首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diets rich in unsaturated and polyunsaturated fatty acids have a positive effect on mammalian torpor, whereas diets rich in saturated fatty acids have a negative effect. To determine whether the number of double bonds in dietary fatty acids are responsible for these alterations in torpor patterns, we investigated the effect of adding to the normal diet 5% pure fatty acids of identical chain length (C18) but a different number of double bonds (0, 1, or 2) on the pattern of hibernation of the yellow-pine chipmunk, Eutamias amoenus. The response of torpor bouts to a lowering of air temperature and the mean duration of torpor bouts at an air temperature of 0.5°C (stearic acid C18:0, 4.5±0.8 days, oleic acid C18:1, 8.6±0.5 days; linoleic acid C18:2, 8.5±0.7 days) differed among animals that were maintained on the three experimental diets. The mean minimum body temperatures (C18:0, +2.3±0.3°C; C18:1, +0.3±0.2°C; C18:2,-0.2±0.2°C), which torpid individuals defended by an increase in metabolic rate, and the metabolic rate of torpid animals also differed among diet groups. Moreover, diet-induced differences were observed in the composition of total lipid fatty acids from depot fat and the phospholipid fatty acids of cardiac mitochondria. For depot fat 7 of 13 and for heart mitochondria 7 of 14 of the identified fatty acids differed significantly among the three diet groups. Significant differences among diet groups were also observed for the sum of saturated, unsaturated and polyunsaturated fatty acids. These diet-induced alterations of body fatty acids were correlated with some of the diet-induced differences in variables of torpor. The results suggest that the degree of unsaturation of dietary fatty acids influences the composition of tissues and membranes which in turn may influence torpor patterns and thus survival of hibernation.Abbreviations bm body mass - T a air temperature - T b body temperature - FA fatty acid - MR metabolic rate - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - VO2 rate of oxygen consumption - SFA saturated fatty acids - UFA unsaturated fatty acids - UI unsaturation index - SNK Student-Newman-Keuls test  相似文献   

2.
Physiological mechanisms causing reduction of metabolic rate during torpor in heterothermic endotherms are controversial. The original view that metabolic rate is reduced below the basal metabolic rate because the lowered body temperature reduces tissue metabolism has been challenged by a recent hypothesis which claims that metabolic rate during torpor is actively downregulated and is a function of the differential between body temperature and ambient temperature, rather than body temperature per se. In the present study, both the steady-state metabolic rate and body temperature of torpid stripe-faced dunnarts, Sminthopsis macroura (Dasyuridae: Marsupialia), showed two clearly different phases in response to change of air temperature. At air temperatures between 14 and 30°C, metabolic rate and body temperature decreased with air temperature, and metabolic rate showed an exponential relationship with body temperature (r 2=0.74). The Q 10 for metabolic rate was between 2 and 3 over the body temperature range of 16 to 32°C. The difference between body temperature and air temperature over this temperature range did not change significantly, and the metabolic rate was not related to the difference between body temperature and air temperature (P=0.35). However, the apparent conductance decreased with air temperature. At air temperatures below 14°C, metabolic rate increased linearly with the decrease of air temperature (r 2=0.58) and body temperature was maintained above 16°C, largely independent of air temperature. Over this air temperature range, metabolic rate was positively correlated with the difference between body temperature and air temperature (r 2=0.61). Nevertheless, the Q 10 for metabolic rate between normothermic and torpid thermoregulating animals at the same air temperature was also in the range of 2–3. These results suggest that over the air temperature range in which body temperature of S. macroura was not metabolically defended, metabolic rate during daily torpor was largely a function of body temperature. At air temperatures below 14°C, at which the torpid animals showed an increase of metabolic rate to regulate body temperature, the negative relationship between metabolic rate and air temperature was a function of the differential between body temperature and air temperature as during normothermia. However, even in thermoregulating animals, the reduction of metabolic rate from normothermia to torpor at a given air temperature can also be explained by temperature effects.Abbreviations BM body mass - BMR basal metabolic rate - C apparent conductance - MR metabolic rate - RMR resting metabolic rate - RQ respiratory quotient - T a air temperature - T b body temperature - T lc lower critical temperature - T tc critical air temperature during torpor - TMR metabolic rate during torpor - TNZ thermoneutral zone - T difference between body temperature and air temperature - VO2 rate of oxygen consumption  相似文献   

3.
We investigated how dietary fats and oils of different fatty acid composition influence the seasonal change of body mass, fur colour, testes size and torpor in Djungarian hamsters, Phodopus sungorus, maintained from autumn to winter under different photoperiods and temperature regimes. Dietary fatty acids influenced the occurrence of spontaneous torpor (food and water ad libitum) in P. sungorus maintained at 18°C under natural and artificial short photoperiods. Torpor was most pronounced in individuals on a diet containing 10% safflower oil (rich in polyunsaturated fatty acids), intermediate in individuals on a diet containing 10% olive oil (rich in monounsaturated fatty acids) and least pronounced in individuals on a diet containing 10% coconut fat (rich in saturated fatty acids). Torpor in P. sungorus on chow containing no added fat or oil was intermediate between those on coconut fat and olive oil. Dietary fatty acids had little effect on torpor in animals maintained at 23°C. Body mass, fur colour and testes size were also little affected by dietary fatty acids. The fatty acid composition of brown fat from hamsters maintained at 18°C and under natural photoperiod strongly reflected that of the dietary fatty acids. Our study suggests that the seasonal change of body mass, fur colour and testes size are not significantly affected by dietary fatty acids. However, dietary fats influence the occurrence of torpor in individuals maintained at low temperatures and that have been photoperiodically primed for the display of torpor.Abbreviations BAT brown adipose tissue - bm body mass - FA fatty acid(s) - MR metabolic rate - MUFA monounsaturated fatty acid(s) - PUFA polyunsaturated fatty acid(s) - SFA saturated fatty acid(s) - T a air temperature - T b body temperature - Ts body surface temperature(s) - TNZ thermoneutral zone - UFA unsaturated fatty acid(s)  相似文献   

4.
Summary The present study addresses the controversy of whether the reduction in energy metabolism during torpor in endotherms is strictly a physical effect of temperature (Q10) or whether it involves an additional metabolic inhibition. Basal metabolic rates (BMR; measured as oxygen consumption, ), metabolic rates during torpor, and the corresponding body temperatures (T b) in 68 mammalian and avian species were assembled from the literature (n=58) or determined in the present study (n=10). The Q10 for change in between normothermia and torpor decreased from a mean of 4.1 to 2.8 with decreasingT b from 30 to <10°C in hibernators (species that show prolonged torpor). In daily heterotherms (species that show shallow, daily torpor) the Q10 remained at a constant value of 2.2 asT b decreased. In hibernators with aT b<10°C, the Q10 was inversely related to body mass. The increase of mass-specific metabolic rate with decreasing body mass, observed during normothermia (BMR), was not observed during torpor in hibernators and the slope relating metabolic rate and mass was almost zero. In daily heterotherms, which had a smaller Q10 than the hibernators, no inverse relationship between the Q10 and body mass was observed, and consequently the metabolic rate during torpor at the sameT b was greater than that of hibernators. These findings show that the reduction in metabolism during torpor of daily heterotherms and large hibernators can be explained largely by temperature effects, whereas a metabolic inhibition in addition to temperature effects may be used by small hibernators to reduce energy expenditure during torpor.Abbreviation BMR basal metabolic rate  相似文献   

5.
Physiological variables of torpor are strongly temperature dependent in placental hibernators. This study investigated how changes in air temperature affect the duration of torpor bouts, metabolic rate, body temperature and weight loss of the marsupial hibernator Burramys parvus (50 g) in comparison to a control group held at a constant air temperature of 2°C. The duration of torpor bouts was longest (14.0±1.0 days) and metabolic rate was lowest (0.033±0.001 ml O2·g-1·h-1) at2°C. At higher air temperatures torpor bouts were significantly shorter and the metabolic rate was higher. When air temperature was reduced to 0°C, torpor bouts also shortened to 6.4±2.9 days, metabolic rate increased to about eight-fold the values at 2°C, and body temperature was maintained at the regulated minimum of 2.1±0.2°C. Because air temperature had such a strong effect on hibernation, and in particular energy expenditure, a change in climate would most likely increase winter mortality of this endangered species.Abbreviationst STP standard temperature and pressure - T a air temperature - T b body temperature - VO2 rate of oxygen consumption  相似文献   

6.
Summary In the present paper we examine the ability of rodents to maintain body temperature (T B ) following the marked reductions in metabolic heat production associated with torpor. Previously published values for metabolic rate (M),T B and ambient temperature (T A ) were used to calculate thermal conductances (C') during normothermy and torpor in rodents capable of daily torpor (11 species) and hibernation (18 species). Values ofC' for torpid animals are uniformly lower thanC' in normothermic animals. In addition,C' of normothermic and torpid rodents decreases with increasing body mass (BM). However, the slope of the relationship betweenC' and BM is almost 4-fold greater for normothermic than for torpid animals. Thus, the ability of torpid rodents to conserve body heat by reducingC' decreases with increasing mass. Rodents that use daily torpor tend to be small and they tend to maintainT B well aboveT A during torpor. Hibernators tend to be larger and regulateT B relatively close toT A . Thus, the reductions inC' appear to be closely correlated with the level ofT B regulation during torpor. We suggest that the changes inC' represent a suite of physiological adaptations that have played a central role in the evolution of torpor, enabling rodents to regulateT B aboveT B during periods of very low heat production. Based on the approach used here we address the controversy of whether reductions inM during torpor are due entirely to temperature effects or whether metabolic inhibition in addition to temperature effects may be important. We suggest that the controversy has been confused by usingQ 10 to evaluate the relationship ofM andT B in endotherms. What is perceived as metabolic inhibition (i.e.,Q 10>3) is confounded by changes in the relationship ofM andT B due to reductions inC' and reductions in the difference betweenT B andT A . Unfortunately, changes inM andT B cannot be used to quantify changes in metabolic state in endotherms. Thus, neitherQ 10 nor the approach used here can be used to make valid statements about the metabolic regulatory processes associated with torpor. Other methods, perhaps at the cell or tissue level, are needed.Abbreviations T B body temperature - T A ambient temperature - C' thermal conductance - C n normothermicC whenT A is above a lower critical temperature - C t torporC when animals are in daily torpor or hibernation - M metabolic rate - BM body mass - WVPD water vapor pressure deficit  相似文献   

7.
During fasting, mice (Mus musculus) undergo daily bouts of torpor, considerably reducing body temperature (Tb) and metabolic rate (MR). We examined females of different laboratory strains (Balb/c, C57/6N, and CD1) to determine whether liver mitochondrial metabolism is actively reduced during torpor. In all strains, we found that state 3 (phosphorylating) respiration rate measured at 37 °C was reduced up to 35% during torpor for at least one of the substrates (glutamate and succinate) used to fuel respiration. The extent of this suppression varied and was correlated with Tb at sampling. This suggests that, at the biochemical level, the transition to and from a hypometabolic torpid state is gradual. In fasted non-torpid animals, Tb and MR still fluctuated greatly: Tb dropped by as much as 4 °C and MR was reduced up to 25% compared to fed controls. Changes in Tb and MR in fasted, non-torpid animals were correlated with changes in mitochondrial state 3 respiration rate measured at 37 °C. This suggests that fasting mice may conserve energy even when not torpid by occasionally reducing Tb and mitochondrial oxidative capacity to reduce MR. Furthermore, proton conductance was higher in torpid compared to non-torpid animals when measured at 15 °C (the lower limit of torpid Tb). This pattern is similar to that reported previously for daily torpor in Phodopus sungorus.  相似文献   

8.
Recently it was proposed that the low metabolic rate during torpor may be better explained by the reduction of thermal conductance than the drop of body temperature or metabolic inhibition. We tested this hypothesis by simultaneously measuring body temperature and metabolic rate as a function of ambient temperature in both torpid and normothermic stripe-faced dunnarts, Sminthopsis macroura (Marsupialia; approx. 25 g body mass), exposed to either air or He–O2 (21% oxygen in helium) atmospheres. He–O2 exposure increases the thermal conductance of homeothermic mammals by about twofold in comparison to an air atmosphere without apparent side-effects. Normothermic S. macroura exposed to He–O2 increased resting metabolic rate by about twofold in comparison to that in air because of the twofold increase in apparent thermal conductance. Torpid S. macroura exposed to He–O2 at ambient temperatures above the set-point for body temperature showed a completely different metabolic response. In contrast to normothermic individuals, torpid individuals significantly decreased or maintained a similar metabolic rate as those in air although the apparent thermal conductance in He–O2 was slightly raised. Moreover, the metabolic rate during torpor was only a fraction of that of normothermic individuals although the apparent thermal conductance differed only marginally between normothermia and torpor. Our study shows that a low thermal conductance is not the reason for the low metabolic rates during torpor. It suggests that interrelations between metabolic rate and body temperature of torpid endotherms above the set-point for body temperature differ fundamentally from those of normothermic and homeothermic endotherms.Abbreviations T a ambient temperature - T b body temperature - BMR basal metabolic rate - C apparent thermal conductance - He–O 2 21% oxygen in helium - MR metabolic rate - MSe mean square-error - RMR festing metabolic rate - TMR metabolic rate during torpor - T difference T b-T a - TNZ thermoneutral zone - T set set-point for body temperature - O 2 rate of oxygen consumption  相似文献   

9.
The daily activity and energy metabolism of pouched mice (Saccostomus campestris) from two localities in southern Africa was examined following warm (25 °C) and cold (10 °C) acclimation under long (LD 14:10) and short (LD 10:14) photoperiol. There was no differential effect of photoperiod on the daily activity or metabolism of pouched mice from the two localities examined, which suggests that reported differences in photoresponsivity between these two populations were not the result of differences in daily organisation. Neverthe-less, there was a significant increase in metabolism at 10 °C, irrespective of photoperiod, even though seven cold-acclimated animals displayed bouts of spontaneous torpor and saved 16.4–36.2% of their daily energy expenditure. All but one of these bouts occurred under short photoperiod, which suggests that short photoperiod facilitated the expression of torpor and influenced the daily energy metabolism of these individuals. As expected for a noctureal species, the amount of time spent active increased following acclimation to short photoperiod at 25 °C. However, there was a reduction in mean activity levels under short photoperiod at 10 °C, possibly because the stimulation of activity by short photoperiod was masked by a reduction in activity during bouts of spontaneous torpor. Cold temperature clearly had an overriding effect on the daily activity and metabolism of this species by necessitating an increase in metabolic heat production and eliciting spontaneous torpor which overrode the effect of short photoperiod on activity at an ambient temperature of 10 °C.Abbreviations 3-ANOVA three-way analysis of variance - %ACT percentage of time spent active - ADMR average daily metabolic rate - M b body mass - MR metabolic rate - MRdark metabolic rate recorded during the dark phase - MRlight metabolic rate recorded during the light phase - NST non-shivering thermogenesis - RQ respiratory quotient - STPD standard temperature and pressure, dry - T a ambient temperature - T b body temperature - VO2 oxygen consumption  相似文献   

10.
11.
Seasonality of torpor and thermoregulation in three dasyurid marsupials   总被引:3,自引:3,他引:0  
Summary Seasonal variation in the pattern of torpor and temperature regulation was investigated in the closely related arid zone dasyurid marsupialsSminthopsis crassicaudata (17 g),S. macroura (24 g), andDasyuroides byrnei (120 g). The tendency to enter torpor was greater, torpor commenced earlier, torpor duration was longer, and body temperatures (T b) were lower inSminthopsis spp. than inD. byrnei. The minimum mass-specific rate of oxygen consumption ( ) of torpid animals was similar among the three species despite the differences in minimumT b. The mass-specific oxygen consumption of normothermic animals was reduced during winter when compared with the summer values in all species, but there was no seasonal variation in normothermicT b in any species. The tendency to enter torpor was incrased during winter. TorpidSminthopsis spp. had lower values ofT b and during winter than during summer;D. byrnei did not show seasonal changes in these variables. These results suggest that seasonal changes in the pattern of thermoregulation and torpor in small dasyurids may be more distinct than in larger species.Abbreviations RMR resting metabolic rate - BMR basal metabolic rate  相似文献   

12.
The golden spiny mouse (Acomys russatus) is an omnivorous desert rodent that does not store food, but can store large amounts of body fat. Thus, it provides a good animal model to study physiological and behavioural adaptations to changes in food availability. The aim of this study was to investigate the time course of metabolic and behavioural responses to prolonged food restriction. Spiny mice were kept at an ambient temperature of 27°C and for 3 weeks their food was reduced individually to 30% of their previous ad libitum food intake. When fed ad libitum, their average metabolic rate was 82.77±3.72 ml O2 h–1 during the photophase and 111.19±4.30 ml O2 h–1 during the scotophase. During food restriction they displayed episodes of daily torpor when the minimal metabolic rate gradually decreased to 16.07±1.07 ml O2 h–1, i.e. a metabolic rate depression of approximately 83%. During the hypometabolic bouts the minimum average body temperature Tb, decreased gradually from 32.6±0.1°C to 29.0±0.4°C, with increasing duration of consecutive bouts. In parallel, the animals increased their activity during the remaining daytime. Torpor as well as hyperactivity was suppressed immediately by refeeding. Thus golden spiny mice used two simultaneous strategies to adapt to shortened food supply, namely energysaving torpor during their resting period and an increase in locomotor activity pattern during their activity period.  相似文献   

13.
Australian deserts are characterized by unpredictability, low primary productivity, and high temperature fluctuations. Despite these adverse conditions the diversity of small insectivorous marsupials of the family Dasyuridae is surprisingly high. We quantified the thermal biology of the dasyurid Pseudantechinus madonnellensis (body mass ∼30 g) in the wild to gain some understanding of whether the success of dasyurids in the arid zone may be related to some extent to their use of energy conservation strategies. In winter, most free-ranging Pseudantechinus frequently (58.3% of 131 animal days) entered daily torpor after midnight (mean 0157 hours) in rock crevices when outside ambient temperatures (T a) were low. Most animals remained torpid until the next morning when they moved while still torpid from rock crevices to sun-exposed basking sites. We visually observed basking during rewarming from torpor (mean commencement at 0943 hours) at body temperatures (T b) as low as 19.3°C when radiant heat was high and T a was rising. Basking continued for the rest of the day. Torpor use was not strongly correlated with T a, but the temporal organization of daily torpor and activity were apparently linked to the thermal characteristics of basking sites. Our study suggests that by frequently employing daily torpor and basking and by appropriately coordinating their thermal biology with that of specific locations in their environment, Pseudantechinus can reduce daily energy expenditure and thus can live and reproduce in a challenging environment. It is likely that the success of other small dasyurids and perhaps many other small mammals living in deserts is linked to employment of torpor and basking for energy conservation.  相似文献   

14.
Body temperature and metabolic rate during natural hypothermia in endotherms   总被引:12,自引:6,他引:6  
During daily torpor and hibernation metabolic rate is reduced to a fraction of the euthermic metabolic rate. This reduction is commonly explained by temperature effects on biochemical reactions, as described by Q 10 effects or Arrhenius plots. This study shows that the degree of metabolic suppression during hypothermia can alternatively be explained by active downregulation of metabolic rate and thermoregulatory control of heat production. Heat regulation is fully adequate to predict changes in metabolic rate, and Q 10 effects are not required to explain the reduction of energy requirements during hibernation and torpor.Abbreviations BMR basal metabolic rate - BW body weight - C thermal conductance - CHL thermal conductance as derived from HL - CHP thermal conductance as derived from HP - HL heat loss - HP heat production - MR metabolic rate - RQ respiratory quotient - Ta ambient temperature - Tb body temperature  相似文献   

15.
Limited information is available on basking behaviour in torpid mammals and its energetic consequences. We investigated the effects of physiological and behavioural strategies on the energetics of the fat-tailed dunnart (Sminthopsis crassicaudata). Metabolic rate and body temperature during torpor, basking and rest were measured over 24 h in response to simulated environmental conditions: (a) constant ambient temperature (T a) of 15°C, (b) constant T a of 15°C with access to a radiant heat lamp, (c) a T a cycle (range 15–31°C), and (d) a T a cycle with access to a radiant heat lamp. When a radiant heat source was provided, all dunnarts (n = 16) basked during all measurements, which resulted in energy savings of up to 74% during rest. Overall, torpor was used on 59% of measurements with a maximum duration of 16.2 h and reductions in metabolic rate of 90% compared to normothermic values. Torpid dunnarts actively moved from a shaded area to position themselves under the heat lamp with body temperatures as low as 17.5°C and thereby reduced rewarming costs by 66%. We demonstrated, for the first time in the laboratory, that torpid animals actively move to a heat source to bask, and that this behaviour results in considerable energy savings. Our finding supports the view that basking during normothermia and rewarming from torpor substantially reduces energetic requirements, which may be important for the survival of small dasyurids living on limited resources in the Australian arid zone.  相似文献   

16.
Data on thermal energetics for vespertilionid bats are under-represented in the literature relative to their abundance, as are data for bats of very small body mass. Therefore, we studied torpor use and thermal energetics in one of the smallest (4 g) Australian vespertilionids, Vespadelus vulturnus. We used open-flow respirometry to quantify temporal patterns of torpor use, upper and lower critical temperatures (T uc and T lc) of the thermoneutral zone (TNZ), basal metabolic rate (BMR), resting metabolic rate (RMR), torpid metabolic rate (TMR), and wet thermal conductance (C wet) over a range of ambient temperatures (T a). We also measured body temperature (T b) during torpor and normothermia. Bats showed a high proclivity for torpor and typically aroused only for brief periods. The TNZ ranged from 27.6°C to 33.3°C. Within the TNZ T b was 33.3±0.4°C and BMR was 1.02±0.29 mlO2 g−1 h−1 (5.60±1.65 mW g−1) at a mean body mass of 4.0±0.69 g, which is 55 % of that predicted for a 4 g bat. Minimum TMR of torpid bats was 0.014±0.006 mlO2 g−1 h−1 (0.079±0.032 mW g−1) at T a=4.6±0.4°C and T b=7.5±1.9. T lc and C wet of normothermic bats were both lower than that predicted for a 4 g bat, which indicates that V. vulturnus is adapted to minimising heat loss at low T a. Our findings support the hypothesis that vespertilionid bats have evolved energy-conserving physiological traits, such as low BMR and proclivity for torpor.  相似文献   

17.
We examined the energetics of the living fossil microbiotheriid Dromiciops gliroides, a nocturnal and rare small marsupial, endemic to the northern portion of the temperate forest of southern South America. We investigated the effects of changes at ambient temperature and food restriction on the energetics and patterns of torpor. We determined whether they exhibit shallow daily torpor or deep prolonged torpor like some Australian marsupials. Thermal conductance was 92.5% of the expected value for a similarly sized eutherian and basal metabolic rate was 82.9 and 58.6% of the predicted value for standard metatherians and eutherians, respectively. Euthermic D. gliroides showed daily fluctuations in body temperature, being significantly higher during the night. Dromiciops gliroides entered torpor and aroused spontaneously. The duration of torpor bouts increased in response to decreasing ambient temperature; torpor bout duration ranged from 10 h at 20 °C to 120 h at 12.5 °C. This study is the first record of deep torpor or hibernation for a South American mammal. Torpor in this species as well as in marsupials in general appears to be an opportunistic response to unpredictable biotic and abiotic conditions.Abbreviations VO2 metabolic rate - Tb body temperature - Ta ambient temperature - BMR basal metabolic rate - C thermal conductance - Tm temperature differentialCommunicated by I.D. Hume  相似文献   

18.
Neotropical nectar-feeding bats (Glossophaginae) are highly specialized in the exploitation of floral nectar and have one of the highest mass-specific metabolic rates among mammals. Nevertheless, they are distributed throughout the tropics and subtropics over a wide elevational range, and thus encounter many extreme and energetically challenging environmental conditions. Depressing their otherwise high metabolic rate, e.g., in situations of food restriction, might be an important adaptive physiological strategy in these dietary specialists. We investigated the thermoregulatory behavior of captive 10-g nectar feeding bats (Glossophaga soricina; Chiroptera, Phyllostomidae) under variable ambient temperatures (T a) and feeding regimes and predicted that bats would use torpor as an energy-conserving behavior under energetic constraints. All tested animals entered torpor in response to energetic restrictions and the depth of torpor was dependent on the body condition of the animals and hence on their degree of physiological constraints. Periods of torpor with body temperatures (T b) below 34°C were precisely adjusted to the photoperiod. The median length of diurnal torpor was 11.43 h. The lowest T b measured was 21°C at a T a of 19°C. Estimated energy savings due to torpor were considerable, with reductions in metabolic rate to as low as 5% of the metabolic rate of normothermic bats at the same T a. However, contrary to temperate zone bats that also employ diurnal torpor, G. soricina regulated their T b to the highest possible levels given the present energetic supplies. To summarize, G. soricina is a precise thermoregulator, which strategically employs thermoregulatory behavior in order to decrease its energy expenditure when under energetic restrictions. This adaptation may play a crucial role in the distribution and the assembly of communities of nectar-feeding bats and may point to a general capacity for torpor in tropical bats.  相似文献   

19.
Little is known about torpor in the tropics or torpor in megachiropteran species. We investigated thermoregulation, energetics and patterns of torpor in the northern blossom-bat Macroglossus minimus (16 g) to test whether physiological variables may explain why its range is limited to tropical regions. Normothermic bats showed a large variation in body temperature (T b) (33 to 37 °C) over a wide range of ambient temperatures (T as) and a relatively low basal metabolic rate (1.29 ml O2 g−1 h−1). Bats entered torpor frequently in the laboratory at T as between 14 and 25 °C. Entry into torpor always occurred when lights were switched on in the morning, independent of T a. MRs during torpor were reduced to about 20–40% of normothermic bats and T bs were regulated at a minimum of 23.1 ± 1.4 °C. The duration of torpor bouts increased with decreasing T a in non-thermoregulating bats, but generally terminated after 8 h in thermoregulating torpid bats. Both the mean minimum T b and MR of torpid M. minimus were higher than that predicted for a 16-g daily heterotherm and the T b was also about 5 °C higher than that of the common blossom-bat Syconycteris australis, which has a more subtropical distribution. These observations suggest that variables associated with torpor are affected by T a and that the restriction to tropical areas in M. minimus to some extent may be due to their ability to enter only very shallow daily torpor. Accepted: 22 September 1997  相似文献   

20.
Summary Lacerta viridis maintained under natural photoperiodic conditions show daily and seasonal changes in metabolic rates and body temperature (T b) as well as seasonal differences in sensitivity to temperature change. At all times of the year lizards have a daily fluctuation in oxygen consumption, with higher metabolic rates during the light phase of the day when tested at a constant ambient temperature (T a) of 30°C. Rhythmicity of metabolic rate persists under constant darkness, but there is a decrease in the amplitude of the rhythm.Oxygen consumption measured at various Tas shows significant seasonal differences at T as above 20°C. Expressed as the Arrhenius activation energy, metabolic sensitivity of Lacerta viridis shows temperature dependence in autumn, which changes to metabolic temperature independence in spring at T as above 20°C. The results indicate a synergic relationship between changing photoperiod and body temperature selection, resulting in seasonal metabolic adjustment and seasonal adaptation.Abbreviations ANOVA analysis of variance - LD long day (16 h light) - SD short day (8 h light) - T a ambient temperature - T b body temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号