共查询到20条相似文献,搜索用时 11 毫秒
1.
V. Škrdleta 《Folia microbiologica》1973,18(4):341-347
Competition between inoculum strains ofRhizobium japonicum D 216 and 311 B applied to soybean seeds in mixed inocula depended, especially in the year of inoculation, directly on the
ratio of the cell numbers of the two inoculum strains in mixtures. Uninoculated plants grown in original soil contaminated
in August 1969 by inoculated seed and stored subsequently in original pots without watering for 8 months displayed, after
the spring (May) and summer (August) sowing in 1970, a statistically significant nodulation shift in favour of the D 216 strain.
The highest nodulatiou was achieved with all inoculation treatments during spring sowing in 1970. 相似文献
2.
A cultured soybean cell line, SB-1 was used to evaluate the initial interaction between the soybean cells andRhizobium japonicum. Co-culturing ofR. japonicum with SB-1 cells in suspension resulted in strain-specific polar attachment. This attachment can be inhibited by galactose and antibodies raised against seed soybean agglutinin (SBA). A lectin was purified from SB-1 cells which shares properties with SBA in terms of immunological reactivity, sugar binding activity, polypeptide molecular weight and peptide maps. When the SB-1 cells were co-cultured withR. japonicum for three weeks in solid agar medium, histological staining revealed bacterial penetration into certain SB-1 cells. Furthermore, there were focal regions of cells with prominent nuclei representing actively proliferating regions. These observations are analogous to that ofin vivo nodule initiation in soybean roots. 相似文献
3.
4.
Althabegoiti MJ Covelli JM Pérez-Giménez J Quelas JI Mongiardini EJ López MF López-García SL Lodeiro AR 《FEMS microbiology letters》2011,319(2):133-139
Bradyrhizobium japonicum has two types of flagella. One has thin filaments consisting of the 33-kDa flagellins FliCI and FliCII (FliCI-II) and the other has thick filaments consisting of the 65-kDa flagellins FliC1, FliC2, FliC3, and FliC4 (FliC1-4). To investigate the roles of each flagellum in competition for nodulation, we obtained mutants deleted in fliCI-II and/or fliC1-4 in the genomic backgrounds of two derivatives from the reference strain USDA 110: the streptomycin-resistant derivative LP 3004 and its more motile derivative LP 3008. All mutations diminished swimming motility. When each mutant was co-inoculated with the parental strain on soybean plants cultivated in vermiculite either at field capacity or flooded, their competitiveness differed according to the flagellin altered. ΔfliCI-II mutants were more competitive, occupying 64-80% of the nodules, while ΔfliC1-4 mutants occupied 45-49% of the nodules. Occupation by the nonmotile double mutant decreased from 55% to 11% as the water content of the vermiculite increased from 85% to 95% field capacity to flooding. These results indicate that the influence of motility on competitiveness depended on the water status of the rooting substrate. 相似文献
5.
Non-nodulating mutant strains of Rhizobium japonicum lacked a surface antigen that was present on the wild type. This surface antigen is associated with the O antigen portion of the lipopolysaccharide. Paper chromatography of hydrolyzed lipopolysaccharide and O antigen revealed three major component differences between the non-nodulating strains and the wild type. 相似文献
6.
Summary Conditions leading to agglutination ofRhizobium japonicum 3I1b110 with soybean seed lectin were examined. Ability of cells to be agglutinated was transient and was optimal for cultures
grown for 4–5 days on yeast extract mannitol plates. Similar lectin-binding results were obtained with cells from the same
cultures using fluorescence microscopy with fluorescein isothiocyanate-labelled lectin. These results revise the previous
model for soybean lectin-R. japonicum interactions, since it was based on the inability of soybean lectin to agglutinate these bacteria. 相似文献
7.
Summary
Rhizobium japonicum strain 8-0 StrR applied as inoculum to Clark 63 soybeans formed small ineffective nodules which had very low nitrogenase activity compared to nodules formed by two effective strains, 110 TetR and 138 KanR. Mean numbers of cells per milligram of nodule tissue for plants up to 34 days old were 7.7×106 for 8-0 StrR, 4.1×108 for 110 TetR and 7.6×108 for 138 KanR. Cell counts per unit mass of nodule were independent of plant age for strains 110 TetR and 138 KanR, however, for strain 8-0 StrR, 25 and 34 days old plants had fewer viable cells per nodule mass than 18 day old plants. When a mixture of two effective strains was used, the nodules of individual plants were predominantly caused by either 110 TetR or 138 KanR. In one experiment the predominance was random, but in another, strain 110 TetR clearly dominated. Strain 138 KanR was absent in some nodules on 18 day old plants, and in others, less than 102 cells per nodule were found. When strains 8-0 StrR and 138 KanR were used as mixed inoculum, most of the nodules had strain 8-0 StrR but strain 138 KanR was detected in many nodules and was generally evident in the largest nodules. Nitrogenase activity by many individual nodules was low except for nodules which had cells of 138 KanR. Nitrogenase activity by whole root systems of these plants was relatively high and similar to plants that had only nodules of strain 138 KanR. Similar relationships were observed for a mixed inoculum of 8-0 StrR and 110 TetR. In general, mixed inoculations resulted in nodules with a particular strain being dominant for each individual plant. Double infections within individual nodules were not uncommon and such nodules often had disproportionate numbers of cells of two competingR. japonicum strains.Contribution from the Laboratory of Soil Microbiology, Department of Agronomy, Missouri Agricultural Experiment Station. Missouri Journal Series Number 7967. 相似文献
8.
9.
Summary The infection of white clover seedlings byRhizobium strains with different host range properties was assessed using various microscopic techniques. Several wild-type andRhizobium leguminosarum biovarvicias hybrid strains containing definedR. l. bv.trifolii host range genes were used. The morphological changes in the root tissue of uninoculated and rhizobia inoculated white clovers were identified and compared. In particular, changes were observed in the induction of inner cortical cell division, alterations to nodule development and lateral root formation. The responses of the infected roots and the types of structures formed support the hypothesis that lateral roots and nodules may be physiologically homologous structures. To establish a normal pattern of nodulation on white clover roots, both sets of known host specific nodulation genes (operonsnod FERL andnod MNX) ofR. l. bv.trifolii were required. However, some nodule development occurred when only thenod FERL genes were present in the hybrid strain. 相似文献
10.
Previous research has shown that a significant limitation to the agricultural use of improved rhizobial inoculant strains is competition from the indigenous soil population. In this work, we sought to test whether chemical inhibitors of flavonoid-induced nod gene expression in Bradyrhizobium japonicum could be identified and utilized to affect interstrain competition for nodulation of soybeans. Approximately 1,000 structural and functional analogs of the known, natural inducers of nod gene expression were tested on six strains of B. japonicum containing a nodY-lacZ fusion. We successfully identified effective inhibitors of nodY expression. The addition of the inhibitor 7-hydroxy-5-methylflavone significantly inhibited nodulation by a sensitive strain and could be used to effectively manipulate the competition between strains for soybean nodulation. However, this work also uncovered significant limitations for the practical use of this methodology. For example, despite the almost universal induction response to the identified natural inducers, there was a wide variability among strains in their response to any specific inhibitor. Given this unexpected variability, the cost of registration of an agronomic chemical, and the potential for the development of resistant field populations, it is unlikely that chemical inhibitors can be successfully applied to a field situation. 相似文献
11.
Althabegoiti MJ López-García SL Piccinetti C Mongiardini EJ Pérez-Giménez J Quelas JI Perticari A Lodeiro AR 《FEMS microbiology letters》2008,282(1):115-123
A Bradyrhizobium japonicum USDA 110-derived strain able to produce wider halos in soft-agar medium than its parental strain was obtained by recurrent selection. It was more chemotactic than the wild type towards mannitol and three amino acids. When cultured in minimal medium with mannitol as a single carbon-source, it had one thick subpolar flagellum as the wild type, plus several other flagella that were thinner and sinusoidal. Root adsorption and infectivity in liquid media were 50-100% higher for the selected strain, but root colonization in water-unsaturated vermiculite was similar to the wild type. A field experiment was then carried out in a soil with a naturalized population of 1.8 x 10(5) soybean-nodulating rhizobia g of soil(-1). Bradyrhizobium japonicum strains were inoculated either on the soybean seeds or in the sowing furrows. Nodule occupation was doubled when the strains were inoculated in the sowing furrows with respect to seed inoculation (significant with P<0.05). On comparing strains, nodule occupation with seed inoculation was 6% or 10% for the wild type or selected strains, respectively, without a statistically significant difference, while when inoculated in the sowing furrows, nodule occupation increased to 12% and 22%, respectively (differences significant with P<0.05). 相似文献
12.
Chemical control of interstrain competition for soybean nodulation by Bradyrhizobium japonicum. 下载免费PDF全文
Previous research has shown that a significant limitation to the agricultural use of improved rhizobial inoculant strains is competition from the indigenous soil population. In this work, we sought to test whether chemical inhibitors of flavonoid-induced nod gene expression in Bradyrhizobium japonicum could be identified and utilized to affect interstrain competition for nodulation of soybeans. Approximately 1,000 structural and functional analogs of the known, natural inducers of nod gene expression were tested on six strains of B. japonicum containing a nodY-lacZ fusion. We successfully identified effective inhibitors of nodY expression. The addition of the inhibitor 7-hydroxy-5-methylflavone significantly inhibited nodulation by a sensitive strain and could be used to effectively manipulate the competition between strains for soybean nodulation. However, this work also uncovered significant limitations for the practical use of this methodology. For example, despite the almost universal induction response to the identified natural inducers, there was a wide variability among strains in their response to any specific inhibitor. Given this unexpected variability, the cost of registration of an agronomic chemical, and the potential for the development of resistant field populations, it is unlikely that chemical inhibitors can be successfully applied to a field situation. 相似文献
13.
Serological analysis of eleven strains ofRhizobium japonicum 总被引:2,自引:0,他引:2
V. Škrdleta 《Antonie van Leeuwenhoek》1969,35(1):77-83
The present communication reports a serological analysis of eleven strains ofRhizobium japonicum. The slow-diffusing thermostable antigens were found to be suitable for the basic differentiation of the somatic serogroups inRhizobium japonicum. One to three precipitation bands of the slow-diffusing thermostable antigens, one to two bands of the fast-diffusing thermostable antigens and one to three bands of the thermolabile antigens were detectable in the whole cell cultures ofR. japonicum by means of the immunodiffusion technique. Two basic somatic serogroups were differentiated on the basis of the slow-diffusing thermostable antigens. The thermolabile antigens were identical in most of the strains.The author is greatly indebted to Mrs. M. Kabelovà for technical assistance.This investigation forms part of a contribution prepared by the Czechoslovak National Committee for the International Biological Programme (Section PP: Production Processes). 相似文献
14.
15.
Woo-Suk Chang Kyoung-Min Park Sung-Cheol Koh & Jae-Seong So 《FEMS microbiology letters》2008,280(2):242-249
The galE gene from Bradyrhizobium japonicum 61A101C, a soybean endosymbiont, was cloned and characterized. Its deduced amino-acid sequence showed a high similarity with that of other rhizobia. Functional identification of the galE gene was achieved by complementation of a galE mutant strain, PL2, with a series of pKM subclones. Disruption of the B. japonicum galE gene affects the lipopolysaccharide profile compared with that of the wild type, suggesting that galE is responsible for alteration of lipopolysaccharide structure. Examination of nodule formation by the wild-type and galE mutant revealed that the former displayed normal nodule development on soybean roots, whereas the latter showed no nodule formation at all time points examined except for 20 days after inoculation when <10% of soybean formed pseudo-nodules. 相似文献
16.
Soybean plants cv. Corsoy were grown in greenhouse conditions on sterilized quartz sand. They were inoculated with Bradyrhizobium japonicum, strain 542. The plants were treated with different concentrations of quercetin (ranging from 10 nM to 1M) at regular intervals during the experiment. The experiment was terminated at flower development. The following parameters, important for symbiosis efficiency were determined: shoot, root and nodule weights, nodule number, total leghemoglobin in the nodules,total nitrogen and soluble protein concentrations in shoots and roots, as well as chlorophyll concentration in the leaves.The results obtained partly confirmed the earlier findings that quercetin inhibits nodulation since increasing quercetin concentration decreased the number of nodules. However, at very low concentrations, quercetin stimulated the number of nodules. Quercetin also exerted a stimulating influence on other characteristics of the plant and nodules which did not correlate with nodule number and quantity of N fixed. These are: nodule weight, leghemoglobin concentration, total soluble protein content in shoots and roots as well as shoot and root weight. 相似文献
17.
The utilization of actinomycetes as potential soybean (Glycine max (L.)) co-inoculants was evaluated. Soil samples from Carbondale and Belleville, Ill., were used to inoculate pre-germinated soybean plants to determine antibiotic sensitivity in the native Bradyrhizobium japonicum population. Sensitivity was in the order kanamycin > tetracycline > oxytetracycline > rifampicin > neomycin. Antagonism by five actinomycete cultures toward seven test strains of B. japonicum was also assessed. The ranking average inhibition (across all seven B. japonicum strains) by these actino mycetes was Streptomyces kanamyceticus = Streptomyces coeruleoprunus > Streptomyces rimosus > Streptomyces sp. > Amy colatopsis mediterranei. Ten antibiotic combinations were used to isolate antibiotic-resistant mutants of B. japonicum I-110 and 3I1B-110 via successive cycles of mutation. Eighty-one antibiotic-resistant strains were isolated and tested for symbiotic competency; nine of which were selected for further characterization in a greenhouse pot study. Few differences in nodule number were caused by these treatments. Nodule occupancy varied from 0% to 18.3% when antibiotic-resistant strains of B. japonicum were used as the sole inoculants. However, when three mutant strains of B. japonicum were co-inoculated with S. kanamyceticus, significant increases in nodule occupancy (up to 55%) occurred. Increases in shoot nitrogen composition (27.1%-40.9%) were also caused by co-inoculation with S. kanamyceticus. 相似文献
18.
W.J. Hunter 《Letters in applied microbiology》1994,18(6):340-342
A strain of Bradyrhizobium japonicum was isolated that accumulated anthranilic acid, indole, 3-indoleacetic acid, 3-indolelactic acid and 3-indolepyruvic acid in culture. Such accumulations are indicative of altered tryptophan metabolism. Soybean plants inoculated with these bacteria formed more nodules (349 vs 159 per plant) and had more nodule mass (3.9 vs 2.2 g wet wt per plant) than plants inoculated with the wild-type strain. 相似文献
19.
20.
Summary Azospirillum was associated with nodules of soybean. In general, seed inoculation with a broth culture ofAzospirillum brasilense alone significantly increased nodulation and grain yield of soybean grown in pots in unsterilized soil with different levels of urea ranging from 0 to 80 kg N/ha. This trend was significantly reproducible in a second experiment when a carrier based inoculant of the bacterium was used for seed inoculation.Inoculation withRhizobium japonicum andA. brasilense in combination generally increased grain yield in both the experiments, although the data were not significant. 相似文献