首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ADAR enzymes, adenosine deaminases that act on RNA, form a family of RNA editing enzymes that convert adenosine to inosine within RNA that is completely or largely double-stranded. Site-selective A→I editing has been detected at specific sites within a few structured pre-mRNAs of metazoans. We have analyzed the editing selectivity of ADAR enzymes and have chosen to study the naturally edited R/G site in the pre-mRNA of the glutamate receptor subunit B (GluR-B). A comparison of editing by ADAR1 and ADAR2 revealed differences in the specificity of editing. Our results show that ADAR2 selectively edits the R/G site, while ADAR1 edits more promiscuously at several other adenosines in the double-stranded stem. To further understand the mechanism of selective ADAR2 editing we have investigated the importance of internal loops in the RNA substrate. We have found that the immediate structure surrounding the editing site is important. A purine opposite to the editing site has a negative effect on both selectivity and efficiency of editing. More distant internal loops in the substrate were found to have minor effects on site selectivity, while efficiency of editing was found to be influenced. Finally, changes in the RNA structure that affected editing did not alter the binding abilities of ADAR2. Overall these findings suggest that binding and catalysis are independent events.  相似文献   

2.
3.
4.
Substrate recognition by ADAR1 and ADAR2.   总被引:6,自引:1,他引:6       下载免费PDF全文
  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Site-selective adenosine (A) to inosine (I) RNA editing by the ADAR enzymes has been found in a variety of metazoan from fly to human. Here we describe a method to detect novel site-selective A to I editing that can be used on various tissues as well as species. We have shown previously that there is a preference for ADAR2-binding to selectively edited sites over non-specific interactions with random sequences of double-stranded RNA. The method utilizes immunoprecipitation (IP) of intrinsic RNA–protein complexes to extract substrates subjected to site-selective editing in vivo, in combination with microarray analyses of the captured RNAs. We show that known single sites of A to I editing can be detected after IP using an antibody against the ADAR2 protein. The RNA substrates were verified by RT–PCR, RNase protection and microarray. Using this method it is possible to uniquely identify novel single sites of selective A to I editing.  相似文献   

14.
15.
W Keller  J Wolf  A Gerber 《FEBS letters》1999,452(1-2):71-76
The double-stranded RNA-specific adenosine deaminases ADAR1 and ADAR2 convert adenosine (A) residues to inosine (I) in messenger RNA precursors (pre-mRNA). Their main physiological substrates are pre-mRNAs encoding subunits of ionotropic glutamate receptors or serotonin receptors in the brain. ADAR1 and ADAR2 have similar sequence features, including double-stranded RNA binding domains (dsRBDs) and a deaminase domain. The tRNA-specific adenosine deaminases Tad1p and Tad2p/Tad3p modify A 37 in tRNA-Ala1 of eukaryotes and the first nucleotide of the anticodon (A 34) of several bacterial and eukaryotic tRNAs, respectively. Tad1p is related to ADAR1 and ADAR2 throughout its sequence but lacks dsRBDs. Tad1p could be the ancestor of ADAR1 and ADAR2. The deaminase domains of ADAR1, ADAR2 and Tad1p are very similar and resemble the active site domains of cytosine/cytidine deaminases.  相似文献   

16.
Stephens OM  Yi-Brunozzi HY  Beal PA 《Biochemistry》2000,39(40):12243-12251
ADARs are adenosine deaminases responsible for RNA editing reactions that occur in eukaryotic pre-mRNAs, including the pre-mRNAs of glutamate and serotonin receptors. Here we describe the generation and analysis of synthetic ADAR2 substrates that differ in structure around an RNA editing site. We find that five base pairs of duplex secondary structure 5' to the editing site increase the single turnover rate constant for deamination 17-39-fold when compared to substrates lacking this structure. ADAR2 deaminates an adenosine in the sequence context of a natural editing site >90-fold more rapidly and to a higher yield than an adjacent adenosine in the same RNA structure. This reactivity is minimally dependent on the base pairing partner of the edited nucleotide; adenosine at the editing site in the naturally occurring A.C mismatch is deaminated to approximately the same extent and only 4 times faster than adenosine in an A.U base pair at this site. A steady-state rate analysis at a saturating concentration of the most rapidly processed substrate indicates that product formation is linear with time through at least three turnovers with a slope of 13 +/- 1.5 nM.min(-1) at 30 nM ADAR2 for a k(ss) = 0.43 +/- 0.05 min(-1). In addition, ADAR2 induces a 3.3-fold enhancement in fluorescence intensity and a 14 nm blue shift in the emission maximum of a duplex substrate with 2-aminopurine located at the editing site, consistent with a mechanism whereby ADAR2 flips the reactive nucleotide out of the double helix prior to deamination.  相似文献   

17.
18.
19.
RNA编辑是RNA转录过程中序列变化而引起的一种基因动态调控机制。腺苷脱氨酶(adenosine deaminases acting on RNA, ADAR)参与RNA编辑,将双链RNA中腺苷残基(A)转化为肌苷(I),接着被转录和拼接成鸟苷(G)。由ADAR催化,作用于RNA的A-I型RNA编辑是人类最常见的转录后修饰。近年来,这种修饰不仅存在于编码RNA中,在非编码RNA(noncoding RNA, ncRNA)中也逐渐被发现,如microRNA(miRNA)、小分子干扰RNA(siRNA)、转运RNA(tRNA)和长链非编码RNA(lncRNA)。这种修饰可能通过对microRNA和mRNA之间结合位点创造或破坏,进而影响ncRNA的生物起源、稳定性和靶向识别功能。目前,对这种生物现象的机制及ADAR底物,尤其是在ncRNA中的特性仍然没有得到充分的认识。主要对哺乳动物中ncRNA上的RNA编辑进行总结,并列举一些阐明其生物学功能的计算方法。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号