首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the structure of microbial communities in the biological hydrogen production reactor and determine the ecological function of hydrogen producing bacteria, anaerobic sludge was obtained from the continuous stirred tank reactor (CSTR) in different periods of time, and the diversity and dynamics of microbial communities were investigated by denaturing gradient gel electrophoresis (DGGE). The results of DGGE demonstrated that an obvious shift of microbial population happened from the beginning of star-up to the 28th day, and the ethanol type fermentation was established. After 28 days the structure of microbial community became stable, and the climax community was formed. Comparative analysis of 16S rDNA sequences from reamplifying and sequencing the prominent bands indicated that the dominant population belonged to low G+C Gram-positive bacteria (Clostridium sp. andEthanologenbacterium sp.), β-proteobacteria (Acidovorax sp.), γ-proteobacteria (Kluyvera sp.), Bacteroides (uncultured bacterium SJA-168), and Spirochaetes (uncultured eubacterium E1-K13), respectively. The hydrogen production rate increased obviously with the increase ofEthanologenbacterium sp.,Clostridium sp. and uncultured Spirochaetes after 21 days, meanwhile the succession of ethanol type fermentation was formed. Throughout the succession the microbial diversity increased however it decreased after 21 days. Some types ofClostridium sp.Acidovorax sp.,Kluyvera sp., and Bacteroides were dominant populations during all periods of time. These special populations were essential for the construction of climax community. Hydrogen production efficiency was dependent on both hydrogen producing bacteria and other populations. It implied that the cometabolism of microbial community played a great role of biohydrogen production in the reactors.  相似文献   

2.
Biohydrogen production has been concerned ex-tremely as a new technology of energy resource pro-duction by many scientists[1—4]. Enhancement of hy-drogen production efficiency and cutting down the operating cost are very important problems, which are the limiting factors for the industrialization of hydro-gen production process. The fermentation hydrogen production technology offers a new method to resolve these difficulties[5—8]. Compared with photosynthetic hydrogen production possesses, f…  相似文献   

3.
Hydrogen production by the dark fermentation of food wastes is an economic and environmentally friendly technology to produce the clean energy source as well as to treat the problematic wastes. However, the long-term operations of the continuous anaerobic reactor for fermentative hydrogen production were frequently unstable. In this study, the structure of microbial community within the anaerobic reactor during unstable hydrogen production was examined by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) techniques. The changes in microbial community from H(2)-producing Clostridium spp. to lactic acid-producing Lactobacillus spp. were well coincident with the unexpected process failures and the changes of metabolites concentrations in the effluent of the anaerobic reactor. As the rate of hydrogen production decreased, effluent lactic acid concentration increased. Low rate of hydrogen production and changes in microbial community were related to the 'kimchi' content and storage temperature of food waste feed solution. After low temperature control of the storage tank of the feed solution, any significant change in microbial community within the anaerobic reactor did not occur and the hydrogen production was very stably maintained for a long time.  相似文献   

4.
BioDeNOx is an integrated physicochemical and biological process for the removal of nitrogen oxides (NOx) from flue gases. In this process, the flue gas is purged through a scrubber containing a solution of Fe(II)EDTA2-, which binds the NOx to form an Fe(II)EDTA.NO2- complex. Subsequently, this complex is reduced in the bioreactor to dinitrogen by microbial denitrification. Fe(II)EDTA2-, which is oxidized to Fe(III)EDTA- by oxygen in the flue gas, is regenerated by microbial iron reduction. In this study, the microbial communities of both lab- and pilot-scale reactors were studied using culture-dependent and -independent approaches. A pure bacterial strain, KT-1, closely affiliated by 16S rRNA analysis to the gram-positive denitrifying bacterium Bacillus azotoformans, was obtained. DNA-DNA homology of the isolate with the type strain was 89%, indicating that strain KT-1 belongs to the species B. azotoformans. Strain KT-1 reduces Fe(II)EDTA.NO2- complex to N2 using ethanol, acetate, and Fe(II)EDTA2- as electron donors. It does not reduce Fe(III)EDTA-. Denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rRNA gene fragments showed the presence of bacteria closely affiliated with members of the phylum Deferribacteres, an Fe(III)-reducing group of bacteria. Fluorescent in situ hybridization with oligonucleotide probes designed for strain KT-1 and members of the phylum Deferribacteres showed that the latter were more dominant in both reactors.  相似文献   

5.
Bio-catalytic calcification (BCC) reactors utilise microbial urea hydrolysis by autochthonous bacteria for the precipitation-removal of calcium, as calcite, from industrial wastewater. Due to the limited knowledge available concerning natural ureolytic microbial calcium carbonate (CaCO(3)) precipitation, the microbial ecology of BCC reactors has remained a black box to date. This paper characterises BCC reactor evolution from initialisation to optimisation over a 6-week period. Three key parameters were studied: (1) microbial evolution, (2) the (bio)chemical CaCO(3) precipitation pathway, and (3) crystal nucleation site development. Six weeks were required to establish optimal reactor performance, which coincided with an increase in urease activity from an initial 7 mg urea l(-1) reactor h(-1) to about 100 mg urea l(-1) reactor h(-1). Urease activity in the optimal period was directly proportional to Ca(2+) removal, but urease gene diversity was seemingly limited to a single gene. Denaturing gradient gel electrophoresis of 16S rRNA genes revealed the dynamic evolution of the microbial community structure of the calcareous sludge, which was eventually dominated by a few species including Porphyromonas sp., Arcobacter sp. and Bacteroides sp. Epi-fluorescence and scanning electron microscopy showed that the calcareous sludge was colonised with living bacteria, as well as the calcified remains of organisms. It appears that the precipitation event is localised in a micro-environment, due to colonisation of crystal nucleation sites (calcareous sludge) by the precipitating organisms.  相似文献   

6.
Microbial community composition dynamics was studied during H(2) fermentation from glucose in a fluidized-bed bioreactor (FBR) aiming at obtaining insight into the H(2) fermentation microbiology and factors resulting in the instability of biofilm processes. FBR H(2) production performance was characterised by an instable pattern of prompt onset of H(2) production followed by rapid decrease. Gradual enrichment of organisms increased the diversity of FBR attached and suspended-growth phase bacterial communities during the operation. FBR bacteria included potential H(2) producers, H(2) consumers and neither H(2) producers nor consumers, and those distantly related to any known organisms. The prompt onset of H(2) production was due to rapid growth of Clostridium butyricum (99-100%) affiliated strains after starting continuous feed. The proportion trend of C. butyricum in FBR attached and suspended-growth phase communities coincided with H(2) and butyrate production. High glucose loading rate favoured the H(2) production by Escherichia coli (100%) affiliated strain. Decrease in H(2) production, associated with a shift from acetate-butyrate to acetate-propionate production, was due to changes in FBR attached and suspended-growth phase bacterial community compositions. During the shift, organisms, including potential propionate producers, were enriched in the communities while the proportion trend of C. butyricum decreased. We suggest that the instability of H(2) fermentation in biofilm reactors is due to enrichment and efficient adhesion of H(2) consumers on the carrier and, therefore, biofilm reactors may not favour mesophilic H(2) fermentation.  相似文献   

7.
The microbial communities established in mesophilic and thermophilic expanded granular sludge bed reactors operated with sulfate as the electron acceptor were analyzed using 16S rRNA targeted molecular methods, including denaturing gradient gel electrophoresis, cloning, and phylogenetic analysis. Bacterial and archaeal communities were examined over 450 days of operation treating ethanol (thermophilic reactor) or ethanol and later a simulated semiconductor manufacturing wastewater containing citrate, isopropanol, and polyethylene glycol 300 (mesophilic reactor), with and without the addition of copper(II). Analysis, of PCR-amplified 16S rRNA gene fragments using denaturing gradient gel electrophoresis revealed a defined shift in microbial diversity in both reactors following a change in substrate composition (mesophilic reactor) and in temperature of operation from 30°C to 55°C (thermophilic reactor). The addition of copper(II) to the influent of both reactors did not noticeably affect the composition of the bacterial or archaeal communities, which is in agreement with the very low soluble copper concentrations (3–310 μg l−1) present in the reactor contents as a consequence of extensive precipitation of copper with biogenic sulfides. Furthermore, clone library analysis confirmed the phylogenetic diversity of sulfate-reducing consortia in mesophilic and thermophilic sulfidogenic reactors operated with simple substrates.  相似文献   

8.
A two-stage 68 degrees C/55 degrees C anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68 degrees C for periods of 36, 108, and 168 h, and subsequently digested at 55 degrees C. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68 degrees C with a hydraulic retention time (HRT) of 3 days, connected to a 55 degrees C reactor with 12-day HRT, was compared with a conventional single-stage reactor running at 55 degrees C with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single-stage reactor. The 68 degrees C reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic/fermentative bacteria were significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. The density levels of methanogens utilizing H2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. Temporal temperature gradient electrophoresis profiles (TTGE) of the 68 degrees C reactor demonstrated a stable bacterial community along with a less divergent community of archaeal species.  相似文献   

9.
The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes.  相似文献   

10.
Hydrogen gas (H2) produced by bacterial fermentation of biomass can be a sustainable energy source. The ability to produce H2 gas during anaerobic fermentation was previously thought to be restricted to a few species within the genera Clostridium and Enterobacter. This work reports genomic evidence for the presence of novel H2-producing bacteria (HPB) in acidophilic ethanol-H2-coproducing communities that were enriched using molasses wastewater. The majority of the enriched dominant populations in the acidophilic ethanol-H2-coproducing system were affiliated with low-G+C-content gram-positive bacteria, Bacteroidetes, and Actinobacteria, based on the 16S rRNA gene. However, PCR primers designed to specifically target bacterial hydA yielded 17 unique hydA sequences whose amino acid sequences differed from those of known HPB. The putative ethanol-H2-coproducing bacteria comprised 11 novel phylotypes closely related to Ethanoligenens harbinense, Clostridium thermocellum, and Clostridium saccharoperbutylacetonicum. Furthermore, analysis of the alcohol dehydrogenase isoenzyme also pointed to an E. harbinense-like organism, which is known to have a high conversion rate of carbohydrate to H2 and ethanol. We also found six novel HPB that were associated with lactate-, propionate-, and butyrate-oxidizing bacteria in the acidophilic H2-producing sludge. Thus, the microbial ecology of mesophilic and acidophilic H2 fermentation involves many other bacteria in addition to Clostridium and Enterobacter.  相似文献   

11.
The characteristics of microbial mats within the waste stream from a seafood cannery were compared to a microbial community at a pristine site near a sandy beach at Puerto San Carlos, Baja California Sur, Mexico. Isolation of poly-beta-hydroxybutyrate (PHB)-producing bacteria, recognition of brightly refractile cytoplasmatic inclusions, lipophilic stains with Sudan Black and Nile Red, and chemical extraction of PHB were used as a culture-dependent strategy for the detection of PHB-producing bacteria. The culture-independent approach included denaturing gradient gel electrophoresis of phylotypes of 16S rRNA of microbial communities from environmental samples. Significant differences in community structure were found among the polluted and pristine sites. These differences were correlated with the physicochemical characteristics of the seawater column. At the polluted site, the seawater was rich in nutrients (ammonia, phosphates, and organic matter), compared to the pristine location. Partial sequencing of 16S rDNA of cultures of bacteria producing PHB included Bacillus and Staphylococcus at both sites; Paracoccus and Micrococcus were found only at the polluted site and Rhodococcus and Methylobacterium were found only at the pristine site. Bands of the sequences of 16S rDNA from both field samples in the denaturing gradient gel electrophoresis (DGGE) analyses affiliated closely only with bacterial sequences of cultures of Bacillus and Staphylococcus. High concentrations of organic and inorganic nutrients at the polluted site had a clear effect on the composition and diversity of the microbial community compared to the unpolluted site.  相似文献   

12.
In order to determine the conditions for the maximum performance of a fed-batch composting (FBC) reactor, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the microbial communities established under the confined conditions of moisture content and environmental temperature. To evaluate the effects of microbial community structures on the performance of FBC reactors, degradation experiments using small-scale reactors and model waste were conducted under confined environmental conditions. A high degradation rate was observed under a wide range of MC conditions (30-60%) and at higher than usual temperatures (30-50 degrees C). The microbial communities that formed in the experimental FBC reactors were analyzed by DGGE of PCR-amplified 16S rRNA genes. The DGGE banding patterns at the same level as the degradation rates were similar even if the environmental conditions were different. Sequence analysis of the DGGE bands revealed the primary microbes which act in the reactor.  相似文献   

13.
AIMS: To understand the microbial ecology underlying trichloethene (TCE) degradation in a coupled anaerobic/aerobic single stage (CANOXIS) reactor oxygenated with hydrogen peroxide (H2O2) and in an upflow anaerobic sludge bed (UASB) reactor. METHODS AND RESULTS: The molecular study of the microbial population dynamics and a phylogenetic characterization were conducted using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). In both reactors, TCE had a toxic effect on two uncultured bacterial populations whereas oxygen favoured the growth of aerobic species belonging to Rhizobiaceae and Dechloromonas. No methanotrophic bacteria were detected when targeting 16S rRNA gene with universal primers. Alternatively, pmo gene encoding the particulate methane monooxygenase of Methylomonas sp. LW21 could be detected in the coupled reactor when H2O2 was supplied at 0.7 g O2 l day(-1). CONCLUSIONS: Methylomonas sp. LW21 that could be responsible for the aerobic degradation of the TCE by-products is not among the predominant bacterial populations in the coupled reactor. It seems to have been outcompeted by heterotrophic bacteria (Rhizobiaceae and Dechloromonas sp.) for oxygen. SIGNIFICANCE AND IMPACT OF THE STUDY: The results obtained show the limitations of the coupled reactor examined in this study. Further investigations should focus on the operating conditions of this reactor in order to favour the growth of the methanotrophs.  相似文献   

14.
Industrial effluents differ in their organic composition thereby providing different carbon sources to the microbial communities involved in its treatment. This study aimed to investigate the correlation of microbial community structure with wastewater composition and reactor's performance. Self-immobilized granules were developed in simulated wastewater based on different carbon sources (glucose, sugarcane molasses, and milk) in three hybrid anaerobic reactors operated at 37 °C. To study archaeal community structure, a polyphasic approach was used with both qualitative and quantitative analysis. While PCR-denaturing gradient gel electrophoresis of 16S rRNA gene did not reveal major shifts in diversity of archaea with change in substrate, quantification of different groups of methanogens and total bacteria by real-time PCR showed variations in relative abundances with the dominance of Methanosaetaceae and Methanobacteriales. These data were supported by differences in the ratio of total counts of archaea and bacteria analyzed by catalyzed reporter deposition – fluorescence in situ hybridization. During hydraulic and organic shocks, the molasses-based reactor showed the best performance followed by the milk- and the glucose-based reactor. The study indicates that carbon source shapes the microbial community structure more in terms of relative abundance with distinct metabolic capacities rather than its diversity itself.  相似文献   

15.
Changes in product formation during carbohydrate fermentation by anaerobic microflora in a continuous flow stirred tank reactor were investigated with respect to the dilution rate in the reactor. In the fermentation by methanogenic microflora, stable methane fermentation, producing methane and carbon dioxide, was observed at relatively low dilution rates (less than 0.33 d(-1) on glucose and 0.20 d(-1) on cellulose). Decomposition of cellulose in the medium was a rate-limiting step in the reaction, because glucose was easily consumed at all applied dilution rates (0.07-4.81 d(-1)). Intermediate metabolites of methane fermentation, such as lactate, ethanol, acetate, butyrate, formate, hydrogen, and carbon dioxide, were accumulated as dilution rate increased. Maximum yield of hydrogen was obtained at 4.81 d(-1) of dilution rate (0.1 mol/mol glucose on glucose or 0.7 mol/mol hexose on cellulose). Lactate was the major product on glucose (1.2 mol/mol glucose), whereas ethanol was predominant on cellulose (0.7 mol/mol hexose). An analysis by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified bacterial 16S rDNA of the microflora indicated that changes in the microbial community took place at various dilution rates, and these changes appeared to correspond to the changes in product distributions. Sequence analyses of the DGGE fragments revealed the probable major population of the microflora. A band closely related to the microorganisms of thermophilic anaerobic bacteria was detected with strong intensity on both glucose and cellulose. Differences in the production yield of hydrogen could have been caused by different populations of microorganisms in each microflora. In the case of cellulose, increasing the dilution rate brought about an accumulation of microorganisms related to Clostridia species that have cellulolytic activity, this being in accordance with the notion of cellulose decomposition being the rate-limiting reaction.  相似文献   

16.
In this study, denitrification of ammonium-reach anaerobic sludge digester liquor was investigated during start-up periods of two laboratory-scale “fill-and-draw” reactors. One reactor was fed with a single carbon source (ethanol), whereas the other reactor was fed with a complex carbon source (fusel oil). During two acclimation experiments, the structure of microbial community involved in denitrification was analyzed using 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis fingerprints and fluorescent in situ hybridization. The characteristics of the mixed liquor were additionally supported by regular measurements of nitrate uptake rates. The addition of fusel oil and ethanol resulted in a significant enhancement of the denitrification rate and efficiency combined with the increasing volumetric addition of sludge digester liquor up to 15 % of the reactor volume. The microbiological analyses revealed that the addition of sludge digester liquor as well as both external carbon sources (fusel oil and ethanol) did not affect the structure of microbial communities in a severe way. In both reactors, Curvibacter sp. and Azoarcus sp. were found as the most abundant representatives of denitrifiers.  相似文献   

17.
In this study, a lab-scale partial nitrifying sequencing batch reactor (SBR) was developed to investigate partial nitrification at ambient temperature (16–22 °C). Techniques of denaturing gradient gel electrophoresis (DGGE), cloning, and fluorescence in situ hybridization (FISH) were utilized simultaneously to study microbial population dynamics. Partial nitrification was effectively achieved in response to shifts of influent ammonium concentrations. DGGE results showed that higher ammonia concentration referred to lower ammonia-oxidizing bacteria (AOB) diversity in the SBR. Phylogenetic analysis revealed that all the predominant AOB was affiliated with Nitrosomonas genus. FISH analysis illustrated AOB was the predominant nitrifying bacteria of microbial compositions when SBR achieved partial nitrification (PN) at ambient temperature.  相似文献   

18.
【目的】比较不同营养条件及挂膜方式下生物膜法对氨氮污染水体的净化效果及其功能微生物群落结构。【方法】设置空白(Blank)、自然成膜(Raw)、预附脱氮菌强化挂膜(PCC)3组生物膜反应器,利用末端限制性片段长度多态性(T-RFLP)技术和非度量多维标度(NMDS)分析方法对生物膜反应器转化氨氮过程中微生物群落结构及其演替过程进行动态解析。【结果】在C/N=1:1时,除PCC在起始阶段短暂具有较高的氨氮脱除效率外,Blank、Raw和PCC最终均表现出较低的氨氮转化效率(10%-20%)。改变C/N=2:1后,Raw和PCC对人工合成污水中NH4+-N的转化率均提高至95%以上,而且Raw与PCC的群落结构在C/N=2:1时具有较高的相似性,优势菌群主要为γ-变形菌纲(Gammaproteobacteria)、放线菌纲(Actinobacteria)和硝化螺菌纲(Nitrospira)。【结论】C/N是影响生物膜反应器氨氮去除效果及驱动生物膜反应器中细菌群落结构发生改变的重要因子。  相似文献   

19.
Zhao QB  Yu HQ 《Bioresource technology》2008,99(5):1353-1358
Fermentative H(2) production in an upflow anaerobic sludge blanket reactor (UASB) at various pH values was investigated in this study. Experimental results show that the H(2) partial pressure in biogas, H(2) production rate and H(2) yield were all pH-dependent, in the range of 0.25-0.52 atm, 42-145 ml-H(2) l(-1) h(-1) and 0.47 to 1.61 mol-H(2)mol-glucose(-1), respectively. The maximum pH for the H(2) partial pressure was observed at pH 7.50. However, the optimum H(2) production rate and H(2) yield were observed at pH 6.50-7.50. In this UASB reactor, acetate, propionate, butyrate, i-butyrate, valerate, caporate and ethanol were present in the effluent as main aqueous products, and the dominant fermentation was butyrate-type at various pHs. The metabolic pathways and thermodynamics of H(2) production were also analyzed. Both H(2) production performance and fermentation pathways in this H(2)-producing UASB reactor were significantly affected by the pH value.  相似文献   

20.
A two-stage biotrickling filter was developed for removing dimethyl sulfide (DMS) and hydrogen sulfide (H2S). The first biotrickling filter (ABF) was inoculated with Acidithiobacillus thiooxidans and operated without pH control, while the second biotrickling filter (HBF) was inoculated with Hyphomicrobium VS and operated at neutral pH. High DMS elimination capacities were observed in the HBF (8.2 g DMS m(-3) h(-1) at 90% removal efficiency) after 2 days. Maximal observed elimination capacities were 83 g H2S m(-3) h(-1) (100% removal efficiency) and 58 g DMS m(-3) h(-1) (88% removal efficiency) for the ABF and the HBF, respectively. The influence of a decreasing empty bed residence time (120 down to 30 sec) and the robustness of the HBF towards changing operational parameters (low pH, starvation, and DMS and H2S peak loadings) were investigated. Suboptimal operational conditions rapidly resulted in lower DMS removal efficiencies, but recovery of the HBF was mostly obtained within a few days. The H2S removal efficiency in the ABF, however, was not influenced by varying operational conditions. In both reactors, microbial community dynamics of the biofilm and the suspended bacteria were investigated, using denaturing gradient gel electrophoresis (DGGE). After a period of gradual change, a stable microbial community was observed in the HBF after 60 days, although Hyphomicrobium VS was not the dominant microorganism. In contrast, the ABF biofilm community was stable from the first day and only a limited bacterial diversity was observed. The planktonic microbial community in the HBF was very different from that in the biofilm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号