首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene encoding a new amylolytic enzyme of Bacillus licheniformis (BLMA) has been cloned, and we characterized the enzyme expressed in Escherichia coli. The genomic DNA of B. licheniformis was double-digested with EcoRI and BamHI and ligated the pBR322. The transformed E. coli was selected by its amylolytic activity, which carries the recombinant plasmid pIJ322 containing a 3.5-kilobase fragment of B. licheniformis DNA. The purified enzyme encoded by pIJ322 was capable of hydrolyzing pullulan and cyclodextrin as well as starch. It was active over a pH range of 6-8 and its optimum temperature was 50 degrees C. The molecular weight of the enzyme was 64,000, and the isoelectric point was 5.4. It degraded soluble starch by cleaving maltose units preferentially but did not attack alpha-1,6-linkage. The enzyme also hydrolyzed pullulan to panose units exclusively. In the presence of glucose, however, it transferred the panosyl moiety to glucose with the formation of alpha-1,6-linkage. The specificity of transferring activity is evident from the result of the maltosyl-transferring reaction which produces isopanose from maltotriose and glucose. The molecular structure of the enzyme deduced from the nucleotide sequence of the clone maintains limited similarity in the conserved regions to the other amylolytic enzymes.  相似文献   

2.
T Kuriki  S Okada    T Imanaka 《Journal of bacteriology》1988,170(4):1554-1559
A new type of pullulanase which mainly produced panose from pullulan was found in Bacillus stearothermophilus and purified. The enzyme can hydrolyze pullulan efficiently and only hydrolyzes a small amount of starch. When pullulan was used as a substrate, the main product was panose and small amounts of glucose and maltose were simultaneously produced. By using pTB522 as a vector plasmid, the enzyme gene was cloned and expressed in Bacillus subtilis. Since the enzyme from the recombinant plasmid carrier could convert pullulan into not only panose but also glucose and maltose, we concluded that these reactions were due to the single enzyme. The new pullulanase, with a molecular weight of 62,000, was fairly thermostable. The optimum temperature was 60 to 65 degrees C, and about 90% of the enzyme activity was retained even after treatment at 60 degrees C for 60 min. The optimum pH for the enzyme was 6.0.  相似文献   

3.
A gene encoding a putative glycogen-debranching enzyme in Sulfolobus shibatae (abbreviated as SSGDE) was cloned and expressed in Escherichia coli. The recombinant enzyme was purified to homogeneity by heat treatment and Ni-NTA affinity chromatography. The recombinant SSGDE was extremely thermostable, with an optimal temperature at 85 degrees C. The enzyme had an optimum pH of 5.5 and was highly stable from pH 4.5 to 6.5. The substrate specificity of SSGDE suggested that it possesses characteristics of both amylo-1,6-glucosidase and alpha-1,4-glucanotransferase. SSGDE clearly hydrolyzed pullulan to maltotrlose, and 6-O-alpha-maltosyl-beta-cyclodextrin (G2-beta-CD) to maltose and beta-cyclodextrin. At the same time, SSGDE transferred maltooligosyl residues to the maltooligosaccharides employed, and maltosyl residues to G2-beta-CD. The enzyme preferentially hydrolyzed amylopectin, followed in a decreasing order by glycogen, pullulan, and amylose. Therefore, the present results suggest that the glycogen-debranching enzyme from S. shibatae may have industrial application for the efficient debranching and modification of starch to dextrins at a high temperature.  相似文献   

4.
1. The maltase and glucoamylase activities of acid alpha-glucosidase purified from rabbit muscle exhibited marked differences in certain physicochemical properties. These included pH stability, inactivation by thiol-group reagents, inhibition by alphaalpha-trehalose, methyl alpha-d-glucoside, sucrose, turanose, polyols, glucono-delta-lactone and monosaccharides, pH optimum and the kinetics and pH-dependence of cation activation. 2. The results are interpreted in terms of the existence of at least two specific substrate-binding sites or sub-sites. One site is specific for the binding of maltose and probably other oligosaccharides. The second site binds polysaccharides such as glycogen. 3. The sites appear to be in close proximity, since glycogen and maltose are mutually inhibitory substrates and interact directly in transglucosylation reactions. 4. Acid alpha-glucosidase exhibited intrinsic transglucosylase activity. The enzyme catalysed glucosyl-transfer reactions from [(14)C]maltose (donor substrate) to polysaccharides (glycogen and pullulan) and to maltose itself (disproportionation). The pH optimum was 5.1, with a shoulder or secondary activity peak at pH5.4. The glucose transferred to glycogen was attached by alpha-1,4- and alpha-1,6-linkages. Three major oligosaccharide products of enzyme action on maltose (disproportionation) were detected. 5. The kinetics of enzyme action on [(14)C]maltose showed that the rate of transglucosylation increased in a sigmoidal fashion as a function of substrate concentration, approximately in parallel with a decrease in the rate of glucose release. 6. The results are interpreted to imply competitive interaction at a specific binding site between maltose and water as glucosyl acceptors. 7. The results are discussed in terms of the possible existence of multiple subgroups of glycogen-storage disease type II.  相似文献   

5.
Clostridium thermohydrosulfuricum 39E, a gram-positive thermophilic anaerobic bacterium, produced a cyclodextrin (CD)-degrading enzyme, cyclodextrinase (CDase) (EC 3.2.1.54). The enzyme was purified to homogeneity from Escherichia coli cells carrying a recombinant multicopy plasmid that contained the gene encoding for thermophilic CDase. The purified enzyme was a monomer with an M(r) of 66,000 +/- 2,000. It showed the highest activity at pH 5.9 and 65 degrees C. The enzyme hydrolyzed alpha-, beta-, and gamma-CD and linear maltooligosaccharides to yield maltose and glucose. The Km values for alpha-, beta-, and gamma-CD were 2.5, 2.1, and 1.3 mM, respectively. The rates of hydrolysis for polysaccharides (starch, amylose, amylopectin, and pullulan) were less than 5% of the rate of hydrolysis for alpha-CD. The entire nucleotide sequence of the CDase gene was determined. The deduced amino acid sequence of CDase, consisting of 574 amino acids, showed some similarities with those of various amylolytic enzymes.  相似文献   

6.
The gene encoding a thermoactive pullulanase from the hyperthermophilic anaerobic archaeon Desulfurococcus mucosus (apuA) was cloned in Escherichia coli and sequenced. apuA from D. mucosus showed 45.4% pairwise amino acid identity with the pullulanase from Thermococcus aggregans and contained the four regions conserved among all amylolytic enzymes. apuA encodes a protein of 686 amino acids with a 28-residue signal peptide and has a predicted mass of 74 kDa after signal cleavage. The apuA gene was then expressed in Bacillus subtilis and secreted into the culture fluid. This is one of the first reports on the successful expression and purification of an archaeal amylopullulanase in a Bacillus strain. The purified recombinant enzyme (rapuDm) is composed of two subunits, each having an estimated molecular mass of 66 kDa. Optimal activity was measured at 85 degrees C within a broad pH range from 3.5 to 8.5, with an optimum at pH 5.0. Divalent cations have no influence on the stability or activity of the enzyme. RapuDm was stable at 80 degrees C for 4 h and exhibited a half-life of 50 min at 85 degrees C. By high-pressure liquid chromatography analysis it was observed that rapuDm hydrolyzed alpha-1,6 glycosidic linkages of pullulan, producing maltotriose, and also alpha-1,4 glycosidic linkages in starch, amylose, amylopectin, and cyclodextrins, with maltotriose and maltose as the main products. Since the thermoactive pullulanases known so far from Archaea are not active on cyclodextrins and are in fact inhibited by these cyclic oligosaccharides, the enzyme from D. mucosus should be considered an archaeal pullulanase type II with a wider substrate specificity.  相似文献   

7.
We report the molecular characterization and the detailed study of the recombinant maltooligosyl trehalose synthase mechanism from the thermoacidophilic archaeon Sulfolobus acidocaldarius. The mts gene encoding a maltooligosyl trehalose synthase was overexpressed in Escherichia coli using the T7-expression system. The purified recombinant enzyme exhibited optimum activity at 75 degrees C and pH 5 with citrate-phosphate buffer and retained 60% of residual activity after 72 h of incubation at 80 degrees C. The recombinant enzyme was active on maltooligosaccharides such as maltotriose, maltotetraose, maltopentaose and maltoheptaose. Investigation of the enzyme action on maltooligosaccharides has brought much insight into the reaction mechanism. Results obtained from thin-layer chromatography suggested a possible mechanism of action for maltooligosyl trehalose synthase: the enzyme, after converting the alpha-1,4-glucosidic linkage to an alpha-1,1-glucosidic linkage at the reducing end of maltooligosaccharide glc(n) is able to release glucose and maltooligosaccharide glc(n-1) residues. And then, the intramolecular transglycosylation and the hydrolytic reaction continue, with the maltooligosaccharide glc(n-1) until the initial maltooligosaccharide is reduced to maltose. An hypothetical mechanism of maltooligosyl trehalose synthase acting on maltooligosaccharide is proposed.  相似文献   

8.
It has been estimated that less than 1% of the microorganisms in nature can be cultivated by conventional techniques. Thus, the classical approach of isolating enzymes from pure cultures allows the analysis of only a subset of the total naturally occurring microbiota in environmental samples enriched in microorganisms. To isolate useful microbial enzymes from uncultured soil microorganisms, a metagenome was isolated from soil samples, and a metagenomic library was constructed by using the pUC19 vector. The library was screened for amylase activity, and one clone from among approximately 30,000 recombinant Escherichia coli clones showed amylase activity. Sequencing of the clone revealed a novel amylolytic enzyme expressed from a novel gene. The putative amylase gene (amyM) was overexpressed and purified for characterization. Optimal conditions for the enzyme activity of the AmyM protein were 42 degrees C and pH 9.0; Ca2+ stabilized the activity. The amylase hydrolyzed soluble starch and cyclodextrins to produce high levels of maltose and hydrolyzed pullulan to panose. The enzyme showed a high transglycosylation activity, making alpha-(1, 4) linkages exclusively. The hydrolysis and transglycosylation properties of AmyM suggest that it has novel characteristics and can be regarded as an intermediate type of maltogenic amylase, alpha-amylase, and 4-alpha-glucanotransferase.  相似文献   

9.
探索获得优良的新型普鲁兰酶基因,丰富普鲁兰酶理论,对实现普鲁兰酶国产化具有重要意义。分析GenBank数据库中蜡样芽胞杆菌假定Ⅰ型、Ⅱ型普鲁兰酶基因序列,从实验室保藏的蜡样芽胞杆菌Bacilluscereus GXBC-3中克隆得到3个普鲁兰酶基因pulA、pulB、pulC,并分别导入大肠杆菌进行胞内诱导表达。纯化重组酶酶学性质研究表明重组酶PulA能水解α-l,6-和α-l,4-糖苷键,为Ⅱ型普鲁兰酶,以普鲁兰糖为底物时,最适反应温度及pH分别为40℃和6.5,比活力为32.89 U/mg;以可溶性淀粉为底物时,最适反应温度及pH分别为50℃和7.0,比活力为25.71 U/mg。重组酶PulB和PulC二者均只能水解α-l,6-糖苷键,为I型普鲁兰酶,以普鲁兰糖为底物时,其最适反应温度及pH分别为45℃、7.0和45℃、6.5,比活力分别为228.54 U/mg和229.65 U/mg。  相似文献   

10.
Two thermophilic bacteria, which are capable of growing on starch at 60-70 degrees C under anaerobic conditions, were isolated from a sugar refinery in Uelzen and from Solar lake in Israel. On the basis of their physiological characteristics they were identified as Clostridium thermohydrosulfuricum Uel 1 and C. thermohydrosulfuricum Sol 1, respectively. The product pattern of glucose polymer hydrolysis showed that both strains secreted enzymes that possess amylolytic and pullulytic activities. The major product formed was maltose. In addition, alpha-glucosidase activity could be detected in the supernatants of Uel 1 strain. Compared to most anaerobes investigated these isolates secreted extremely high concentrations of pullulanases in batch culture. Up to 85% of the total enzyme synthesized was detected in the culture fluid. Unlike the pullulanases of type I, which can only attack the alpha-1,6-glycosidic linkages, the pullulanases of both clostridial strains were also capable of hydrolyzing alpha-1,4-linkages. The enzyme system of both bacteria was found to be highly thermoactive; optimal activity was detected at pH 5.0 and 85 degrees C. Even at 95 degrees C and without the addition of metal ions still 15% to 25% of enzymatic activity was detectable.  相似文献   

11.
The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. alpha-Amylase had an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 +/- 700. alpha-Amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to greater than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 +/- 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. S. alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol.  相似文献   

12.
The gene encoding the type I pullulanase from the extremely thermophilic anaerobic bacterium Fervidobacterium pennavorans Ven5 was cloned and sequenced in Escherichia coli. The pulA gene from F. pennavorans Ven5 had 50.1% pairwise amino acid identity with pulA from the anaerobic hyperthermophile Thermotoga maritima and contained the four regions conserved among all amylolytic enzymes. The pullulanase gene (pulA) encodes a protein of 849 amino acids with a 28-residue signal peptide. The pulA gene was subcloned without its signal sequence and overexpressed in E. coli under the control of the trc promoter. This clone, E. coli FD748, produced two proteins (93 and 83 kDa) with pullulanase activity. A second start site, identified 118 amino acids downstream from the ATG start site, with a Shine-Dalgarno-like sequence (GGAGG) and TTG translation initiation codon was mutated to produce only the 93-kDa protein. The recombinant purified pullulanases (rPulAs) were optimally active at pH 6 and 80 degrees C and had a half-life of 2 h at 80 degrees C. The rPulAs hydrolyzed alpha-1,6 glycosidic linkages of pullulan, starch, amylopectin, glycogen, alpha-beta-limited dextrin. Interestingly, amylose, which contains only alpha-1,4 glycosidic linkages, was not hydrolyzed by rPulAs. According to these results, the enzyme is classified as a debranching enzyme, pullulanase type I. The extraordinary high substrate specificity of rPulA together with its thermal stability makes this enzyme a good candidate for biotechnological applications in the starch-processing industry.  相似文献   

13.
The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. alpha-Amylase had an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 +/- 700. alpha-Amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to greater than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 +/- 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. S. alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol.  相似文献   

14.
A gene corresponding to a maltogenic amylase (MAase) in Lactobacillus gasseri ATCC 33323 (lgma) was cloned and expressed in Escherichia coli. The recombinant LGMA was efficiently purified 24.3-fold by one-step Ni-NTA affinity chromatography. The final yield and specific activity of the purified recombinant LGMA were 68% and 58.7 U/mg, respectively. The purified enzyme exhibited optimal activity for beta-CD hydrolysis at 55 degrees C and pH 5. The relative hydrolytic activities of LGMA to beta-CD, soluble starch or pullulan was 8:1:1.9. The activity of LGMA was strongly inhibited by most metal ions, especially Zn(2+), Fe(2+), Co(2+) and by EDTA. LGMA possessed some unusual properties distinguishable from typical MAases, such as being in a tetrameric form, having hydrolyzing activity towards the alpha-(1,6)-glycosidic linkage and being inhibited by acarbose.  相似文献   

15.
A glycosyltransferase, involved in the synthesis of cyclic maltosylmaltose [CMM; cyclo-{-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->}] from starch, was purified to homogeneity from the culture supernatant of Arthrobacter globiformis M6. The CMM-forming enzyme had a molecular mass of 71.7 kDa and a pI of 3.6. The enzyme was most active at pH 6.0 and 50 degrees C and was stable from pH 5.0 to 9.0 and up to 30 degrees C. The addition of 1 mM Ca2+ enhanced the thermal stability of the enzyme up to 45 degrees C. The enzyme acted on maltooligosaccharides that have degrees of polymerization of > or =3, amylose, and soluble starch to produce CMM but failed to act on cyclomaltodextrins, pullulan, and dextran. The mechanism for the synthesis of CMM from maltotetraose was determined as follows: (i) maltotetraose + maltotetraose --> 6(4)-O-alpha-maltosyl-maltotetraose + maltose and (ii) 6(4)-O-alpha-maltosyl-maltotetraose --> CMM + maltose. Thus, the CMM-forming enzyme was found to be a novel maltosyltransferase (6MT) catalyzing both intermolecular and intramolecular alpha-1,6-maltosyl transfer reactions. The gene for 6MT, designated cmmA, was isolated from a genomic library of A. globiformis M6. The cmmA gene consisted of 1,872 bp encoding a signal peptide of 40 amino acids and a mature protein of 583 amino acids with a calculated molecular mass of 64,637. The deduced amino acid sequence showed similarities to alpha-amylase and cyclomaltodextrin glucanotransferase. The four conserved regions common in the alpha-amylase family enzymes were also found in 6MT, indicating that 6MT should be assigned to this family.  相似文献   

16.
Extracellular pullulanases were purified from cell-free culture supernatants of the marine thermophilic archaea Thermococcus litoralis (optimal growth temperature, 90 degrees C) and Pyrococcus furiosus (optimal growth temperature, 98 degrees C). The molecular mass of the T. litoralis enzyme was estimated at 119,000 Da by electrophoresis, while the P. furiosus enzyme exhibited a molecular mass of 110,000 Da under the same conditions. Both enzymes tested positive for bound sugar by the periodic acid-Schiff technique and are therefore glycoproteins. The thermoactivity and thermostability of both enzymes were enhanced in the presence of 5 mM Ca, and under these conditions, enzyme activity could be measured at temperatures of up to 130 to 140 degrees C. The addition of Ca also affected substrate binding, as evidenced by a decrease in K(m) for both enzymes when assayed in the presence of this metal. Each of these enzymes was able to hydrolyze, in addition to the alpha-1,6 linkages in pullulan, alpha-1,4 linkages in amylose and soluble starch. Neither enzyme possessed activity against maltohexaose or other smaller alpha-1,4-linked oligosaccharides. The enzymes from T. litoralis and P. furiosus appear to represent highly thermostable amylopullulanases, versions of which have been isolated from less-thermophilic organisms. The identification of these enzymes further defines the saccharide-metabolizing systems possessed by these two organisms.  相似文献   

17.
The action of neopullulanase from Bacillus stearothermophilus on many oligosaccharides was tested. The enzyme hydrolyzed not only alpha-(1----4)-glucosidic linkages but also specific alpha-(1----6)-glucosidic linkages of several branched oligosaccharides. When pullulan was used as a substrate, panose, maltose, and glucose, in that order, were produced as final products at a final molar ratio of 3:1:1. According to these results, we proposed a model for the pattern of action of neopullulanase on pullulan as follows. In the first step, the enzyme hydrolyzes only alpha-(1----4)-glucosidic linkages on the nonreducing side of alpha-(1----6) linkages of pullulan and produces panose and several intermediate products composed of some panose units. In the second step, taking 6(2)-O-alpha-(6(3)-O-alpha-glucosyl-maltotriosyl)-maltose as an example of one of the intermediate products, the enzyme hydrolyzes either alpha-(1----4) (the same position as that described above) or alpha-(1----6) linkages and produces panose or 6(3)-O-alpha-glucosyl-maltotriose plus maltose, respectively. In the third step, the alpha-(1----4) linkage of 6(3)-O-alpha-glucosyl-maltotriose is hydrolyzed by the enzyme, and glucose and another panose are produced. To confirm the model of the pattern of action, we extracted intermediate products produced from pullulan by neopullulanase and analyzed the structures by glucoamylase, pullulanase, and neopullulanase analyses. The experimental results supported the above-mentioned model of the pattern of action of neopullulanase on pullulan.  相似文献   

18.
Cyclic maltosyl-maltose [CMM, cyclo-[-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->]], a novel cyclic tetrasaccharide, has a unique structure. Its four glucose residues are joined by alternate alpha-1,4 and alpha-1,6 linkages. CMM is synthesized from starch by the action of 6-alpha-maltosyltransferase from Arthrobacter globiformis M6. Recently, we determined the mechanism of extracellular synthesis of CMM, but the degrading pathway of the saccharide remains unknown. Hence we tried to identify the enzymes involved in the degradation of CMM to glucose from the cell-free extract of the strain, and identified CMM hydrolase (CMMase) and alpha-glucosidase as the responsible enzymes. The molecular mass of CMMase was determined to be 48.6 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and 136 kDa by gel filtration column chromatography. The optimal pH and temperature for CMMase activity were 6.5 and 30 degrees C. The enzyme remained stable from pH 5.5 to 8.0 and up to 25 degrees C. CMMase hydrolyzed CMM to maltose via maltosyl-maltose as intermediates, but it did not hydrolyze CMM to glucose, suggesting that it is a novel hydrolase that hydrolyzes the alpha-1,6-linkage of CMM. The molecular mass of alpha-glucosidase was determined to be 60.1 kDa by SDS-PAGE and 69.5 kDa by gel filtration column chromatography. The optimal pH and temperature for alpha-glucosidase activity were 7.0 and 35 degrees C. The enzyme remained stable from pH 7.0 to 9.5 and up to 35 degrees C. alpha-Glucosidase degraded maltosyl-maltose to glucose via panose and maltose as intermediates, but it did not degrade CMM. Furthermore, when CMMase and alpha-glucosidase existed simultaneously in a reaction mixture containing CMM, glucose was detected as the final product. It was found that CMM was degraded to glucose by the synergistic action of CMMase and alpha-glucosidase.  相似文献   

19.
Pyrococcus furiosus is a strictly anaerobic hyperthermophilic archaebacterium with an optimal growth temperature of about 100 degrees C. When this organism was grown in the presence of certain complex carbohydrates, the production of several amylolytic enzymes was noted. These enzymes included an alpha-glucosidase that was located in the cell cytoplasm. This alpha-glucosidase has been purified 310-fold and corresponded to a protein band of 125 kilodaltons as resolved by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme exhibited optimum activity at pH 5.0 to 6.0 and over a temperature range of 105 to 115 degrees C. Kinetic analysis conducted at 108 degrees C revealed hydrolysis of the substrates p-nitrophenyl-alpha-D-glucopyranoside (PNPG), methyl-alpha-D-glucopyranoside, maltose, and isomaltose. Trace activity was detected towards p-nitrophenyl-beta-D-glucopyranoside, and no activity could be detected towards starch or sucrose. Inhibition studies conducted at 108 degrees C with PNPG as the substrate and maltose as the inhibitor yielded a Ki for maltose of 14.3 mM. Preincubation for 30 min at 98 degrees C in 100 mM dithiothreitol and 1.0 M urea had little effect on enzyme activity, whereas preincubation in 1.0% sodium dodecyl sulfate and 1.0 M guanidine hydrochloride resulted in significant loss of enzyme activity. Purified alpha-glucosidase from P. furiosus exhibited remarkable thermostability; incubation of the enzyme at 98 degrees C resulted in a half life of nearly 48 h.  相似文献   

20.
A chitinolytic enzyme from Bacillus thuringiensis subsp. aizawai has been purified and its molecular mass was estimated ca. 66 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was able to hydrolyze chitin to chitobiosides but not carboxymethylcellulose, cellulose, pullulan, and laminarin. Optimal pH and temperature were detected at 6 and 50 degrees C, respectively. Stability, in the absence of substrate, was observed at temperatures less than 60 degrees C and pH between 5 and 8. Enzyme activity was significantly inhibited by K+ and EDTA and completely inhibited by Hg2+. Purified chitinase showed lytic activity against cell walls from six phytopathogenic fungi and inhibited the mycelial growth of both Fusarium sp. and Sclerotium rolfsii. The biocontrol efficacy of the enzyme was tested in the protection of bean seeds infested with six phytopathogenic fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号