome amplification could contribute to tumour progression and the new advances in the development of therapies that target cells with extra centrosomes.  相似文献   

15.
Loss of the tumor suppressor PTEN is observed in many human cancers that display increased chromosome instability and aneuploidy. The subcellular fractions of PTEN are associated with different functions that regulate cell growth, invasion and chromosome stability. In this study, we show a novel role for PTEN in regulating mitotic centrosomes. PTEN localization at mitotic centrosomes peaks between prophase and metaphase, paralleling the centrosomal localization of PLK-1 and γ-tubulin and coinciding with the time frame of centrosome maturation. In primary keratinocytes, knockdown of PTEN increased whole-cell levels of γ-tubulin and PLK-1 in an Akt-dependent manner and had little effect on recruitment of either protein to mitotic centrosomes. Conversely, knockdown of PTEN reduced centrosomal levels of pericentrin in an Akt-independent manner. Inhibition of Akt activation with MK2206 reduced the whole-cell and centrosome levels of PLK-1 and γ-tubulin and also prevented the recruitment of PTEN to mitotic centrosomes. This reduction in centrosome-associated proteins upon inhibition of Akt activity may contribute to the increase in defects in centrosome number and separation observed in metaphase cells. Concomitant PTEN knockdown and Akt inhibition reduced the frequency of metaphase cells with centrosome defects when compared with MK2206 treatment alone, indicating that both PTEN and pAkt are required to properly regulate centrosome composition during mitosis. The findings presented in this study demonstrate a novel role for PTEN and Akt in controlling centrosome composition and integrity during mitosis and provide insight into how PTEN functions as a multifaceted tumor suppressor.  相似文献   

16.
Centrosome amplification (CA) is a contributor to carcinogenesis, generating aneuploidy, and chromosome instability. Previous work shows that breast adenocarcinomas have a higher frequency of centrosome defects compared to normal breast tissues. Abnormal centrosome phenotypes are found in pre-malignant lesions, suggesting an early role in breast carcinogenesis. However, the role of CA in breast cancers remains elusive. Identification of pathways and regulatory molecules involved in the generation of CA is essential to understanding its role in breast tumorigenesis. We established a breast cancer model of CA using Her2-positive cells. Our goal was to identify centrosome cycle molecules that are deregulated by aberrant Her2 signaling and the mechanisms driving CA. Our results show some Her2+ breast cancer cell lines harbor both CA and binucleation. Abolishing the expression of Cdk4 abrogated both CA and binucleation in these cells. We also found the source of binucleation in these cells to be defective cytokinesis that is normalized by downregulation of Cdk4. Protein levels of Nek2 diminish upon Cdk4 knockdown and vice versa, suggesting a molecular connection between Cdk4 and Nek2. Knockdown of Nek2 reduces CA and binucleation in this model while its overexpression further enhances centrosome amplification. We conclude that CA is modulated through Cdk4 and Nek2 signaling and that binucleation is a likely source of CA in Her2+ breast cancer cells.  相似文献   

17.
Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest   总被引:2,自引:0,他引:2  
Centrosomes organize the microtubule cytoskeleton for both interphase and mitotic functions. They are implicated in cell-cycle progression but the mechanism is unknown. Here, we show that depletion of 14 out of 15 centrosome proteins arrests human diploid cells in G1 with reduced Cdk2-cyclin A activity and that expression of a centrosome-disrupting dominant-negative construct gives similar results. Cell-cycle arrest is always accompanied by defects in centrosome structure and function (for example, duplication and primary cilia assembly). The arrest occurs from within G1, excluding contributions from mitosis and cytokinesis. The arrest requires p38, p53 and p21, and is preceded by p38-dependent activation and centrosomal recruitment of p53. p53-deficient cells fail to arrest, leading to centrosome and spindle dysfunction and aneuploidy. We propose that loss of centrosome integrity activates a checkpoint that inhibits G1-S progression. This model satisfies the definition of a checkpoint in having three elements: a perturbation that is sensed, a transducer (p53) and a receiver (p21).  相似文献   

18.
Genomic instability is a hallmark of human cancers. Spindle assembly checkpoint (SAC) is a critical cellular mechanism that prevents chromosome missegregation and therefore aneuploidy by blocking premature separation of sister chromatids. Thus, SAC, much like the DNA damage checkpoint, is essential for genome stability. In this study, we report the generation and analysis of mice carrying a Cdc20 allele in which three residues critical for the interaction with Mad2 were mutated to alanine. The mutant Cdc20 protein (AAA-Cdc20) is no longer inhibited by Mad2 in response to SAC activation, leading to the dysfunction of SAC and aneuploidy. The dysfunction could not be rescued by the additional expression of another Cdc20 inhibitor, BubR1. Furthermore, we found that Cdc20AAA/AAA mice died at late gestation, but Cdc20+/AAA mice were viable. Importantly, Cdc20+/AAA mice developed spontaneous tumors at highly accelerated rates, indicating that the SAC-mediated inhibition of Cdc20 is an important tumor-suppressing mechanism.  相似文献   

19.
Aurora kinases play critical roles in chromosome segregation and cell division. They are implicated in the centrosome cycle, spindle assembly, chromosome condensation, microtubule-kinetochore attachment, the spindle checkpoint and cytokinesis. Aurora kinases are regulated through phosphorylation, the binding of specific partners and ubiquitin-dependent proteolysis. Several Aurora substrates have been identified and their roles are being elucidated. The deregulation of Aurora kinases impairs spindle assembly, checkpoint function and cell division, causing missegregation of individual chromosomes or polyploidization accompanied by centrosome amplification. Aurora kinases are frequently overexpressed in cancers and the identification of Aurora A as a cancer-susceptibility gene provides a strong link between mitotic errors and carcinogenesis.  相似文献   

20.
A tentative classification of centrosome abnormalities in cancer   总被引:4,自引:0,他引:4  
Centrosome anomalies are detected in virtually all human cancers. They have been implicated in multipolar mitoses, chromosome missegregation, and genomic instability. Despite extensive studies on the type and frequency of centrosome anomalies, a causative relationship between centrosome aberrations and chromosomal instability has been difficult to establish. For example, centrosome amplification can be present without associated chromosomal instability. In addition, not all cells appear to be permissive for centrosome-related mitotic defects suggesting that cellular mechanisms that limit the harmful effects of spindle malformation on genome integrity may exist. This review proposes to classify centrosome abnormalities in tumor cells into three groups based on their relevance to genomic instability: primary centrosome overduplication, transient centrosome accumulation, and permanent centrosome accumulation. Whereas the first two categories are associated with an increased risk of chromosomal missegregation, the latter category may not contribute to the propagation of genomic instability. Therefore, centrosome anomalies should not per se be viewed as a universal cause of chromosomal instability, rather, they need to be assessed in the cellular context in which they occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号