首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
? In legumes, symbiotic leghemoglobins facilitate oxygen diffusion to the bacteroids, but the roles of nonsymbiotic and truncated hemoglobins are largely unknown. Here the five hemoglobin genes of Lotus japonicus have been functionally characterized to gain insight into their regulatory mechanisms. ? Plants were exposed to nitric oxide donors, stressful conditions, and hormones. Gene expression profiling was determined by quantitative PCR, and gene activities were localized using in situ hybridization and promoter-reporter gene fusions. ? The LjGLB1-1, LjGLB2, and LjGLB3-1 mRNA expression levels were very high in nodules relative to other plant organs. The expression of these genes was localized in the vascular bundles, cortex, and infected tissue. LjGLB1-1 was the only gene induced by nitric oxide. Cytokinins caused nearly complete inactivation of LjGLB2 and LjGLB3-1 in nodules and induction of LjGLB1-1 in roots. Abscisic acid induced LjGLB1-1 in nodules and LjGLB1-2 and LjGLB2 in roots, whereas polyamines and jasmonic acid induced LjGLB1-1 only in roots. ? The enhanced expression of the three types of hemoglobins in nodules, the colocalization of gene activities in nodule and root tissues with high metabolic rates, and their distinct regulatory mechanisms point out complementary roles of hemoglobins and strongly support the hypothesis that LjGLB1-1, LjGLB2, and LjGLB3-1 are required for symbiosis.  相似文献   

2.
3.
Uricase (nodulin-35) cDNA, LjUr, was isolated from nodules of a model legume, Lotus japonicus. LjUr expression was most abundant in nodules, although it was detected in nonsymbiotic tissues as well, particularly in roots. Expression in nodules was detected in uninfected cells, nodule parenchyma, and, more intensely, in vascular bundles. Phylogenetic analysis of uricase sequences from various legumes indicated that uricases of amide- and ureide-transporting legumes form two distinct clades. LjUr is in the cluster of amide-transport legumes even though L. japonicus bears determinate nodules.  相似文献   

4.
Symbiotic nitrogen fixation by the collaboration between leguminous plants and rhizobia is an important system in the global nitrogen cycle, and some molecular aspects during the early stage of host-symbiont recognition have been revealed. To understand the responses of a host plant against various bacteria, we examined expression of hemoglobin (Hb) genes and production of nitric oxide (NO) in Lotus japonicus after inoculation with rhizobia or plant pathogens. When the symbiotic rhizobium Mesorhizobium loti was inoculated, expression of LjHb1 and NO production were induced transiently in the roots at 4 h after inoculation. In contrast, inoculation with the nonsymbiotic rhizobia Sinorhizobium meliloti and Bradyrhizobium japonicum induced neither expression of LjHb1 nor NO production. When L. japonicus was inoculated with plant pathogens (Ralstonia solanacearum or Pseudomonas syringae), continuous NO production was observed in roots but induction of LjHb1 did not occur. These results suggest that modulation of NO levels and expression of class 1 Hb are involved in the establishment of the symbiosis.  相似文献   

5.
6.
Previous grafting experiments have demonstrated that legume shoots play a critical role in symbiotic development of nitrogen-fixing root nodules by regulating nodule number. Here, reciprocal grafting experiments between the model legumes Lotus japonicus and Medicago truncatula were carried out to investigate the role of the shoot in the host-specificity of legume-rhizobia symbiosis and nodule type. Lotus japonicus is nodulated by Mesorhizobium loti and makes determinate nodules, whereas M. truncatula is nodulated by Sinorhizobium meliloti and makes indeterminate nodules. When inoculated with M. loti, L. japonicus roots grafted on M. truncatula shoots produced determinate nodules identical in appearance to those produced on L. japonicus self-grafted roots. Moreover, the hypernodulation phenotype of L. japonicus har1-1 roots grafted on wild-type M. truncatula shoots was restored to wild type when nodulated with M. loti. Thus, L. japonicus shoots appeared to be interchangeable with M. truncatula shoots in the L. japonicus root/M. loti symbiosis. However, M. truncatula roots grafted on L. japonicus shoots failed to induce nodules after inoculation with S. meliloti or a mixture of S. meliloti and M. loti. Instead, only early responses to S. meliloti such as root hair tip swelling and deformation, plus induction of the early nodulation reporter gene MtENOD11:GUS were observed. The results indicate that the L. japonicus shoot does not support normal symbiosis between the M. truncatula root and its microsymbiont S. meliloti, suggesting that an unidentified shoot-derived factor may be required for symbiotic progression in indeterminate nodules.  相似文献   

7.
Nitrate-independent nitrate reductase (NR) activity is generally found in legume root nodules. Therefore, the effects of nitrate on plant NR activity and mRNA were investigated in the root nodules of Lotus japonicus (L. japonicus). Both NR activity and mRNA levels in roots and root nodules were up-regulated by the addition of nitrate. In the absence of nitrate, NR activity and mRNA were detected in root nodules but not in roots. Southern blotting analysis indicates that NR is encoded by a single gene in L. japonicus. No nitrate was detected in the root nodules or roots of plants grown in the absence of nitrate, while its accumulation was observed in plants supplied with exogenous nitrate. These results indicate that inducible-type NR can be expressed in root nodules in the absence of nitrate. The activation state of the nitrate-independent activity of NR was as high as that of NR activity induced by nitrate. NR mRNA expressed independently of nitrate in root nodules without nitrate was localized in the infected regions of the root nodules. Thus, the expression could be related to the specific structure and environment of root nodules.  相似文献   

8.
A promoter tagging program in the legume Lotus japonicus was initiated to identify plant genes involved in the nitrogen-fixing symbiosis between legumes and rhizobia. Seven transformed plant lines expressing the promoterless reporter gene uidA (beta-glucuronidase; GUS) specifically in roots and/or nodules were identified. Four of these expressed GUS in the roots only after inoculation with nodule-forming Mesorhizobium loti. In one line (T90), GUS activity was found in the root epidermis, including root hairs. During seedling growth, GUS expression gradually became focused in developing nodules and disappeared from root tissue. No GUS activity was detected when a non-nodulating mutant of M. loti was used to inoculate the plants. The T-DNA insertion in this plant line was located 1.3 kb upstream of a putative coding sequence with strong homology to calcium-binding proteins. Four motifs were identified, which were very similar to the "EF hands" in calmodulin-related proteins, each binding one Ca2+. We have named the gene LjCbp1 (calcium-binding protein). Northern (RNA) analyses showed that this gene is expressed specifically in roots of L. japonicus. Expression was reduced in roots inoculated with non-nodulating M. loti mutants and in progeny homozygous for the T-DNA insertion, suggesting a link between the T-DNA insertion and this gene.  相似文献   

9.
For this work, Lotus japonicus transgenic plants were constructed expressing a fusion reporter gene consisting of the genes beta-glucuronidase (gus) and green fluorescent protein (gfp) under control of the soybean auxin-responsive promoter GH3. These plants expressed GUS and GFP in the vascular bundle of shoots, roots and leafs. Root sections showed that in mature parts of the roots GUS is mainly expressed in phloem and vascular parenchyma of the vascular cylinder. By detecting GUS activity, we describe the auxin distribution pattern in the root of the determinate nodulating legume L. japonicus during the development of nodulation and also after inoculation with purified Nod factors, N-naphthylphthalamic acid (NPA) and indoleacetic acid (IAA). Differently than white clover, which forms indeterminate nodules, L. japonicus presented a strong GUS activity at the dividing outer cortical cells during the first nodule cell divisions. This suggests different auxin distribution pattern between the determinate and indeterminate nodulating legumes that may be responsible of the differences in nodule development between these groups. By measuring of the GFP fluorescence expressed 21 days after treatment with Nod factors or bacteria we were able to quantify the differences in GH3 expression levels in single living roots. In order to correlate these data with auxin transport capacity we measured the auxin transport levels by a previously described radioactive method. At 48 h after inoculation with Nod factors, auxin transport showed to be increased in the middle root segment. The results obtained indicate that L. japonicus transformed lines expressing the GFP and GUS reporters under the control of the GH3 promoter are suitable for the study of auxin distribution in this legume.  相似文献   

10.
Superoxide dismutases (SODs) are metalloenzymes that play a primary role in the protection against oxidative stress in plants and other organisms. We have characterized four SOD genes in Lotus japonicus and have analyzed their expression in roots and four developmental stages of nodules. The expression of cytosolic CuZnSOD, at the mRNA, protein, and enzyme activity levels, decreases with nodule age, and the protein is localized in the dividing cells and infection threads of emergent nodules and in the infected cells of young nodules. The mitochondrial MnSOD was downregulated, whereas the bacteroidal MnSOD displayed maximal protein and enzyme activity levels in older nodules. Two additional genes, encoding plastidic (FeSOD1) and cytosolic (FeSOD2) FeSOD isoforms, were identified and mapped. The genes are located in different chromosomes and show differential expression. The FeSOD1 mRNA level did not change during nodule development, whereas FeSOD2 was upregulated. The distinct expression patterns of the SOD genes may reflect different regulatory mechanisms of the enzyme activities during nodule ontogeny. In particular, at the mRNA and activity levels, the virtual loss of cytosolic CuZnSOD in mature and old nodules, concomitant with the induction of FeSOD2, suggests that the two enzymes may functionally compensate each other in the cytosol at the late stages of nodule development.  相似文献   

11.
12.
Plant hemoglobins (Hbs) have been divided into three groups: class 1, class 2, and truncated Hbs. The various physiological functions of class 1 Hb include its role as a modulator of nitric oxide (NO) levels in plants. To gain more insight into the functions of class 1 Hbs, we investigated the physical properties of LjHb1 and AfHb1, class 1 Hbs of a model legume Lotus japonicus and an actinorhizal plant Alnus firma , respectively. Spectrophotometric analysis showed that the recombinant form of the LjHb1 and AfHb1 proteins reacted with NO. The localization of LjHb1 expression was correlated with the site of NO production. Overexpression of LjHb1 and AfHb1 by transformed hairy roots caused changes in symbiosis with rhizobia. The number of nodules formed on hairy roots overexpressing LjHb1 or AfHb1 increased compared with that on untransformed hairy roots. Furthermore, nitrogenase activity as acetylene-reduction activity (ARA) of LjHb1- or AfHb1 -overexpressing nodules was higher than that of the vector control nodules. Microscopic observation with a NO-specific fluorescent dye suggested that the NO level in LjHb1 - and AfHb1 -overexpressing nodules was lower than that of control nodules. Exogenous application of a NO scavenger enhanced ARA in L. japonicus nodule s , whereas a NO donor inhibited ARA. These results suggest that the basal level of NO in nodules inhibits nitrogen fixation, and overexpression of class 1 Hbs enhances symbiotic nitrogen fixation activity by removing NO as an inhibitor of nitrogenase.  相似文献   

13.
14.
15.
In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.  相似文献   

16.
Ammonium is a primary source of nitrogen for plants. In legume plants ammonium can also be obtained by symbiotic nitrogen fixation, and NH(4)(+) is also a regulator of early and late symbiotic interaction steps. Ammonium transporters are likely to play important roles in the control of nodule formation as well as in nitrogen assimilation. Two new genes, LjAMT1;2 and LjAMT1;3, were cloned from Lotus japonicus. Both were able to complement the growth defect of a yeast (Saccharomyces cerevisiae) ammonium transport mutant. Measurement of [(14)C]methylammonium uptake rates and competition experiments revealed that each transporter had a high affinity for NH(4)(+). The K(i) for ammonium was 1.7, 3, and 15 microm for LjAMT1;1, 1;2, and 1;3, respectively. Real-time PCR revealed higher expression of LjAMT1;1, 1;2, and 1;3 genes in leaves than in roots and nodule, with expression levels decreasing in the order LjAMT1;1 > 1;2 > 1;3 except in flowers, in which LjAMT1;3 was expressed at higher level than in leaves, and LjAMT1;1 showed the lowest level of expression. Expression of LjAMT1;1 and 1;2 in roots was induced by nitrogen deprivation. Expression of LjAMT1;1 was repressed in leaves exposed to elevated CO(2) concentrations, which also suppress photorespiration. Tissue and cellular localization of LjAMT1 genes expression, using promoter-beta-glucuronidase and in situ RNA hybridization approaches, revealed distinct cellular spatial localization in different organs, including nodules, suggesting differential roles in the nitrogen metabolism of these organs.  相似文献   

17.
18.
Chen T  Zhu H  Ke D  Cai K  Wang C  Gou H  Hong Z  Zhang Z 《The Plant cell》2012,24(2):823-838
The symbiosis receptor kinase, SymRK, is required for root nodule development. A SymRK-interacting protein (SIP2) was found to form protein complex with SymRK in vitro and in planta. The interaction between SymRK and SIP2 is conserved in legumes. The SIP2 gene was expressed in all Lotus japonicus tissues examined. SIP2 represents a typical plant mitogen-activated protein kinase kinase (MAPKK) and exhibited autophosphorylation and transphosphorylation activities. Recombinant SIP2 protein could phosphorylate casein and the Arabidopsis thaliana MAP kinase MPK6. SymRK and SIP2 could not use one another as a substrate for phosphorylation. Instead, SymRK acted as an inhibitor of SIP2 kinase when MPK6 was used as a substrate, suggesting that SymRK may serve as a negative regulator of the SIP2 signaling pathway. Knockdown expression of SIP2 via RNA interference (RNAi) resulted in drastic reduction of nodules formed in transgenic hairy roots. A significant portion of SIP2 RNAi hairy roots failed to form a nodule. In these roots, the expression levels of SIP2 and three marker genes for infection thread and nodule primordium formation were downregulated drastically, while the expression of two other MAPKK genes were not altered. These observations demonstrate an essential role of SIP2 in the early symbiosis signaling and nodule organogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号