首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternative translational initiation is an important mechanism to increase the diversity of gene products. Although some of alternative translational initiation events have been reported, such information remains anecdotal and does not allow for any generalizations. The number of the known alternative translational initiation genes is so few that we know little about its mechanism. There is a great demand to discover more alternative translational initiation genes. However, it is arduously time-consuming to discover novel alternative translational initiation genes by the experimental method. Therefore we systematically analyzed protein sequences available in public database and predicted 1237 protein clusters as potential alternative translational initiation events. We concluded that about 8%–10% of human genes have alternative translational initiation sites. The results significantly increased the number of alternative translation initiation events and indicated that alternative translation initiation is an important and general regulation mechanism in the cellular process.  相似文献   

2.
SUMMARY: Alternative translational initiation is an important cellular mechanism contributing to the diversity of protein products and functions. We develop a database that provides a comprehensive collection of alternative translational initiation events. The purpose of this alternative translational initiation database (ATID) is to facilitate the systematic study of alternative translational initiation of genes. The current version of database contains 300 genes from Homo sapiens, Mus musculus and other species. Each of the genes has two or more isoforms due to alternative translational initiation. Resources in ATID, including gene information, alternative products of genes and domain structures of isoforms, are provided through a user-friendly web interface. AVAILABILITY: The ATID database is available for public use at http://bioinfo.au.tsinghua.edu.cn/atie/.  相似文献   

3.
Cai J  Huang Y  Li F  Li Y 《Proteins》2006,62(3):793-799
Alternative translation is an important cellular mechanism contributing to the generation of proteins and the diversity of protein functions. Instead of studying individual cases, we systematically analyzed the alteration of protein subcellular location and domain formation by alternative translational initiation in eukaryotes. The results revealed that 85.7% of alternative translation events generated biological diversity, attributed to different subcellular localizations and distinct domain contents in alternative isoforms. Analysis of isoelectric point values revealed that most N-terminal truncated isoforms significantly lowered their isoelectric point values targeted at different subcellular localizations, whereas they had conserved domain contents the same as the full-length isoforms. Furthermore, Fisher's exact test indicated that the two ways-targeting at different cellular compartments and changing domain contents-were negatively associated. The N-term truncated isoforms should have only one way to diversify their functions distinct from the full-length ones. The peculiar consequence of subcellular relocation as well as change of domain contents reflected the very high level of biological complexity as alternative usage of initiation codons.  相似文献   

4.

Background  

The nucleotide sequence flanking the translation initiation codon (start codon context) affects the translational efficiency of eukaryotic mRNAs, and may indicate the presence of an alternative translation initiation site (TIS) to produce proteins with different properties. Multi-targeting may reflect the translational variability of these other protein forms. In this paper we present a web server that performs computations to investigate the usage of alternative translation initiation sites for the synthesis of new protein variants that might have different functions.  相似文献   

5.
MicroReview Control of translation initiation in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The first observations regarding the control of translation initiation in the yeast Saccharomyces cerevisiae were made by Fred Sherman and his colleagues in 1971. Elegant genetic studies of the CYC1 gene resulted in the formulation of 'Sherman's Rules' for translation initiation as follows: (i) AUG is the only initiator codon. (ii) the most proximal AUG from the 5' end of a message will serve as the start site of translation; and (iii) if the upstream AUG codon is mutated then initiation begins at the next available AUG in the message. Hidden within these rules is the mechanism of eukaryotic translation initiation, as these very same rules were later shown to apply to higher eukaryotic organisms and were formulated into the scanning model. However, only in the past five years has yeast been taken seriously as an organism for studying the mechanism of eukaryotic translation initiation. The basis for this is that the yeast genes for at least four mammalian translation initiation factor homologues have been identified and the number is growing. Similar factors suggest similar mechanisms for translation initiation between yeast and mammals. For some translation initiation factors, the genetics of yeast has provided new insights into their function. A mechanism for regulating translation initiation in mammalian cells is now evident in yeast. It seems clear that the molecular genetics of yeast coupled with the available in vitro translation system will provide a wealth of information in the future regarding translational control and regulatory mechanisms. The purpose of this review is to summarize what is known about translational control in S. cerevisiae.  相似文献   

6.
7.
A dual coding event, which is the translation of different isoforms from a single gene, is one of the special patterns among the alternative splicing events. This is an important mechanism for the regulation of protein diversity in human and mouse genomes. Although the regulation for dual coding events has been characterized in a few genes, the individual mechanism remains unclear. Numerous studies have described the exonization of transposable elements, which is the splicing mediated insertion of transposable element sequence fragments into mature mRNAs. Therefore, in this study, we investigated the number of transposable element (TE)-derived dual coding genes in human, chimpanzee and mouse genomes. TE fusion exons appeared in the dual coding regions of 309 human genes. Functional protein domain alterations by TE-derived dual coding events were observed in 129 human genes. Comparative TE-derived dual coding events were also analyzed in chimpanzee and mouse orthologs. Seventy chimpanzee orthologs had TE-derived dual coding events, but mouse orthologs did not have any TE-derived dual coding events. Taken together, our analyses listed the number of TE-derived dual coding genes which could be investigated by experimental analysis and suggested that TE-derived dual coding events were major sources for the functional diversity of human genes, but not mouse genes.  相似文献   

8.
Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nucleotide elements permitting selective AIMV CP expression, we tested capped mRNAs containing structured or unstructured 5' leader sequences in addition to an mRNA containing the poliovirus internal ribosome entry site (IRES). Translations were performed with PI-extracts and extracts prepared from mock-infected HeLa cells (MI-extracts). A number of control criteria demonstrated that the HeLa cells were infected by poliovirus and that the extracts were translationally active. The data strongly indicate that translation of RNAs lacking an internal ribosome entry site, including AIMV CP RNA, was severely compromised in PI-extracts, and we find no evidence that the unstructured AIMV CP RNA 5' leader sequence acts in cis to bypass the poliovirus translational control. Nevertheless, cotranslation assays in the MI-extracts demonstrate that mRNAs containing the unstructured AIMV CP RNA 5' untranslated region have a competitive advantage over those containing the rabbit alpha-globin 5' leader. Previous reports of AIMV CP RNA translation in PI-extracts likely describe inefficient expression that can be explained by residual cap-dependent initiation events, where AIMV CP RNA translation is competitive because of a diminished quantitative requirement for initiation factors.  相似文献   

9.
Regulator of G protein signaling 2 (RGS2) is upregulated by multiple forms of stress and can augment translational attenuation associated with the phosphorylation of the initiation factor eIF2, a hallmark of several stress-induced coping mechanisms. Under stress-induced translational inhibition, key factors, such as ATF4, are selectively expressed via alternative translation mechanisms. These factors are known to regulate molecular switches that control cell fate by regulating pro-survival and pro-apoptotic signals. The molecular mechanisms that balance these opposing responses to stresses are unclear. The present results suggest that RGS2 may be an important regulatory component in the cellular stress response through its translational control abilities. Previously, we have shown that RGS2 can interact with the translation initiation factor, eIF2B, and inhibit de novo protein synthesis. Here, we demonstrate that the expression of either full length RGS2 or its eIF2B-interacting domain (RGS2eb) significantly increases levels of ATF4 and CHOP, both of which are linked to stress-induced apoptosis. Furthermore, we show that these effects are translationally regulated and independent of eIF2 phosphorylation. The present results thus point to a novel function of RGS2 in the stress response directly related to its ability to reduce global protein synthesis.  相似文献   

10.
DAZ-associated protein 1 (DAZAP1) is an RNA-binding protein required for normal growth, development, and fertility in mice. However, its molecular functions have not been elucidated. Here we find that Xenopus laevis and human DAZAP1, which are each expressed as short and long forms, act as mRNA-specific activators of translation in a manner that is sensitive to the number of binding sites present within the 3' UTR. Domain mapping suggests that this conserved function is mainly associated with C-terminal regions of DAZAP1. Interestingly, we find that the expression of xDAZAP1 and its polysome association are developmentally controlled, the latter suggesting that the translational activator function of DAZAP1 is regulated. However, ERK phosphorylation of DAZAP1, which can alter protein interactions with its C terminus, does not play a role in regulating its ability to participate in translational complexes. Since relatively few mRNA-specific activators have been identified, we explored the mechanism by which DAZAP1 activates translation. By utilizing reporter mRNAs with internal ribosome entry sites, we establish that DAZAP1 stimulates translation initiation. Importantly, this activity is not dependent on the recognition of the 5' cap by initiation factors, showing that it functions downstream from this frequently regulated event, but is modulated by changes in the adenylation status of mRNAs. This suggests a function in the formation of "end-to-end" complexes, which are important for efficient initiation, which we show to be independent of a direct interaction with the bridging protein eIF4G.  相似文献   

11.
12.
Most of our understanding of ribosome function is based on experiments utilizing translational components from Escherichia coli. It is not clear to which extent the details of translation mechanisms derived from this single organism are true for all bacteria. Here we investigate translation factor-dependent reactions of initiation and elongation in a reconstituted translation system from a Gram-positive bacterium Mycobacterium smegmatis. This organism was chosen because mutations in rRNA have very different phenotypes in E. coli and M. smegmatis, and the docking site for translational GTPases, the L12 stalk, is extended in the ribosomes from M. smegmatis compared to E. coli. M. smegmatis genes coding for IF1, IF2, IF3, EF-G, and EF-Tu were identified by sequence alignments; the respective recombinant proteins were prepared and studied in a variety of biochemical and biophysical assays with M. smegmatis ribosomes. We found that the activities of initiation and elongation factors and the rates of elemental reactions of initiation and elongation of protein synthesis are remarkably similar with M. smegmatis and E. coli components. The data suggest a very high degree of conservation of basic translation mechanisms, probably due to coevolution of the ribosome components and translation factors. This work establishes the reconstituted translation system from individual purified M. smegmatis components as an alternative to that from E. coli to study the mechanisms of translation and to test the action of antibiotics against Gram-positive bacteria.  相似文献   

13.
The ability to map the position of ribosomes and their associated factors on mRNAs is critical for an understanding of translation mechanisms. Earlier approaches to monitoring these important cellular events characterized nucleotide sequences rendered nuclease-resistant by ribosome binding. While these approaches furthered our understanding of translation initiation and ribosome pausing, the pertinent techniques were technically challenging and not widely applied. Here we describe an alternative assay for determining the mRNA sites at which ribosomes or other factors are bound. This approach uses primer extension inhibition, or "toeprinting," to map the 3' boundaries of mRNA-associated complexes. This methodology, previously used to characterize initiation mechanisms in prokaryotic and eukaryotic systems, is used here to gain an understanding of two interesting translational regulatory phenomena in the fungi Neurospora crassa and Saccharomyces cerevisiae: (a) regulation of translation in response to arginine concentration by an evolutionarily conserved upstream open reading frame, and (b) atypical termination events that occur as a consequence of the presence of premature stop codons.  相似文献   

14.
15.
Metazoan replication-dependent histone mRNAs do not have a poly(A) tail but end instead in a conserved stem-loop structure. Efficient translation of these mRNAs is dependent on the stem-loop binding protein (SLBP). Here we explore the mechanism by which SLBP stimulates translation in vertebrate cells, using the tethered function assay and analyzing protein-protein interactions. We show for the first time that translational stimulation by SLBP increases during oocyte maturation and that SLBP stimulates translation at the level of initiation. We demonstrate that SLBP can interact directly with subunit h of eIF3 and with Paip1; however, neither of these interactions is sufficient to mediate its effects on translation. We find that Xenopus SLBP1 functions primarily at an early stage in the cap-dependent initiation pathway, targeting small ribosomal subunit recruitment. Analysis of IRES-driven translation in Xenopus oocytes suggests that SLBP activity requires eIF4E. We propose a model in which a novel factor contacts eIF4E bound to the 5' cap and SLBP bound to the 3' end simultaneously, mediating formation of an alternative end-to-end complex.  相似文献   

16.
Translational control by the 3′untranslated regions (3′UTRs) of mRNAs contributes to important events throughout the development of C. elegans. In oocytes and early embryos, maternal mRNAs are controlled by 3′UTR elements to restrict translation of their protein products to specific blastomeres. Localized translation is probably critical for specifying blastomere identity. In both germline and somatic cells, mRNAs from sex determining genes are translationally repressed by 3′UTR controls. These controls balance the activities that specify male and female cell fates. During larval development, the temporal sequence of cell lineages requires 3′UTR-mediated regulation of heterochronic genes by a small non-protein coding RNA. We review what is known about these translational control mechanisms in C. elegans. This overview illustrates that translational control by 3′UTR elements is a powerful mechanism for regulating the expression of multiple gene products in diverse cell types during development of a multi-cellular animal.  相似文献   

17.
During the last decade the concept of cellular IRES-elements has become predominant to explain the continued expression of specific proteins in eukaryotic cells under conditions when the cap-dependent translation initiation is inhibited. However, many cellular IRESs regarded as cornerstones of the concept, have been compromised by several recent works using a number of modern techniques. This review analyzes the sources of artifacts associated with identification of IRESs and describes a set of control experiments, which should be performed before concluding that a 5’ UTR of eukaryotic mRNA does contain an IRES. Hallmarks of true IRES-elements as exemplified by well-documented IRESs of viral origin are presented. Analysis of existing reports allows us to conclude that there is a constant confusion of the cap-independent with the IRES-directed translation initiation. In fact, these two modes of translation initiation are not synonymous. We discuss here not numerous reports pointing to the existence of a cap- and IRES-independent scanning mechanism of translation initiation based on utilization of special RNA structures called cap-independent translational enhancers (CITE). We describe this mechanism and suggest it as an alternative to the concept of cellular IRESs.  相似文献   

18.
In poliovirus-infected HeLa cells, poliovirus RNA is translated at times when cellular mRNA translation is strongly inhibited. It is thought that this translational control mechanism is mediated by inactivation of a cap-binding protein complex (comprising polypeptides of 24 [24-kilodalton cap-binding protein], 50, and approximately 220 kilodaltons). This complex can restore the translation of capped mRNAs in extracts from poliovirus-infected cells. We have previously shown that the virally induced defect prevents interaction between cap recognition factors and mRNA. Here, we show that the cap-binding protein complex (and not the 24-kilodalton cap-binding protein) has activity that restores the cap-specific mRNA-protein interaction when added to initiation factors from poliovirus-infected cells. Thus, the activity that restores the cap-specific mRNA-protein interaction and that which restores the translation of capped mRNAs in extracts from poliovirus-infected cells, copurify. The results also indicate, by an alternative assay, that the cap-binding protein complex is the only factor inactivated by poliovirus. We also purified cap-binding proteins from uninfected and poliovirus-infected HeLa cells. By various criteria, the 24-kilodalton cap-binding protein is not structurally modified as a result of infection. However, the 220-kilodalton polypeptide of the cap-binding protein complex is apparently cleaved by a putative viral (or induced) protease. By in vivo labeling and m7GDP affinity chromatography, we isolated a modified cap-binding protein complex from poliovirus-infected cells, containing proteolytic cleavage fragments of the 220-kilodalton polypeptide.  相似文献   

19.
20.
To understand the impact of alternative translation initiation on a proteome, we performed a proteome‐wide study on protein turnover using positional proteomics and ribosome profiling to distinguish between N‐terminal proteoforms of individual genes. By combining pulsed SILAC with N‐terminal COFRADIC, we monitored the stability of 1,941 human N‐terminal proteoforms, including 147 N‐terminal proteoform pairs that originate from alternative translation initiation, alternative splicing or incomplete processing of the initiator methionine. N‐terminally truncated proteoforms were less abundant than canonical proteoforms and often displayed altered stabilities, likely attributed to individual protein characteristics, including intrinsic disorder, but independent of N‐terminal amino acid identity or truncation length. We discovered that the removal of initiator methionine by methionine aminopeptidases reduced the stability of processed proteoforms, while susceptibility for N‐terminal acetylation did not seem to influence protein turnover rates. Taken together, our findings reveal differences in protein stability between N‐terminal proteoforms and point to a role for alternative translation initiation and co‐translational initiator methionine removal, next to alternative splicing, in the overall regulation of proteome homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号