首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural studies have been carried out on the O-specific fraction from the lipopolysaccharide of Pseudomonas aeruginosa NCTC 8505, Habs serotype 03. The O-specific polysaccharide has a tetrasaccharide repeating-unit containing residues of L-rhamnose (Rha), 2-acetamido-2-deoxy-D-glucose (GlcNAc), 2-acetamido-2-deoxy-L-galacturonic acid (GalNAcA), and 2,4-diacetamido-2,4,6-trideoxy-D-glucose (BacNAc2). The following structure has been assigned to the repeating-unit: leads to 3)Rhap(beta 1 leads to 6)GlcpNAc(alpha 1 leads to 4)GalpNAcA(alpha 1 leads to 3)BacpNAc2(alpha 1 leads to. The parent lipopolysaccharide is a mixture of S, R, and SR species, and its high phosphorus content is partly due to the presence of triphosphate residues, as found for other lipopolysaccharides from P. aeruginosa. In addition to phosphorus, heptose, a 3-deoxyoctulosonic acid, and amide-bound alanine, the core oligosaccharide contains glucose, rhamnose, and galactosamine (molar proportions 3:1:1). The rhamnose and part of the glucose are present as unsubstituted pyranoside residues: other glucose residues are 6-substituted.  相似文献   

2.
The exopolysaccharide of Bacillus licheniformis ATCC 9945 (formerly B. subtilis ATCC 9945) contains among other glycoses 4-acetamido-2-amino-2,4,6-trideoxy-D-glucose, termed N-acetylbacillosamine (Bac2N4NAc). A similar diamino glycose, 2-acetamido-4-amino-2,4,6-trideoxy-D-glucose, was found in a surface layer (S-layer) glycoprotein preparation of Clostridium symbiosum HB25. Electron microscopic studies, however, showed that B. licheniformis ATCC 9945 is not covered with an S-layer lattice, indicating that the N-acetylbacillosamine present in that organism might be a constituent of a cell wall-associated polymer. For elucidation of the structure of the N-acetylbacillosamine-containing polysaccharide, it was purified from a trichloroacetic acid extract of B. licheniformis ATCC 9945 cells. Using different hydrolysis protocols and a hydrolysate of the S-layer glycoprotein preparation from C. symbiosum HB25 as reference, the purified polysaccharide was found to contain 2,4-diamino-2,4,6-trideoxy-glucose, 2-acetamido-2-deoxy-glucose, 2-acetamido-2-deoxy-galactose and galactose in a molar ratio of 1 : 1 : 1 : 2. One- and two-dimensional NMR spectroscopy, including 800 MHz proton magnetic resonance measurements, in combination with chemical modification and degradation experiments, revealed that the polysaccharide consists of identical pyruvylated pentasaccharide repeating units with the structure: [-->3)-[(S)Py-(3,4)-beta-D-Galp-(1-->6)]-alpha-D-GlcpNAc-(1-->3)-beta-D-Bacp2N4NAc-(1-->3)-[(S)Py-(3,4)-beta-D-Galp-(1-->6)]-beta-D-GalpNAc-(1-->](n)  相似文献   

3.
Francisella novicida (U112), a close relative of the highly virulent bacterium F. tularensis, was shown to produce a lipopolysaccharide in which the antigenic O-polysaccharide component was found by chemical, 1H and 13C NMR and MS analyses to be an unbranched neutral linear polymer of a repeating tetrasaccharide unit composed of 2-acetamido-2-deoxy-D-galacturonamide (D-GalNAcAN) and 2,4-diacetamido-2,4,6-trideoxy-D-glucose (D-Qui2NAc4NAc, di-N-acetylbacillosamine) residues (3:1) and had the structure: -->4)-alpha-D-GalNAcAN-(1-->4)-alpha-D-GalNAcAN-(1-->4)-alpha-D-GalNAcAN-(1-->3)-alpha-D-QuiNAc4NAc-(1-->. With polyclonal murine antibody, the F. novicida O-antigen did not show serological cross-reactivity with the O-antigen of F. tularensis despite the occurrence of a common -->4)-D-GalpNAcAN-(1-->4)-alpha-D-GalpNAcAN-(1--> disaccharide unit in their respective O-antigens. Thus, O-PS serology offers a practical way to distinguish between the two Francisella species.  相似文献   

4.
Configurations were determined for previously identified amino components of the lipopolysaccharide from Pseudomonas aeruginosa N.C.T.C. 8505. Glucosamine and galactosamine belong to the D-series, and alanine and aminogalacturonic acid to the L-series. An additional amino component was identified as 2,4-diamino-2,4,6-trideoxy-D-glucose. This compound may be a characteristic component of the O-specific chain in lipopolysaccharides of strains of Pseudomonas aeruginosa belonging to Habs sero-group 3.  相似文献   

5.
The structure of the O-antigen of the lipopolysaccharide from an avirulent strain (M4S) of Pseudomonas solanacearum has been investigated by methylation analysis, n.m.r. spectroscopy, and N-deacetylation-deamination, followed by analysis and controlled Smith-degradation of the product. These studies demonstrate that the O-antigen is composed of a tetrasaccharide repeating-unit having the following structure: ----3)-alpha-D-GlcpNAc-(1----2)-alpha-L-Rhap-(1----2)-alpha- L-Rhap-(1----3)- alpha-L-Rhap-(1----.  相似文献   

6.
The structure of the O-antigen from Vibrio cholerae O:2 has been investigated, mainly by methylation analysis, specific degradations, and n.m.r. spectroscopy, and concluded to involve the trisaccharide repeating-unit in which QuiNAc is 2-acetamido-2,6-dideoxyglucose and Sug is tentatively assigned as 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy- -glycero-β- -manno-nonulosonic acid. The acetamidino group is basic and, consequently, the polysaccharide is neutral. When this group is transformed into an N-acetyl group, by treatment with aqueous triethylamine, the polysaccharide becomes acidic.  相似文献   

7.
The structures of the O-specific side-chains in the lipopolysaccharides of Salmonella greenside, group Z, and Salmonella adelaide, group O, have been investigated. The former proved to be identical with that of Escherichia coli O 55. The latter, which was more extensively studied, was composed of repeating units having the structure
in which Col is colitose (3,6-dideoxy-l-xylo-hexose). This was also shown to be the biological repeating-unit. The same structure has been proposed for the O-antigen of E. coli O 111. The biological repeating-unit for the S. greenside O-antigen was also defined. The structural studies also confirmed that both lipopolysaccharides contain the hexose region typical for the Salmonella core.  相似文献   

8.
The red marine alga Polysiphonia sphaerocarpa was extracted by a simultaneous steam distillation-solvent extraction technique and several brominated compounds were identified by gas chromatography-mass spectrometry. The compounds detected were 2,4-dibromoanisole, 2,4,6-tribromoanisole, 3-bromocresol, 3,5-dibromocresol, 3-bromo-4-hydroxybenzaldehyde, 3,5-dibromo-4-hydroxybenzaldehyde, 2-bromophenol, 4-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol and 2,4,6-tribromophenol. This is the first time brominated anisoles and cresols have been detected in marine algae.  相似文献   

9.
This work presents laccase-mediated model reactions for coupling of reduced 2,4,6-trinitrotoluene (TNT) metabolites to an organic soil matrix. The structure of an isolated coupling product of 2,4-diamino-6-nitrotoluene (2,4-DANT) to guaiacol as humic constituent was determined. Among several structures, the compound was identified conclusively to be the trinuclear coupling product 5-(2-amino-3-methyl-4-nitroanilino)-3,3(prm1)-dimethoxy-4,4(prm1)-diphenoqu inone. The compound has a weight of 409 g mol(sup-1) and may serve as a model reaction for the biogenic formation of bound residues in soil from TNT by coupling aminotoluenes (reduced TNT metabolites) to humic constituents. A linear correlation of the substrate consumption to the enzyme activity was detected. Based on this observation, the described reaction of 2,4-DANT coupling to guaiacol may be used for determination of laccase activity since the reaction was not inhibited by other compounds of culture supernatants. We propose a two-step mechanism for the coupling reaction because 2,4-DANT was not transformed by laccases in the absence of guaiacol and guaiacol oxidation was independent of the presence of 2,4-DANT. The first reaction step is a laccase-mediated dimerization of two guaiacol monomers with subsequent oxidation to a diphenoquinone. The second step is the nucleophilic addition of 2,4-DANT to the ortho position of the carbonyl group of the diphenoquinone structure.  相似文献   

10.
The work was aimed at studying the transformation of 2,4-diamino-6-nitrotoluene (2,4-DA), an intermediate product in 2,4,6-trinitrotoluene catabolism by microorganisms. The results allow one to propose the following scheme for the terminal steps of TNT preparatory metabolism: 2,4-DA----[phloroglucinol carboxylic acid]----phloroglucinol----pyrogallol----ring cleavage.  相似文献   

11.
Extraction of dry bacteria of Acinetobacter baumannii strain 24 by phenol-water yielded a lipopolysaccharide (LPS) that was studied by serological methods and fatty acid analysis. After immunisation of BALB/c mice with this strain, monoclonal antibody S48-3-13 (IgG(3) isotype) was obtained, which reacted with the LPS in western blot and characterized it as S-form LPS. Degradation of the LPS in aqueous 1% acetic acid followed by GPC gave the O-antigenic polysaccharide, whose structure was determined by compositional analyses and NMR spectroscopy of the polysaccharide and O-deacylated polysaccharide as [carbohydrate structure: see text] where QuiN4N is 2,4-diamino-2,4,6-trideoxyglucose and GalNAcA 2-acetamido-2-deoxygalacturonic acid. The amino group at C-4 of the QuipN4N residues is acetylated in about 2/3 of LPS molecules and (S)-3-hydroxybutyrylated in the rest.  相似文献   

12.
The interaction of dihydrofolate reductase (EC 1.5.1.3) from Escherichia coli with dihydrofolate and folate analogues has been studied by means of binding and spectroscopic experiments. The aim of the investigation was to determine the number and identity of the binary complexes that can form, as well as pKa values for groups on the ligand and enzyme that are involved with complex formation. The results obtained by ultraviolet difference spectroscopy indicate that, when bound to the enzyme, methotrexate and 2,4-diamino-6,7-dimethylpteridine exist in their protonated forms and exhibit pKa values for their N-1 nitrogens of above 10.0. These values are about five pH units higher than those for the compounds in free solution. The binding data suggest that both folate analogues interact with the enzyme to yield a protonated complex which may be formed by reaction of ionized enzyme with protonated ligand and/or protonated enzyme with unprotonated ligand. The protonated complex formed with 2,4-diamino-6,7-dimethylpteridine can undergo further protonation to form a protonated enzyme-protonated ligand complex, while that formed with methotrexate can ionize to give an unprotonated complex. A group on the enzyme with a pKa value of about 6.3 is involved with the interactions. However, the ionization state of this group has little effect on the binding of dihydrofolate to the enzyme. For the formation of an enzyme-dihydrofolate complex it is essential that the N-3/C-4 amide of the pteridine ring of the substrate be in its neutral form. It appears that dihydrofolate is not protonated in the binary complex.  相似文献   

13.
Iodinated X-ray contrast agents are considered to be nondegradable by microorganisms. The decomposition of the ionic X-ray contrast agents Diatrizoate (3,5-di(acetamido)-2,4,6-triiodobenzoic acid) and Iodipamide (3,3′-adipoyl-diimino-di(2,4,6-triiodobenzoic acid) and related triiodinated benzoates (Acetrizoate [3-acetylamino-2,4,6-triiodobenzoic acid] and Aminotrizoate [3-amino-2,4,6-triiodobenzoic acid]) by Trametes versicolor has been investigated. The fungus was able to transform all tested triiodinated benzoates cometabolically. During transformation of these compounds, iodide was released, but deiodination was not complete. T. versicolor liberated traces of 14CO2 from uniformly ring-14C-labeled Diatrizoate (3,5-di(acetamido)-2,4,6-triiodobenzoate). Various extracellular metabolites were detected during transformation of the different substances. In the transformation of Diatrizoate, the three main metabolites were identified as 3,5-di(acetamido)-2,6-diiodobenzoic acid, 3,5-di(acetamido)-2,4-diiodobenzoic acid, and 3,5-di(acetamido)-2-iodobenzoic acid, suggesting reductive deiodinations in steps as initial transformation steps.  相似文献   

14.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

15.
With density function theory BLYP/DNP method, together with homodesmotic reactions and isodesmic reactions, we calculated the resonance energies of some explosives, including eight nitro compounds which contains benzene rings, three nitro compounds which contains azaheterocycles (2,4-dinitroimidazole (2,4-DNI), 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) and 2,4,6-trinitro-1,3,5-triazine) and one nitrogen-rich energetic compound of 3,3’-azobis(6-amino-s-tetrazine) (DAAT). The results indicate that their resonance energies are in relation to their shock sensitivity which measuring their threshold pressures of initiation, that is, the lower the resonance energy is, the higher the shock sensitivity of the explosive behaves. And this measuring method according to resonance energy is based on the global property of the molecule instead of the local one, such as one nitro group in the molecule. It is meaningful to calculate resonance energies of these kind of compounds quickly and accurately because resonance structures exist widely in these organic compounds and resonance energies may play a significant role in determining their shock sensitivity, and it is helpful in the rational design or synthesis of high energy and insensitive materials.  相似文献   

16.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the Shewanella algae strain BrY lipopolysaccharide and was found to contain L-rhamnose, 2-acetamido-4-[D-3-hydroxybutyramido)]-2,4,6-trideoxy-D-glucose (D-BacNAc4NHbu), and 2-amino-2,6-dideoxy-L-galactose, N-acylated by the 4-carboxyl group of L-malic acid (L-malyl-(4-->2)-alpha-L-FucN) in the ratio 2:1:1. 1H and 13C NMR spectroscopy was applied to the intact polysaccharide, and the following structure of the repeating unit was established:-3)-alpha-D-BacNAc4NHbu-(1-->3)-alpha-L-Rha-(1-->2)-alpha-L-Rha-(1-->2)-L-malyl-(4-->2)-alpha-L-FucN-(1-. The repeating unit includes linkage via the residue of malic acid, reported here for the first time as a component of bacterial polysaccharides.  相似文献   

17.
The comparative patterns of entry into segments with sealedand open ends, excised from etiolated internodes of Pisum sativum,have been examined for phenoxyacetic acid (POA) and its 2-,4-, 2,4-, 2,6-, 3,5-, 2,4,5- and 2,4, 6-chloro derivatives,each containing 14C in the carboxyl group. Sealing the ends greatly depresses the level of entry, on averagean eight-fold reduction at 9 h. Likewise, the interrelationsbetween the degree of chlorination and uptake potential aredisparate. For segments with exposed cut surfaces the finalcontent is maximal for POA and the 2-chloro compound and minimalfor the 3,5-dichloro derivative (3,5-D) with an eight-fold difference.With sealed ends this difference is reduced to two-fold butwhile 3,5-D accumulates least uptake is now highest for POAand 2,4-D. There are also changes in the order with time. Initially,2,4,5-T penetrates fastest into sealed segments but for segmentswith open ends entry is most rapid for the 4- and 2,4,6-chloroderivatives. Additions of streptomycin and cetyltrimethylammoniumbromide(CTAB) induce differential changes in the patterns of uptake.Where uptake is promoted the enhancement is not restricted toactive auxins. Sealing the ends may alter the nature of theresponse. The likely physico-chemical and metabolic processes concernedin the two routes of entry are discussed and the results comparedwith previous divergent findings on the relationship betweenchemical structure and uptake by Lemna minor and penetrationinto leaves of Phaseolus vulgaris.  相似文献   

18.
The acute nephrotoxicity caused by N-(3,5-dichlorophenyl) succinimide (NDPS) has been shown to be due to a metabolite(s) of the parent compound. This study examined the toxicity of NDPS, its known metabolites N-(3,5-dichlorophenyl)-2-hydroxysuccinimide (NDHS), N-(3,5-dichlorophenyl)-2-hydroxysuccinamic acid (NDHSA), N-(3,5-dichlorophenyl)malonamic acid (DMA), N-(3,5-dichlorophenyl)succinamic acid (NDPSA), and two postulated metabolites N-(3,5-dichlorophenyl)maleamic acid (NDPMA) and N-(3,5-dichlorophenyl)maleimide (NDPM) to suspensions of renal proximal tubules (RPT) prepared from male Fischer 344 rats. Tubule viability and mitochondrial function were not adversely affected by exposure of RPT to either 1 mM NDPS, NDHS, NDHSA, DMA, NDPSA, or NDPMA for 4 h. However, NDPM caused a concentration-(25-100 microM) and time-dependent (0.25-4 h) loss in basal and nystatin stimulated oxygen consumption and tubule viability. Investigations using isolated renal cortical mitochondria (RCM) showed that NDPM was a potent inhibitor of mitochondrial function. Isolated RCM respiring on pyruvate/malate and exposed to NDPM exhibited a concentration (25-100 microM) dependent decrease in state 3 and state 4 respiration. Inhibition of mitochondrial state 3 respiration by NDPM was mediated through site 1 of the respiratory chain. NDPM did not inhibit cytochrome c-cytochrome oxidase or the electron transport chain. These results indicated that NDPS, its known metabolites, and NDPMA were not directly toxic to rat RPT. However, the postulated metabolite NDPM, was a potent tubule cytotoxicant that inhibited mitochondrial function in isolated RCM and RPT and may produce cell death through this mechanism.  相似文献   

19.
Graded hydrolysis of purified mahua polysaccharide, PS-AI, afforded four neutral and three acidic oligosaccharides, together with monosaccharides. These oligosaccharides were characterized through hydrolysis, methylation, and reduction with lithium aluminum hydride. On methylation, Smith-degraded PS-AI gave 2,3,4,6-tetra-O-methyl-d-galactose (5.5 mol), 2,3,4-tri-O-methyl-d-galactose (1 mol), 2,4,6-tri-O-methyl-d-galactose (2.2 mol), and 2,3,4-tri-O-methyl-l-arabinose (0.9 mol). Based on these results, and those obtained from methylation, periodate oxidation, and chromium trioxide oxidation studies on the polysaccharide PS-AI, a tentative structure has been assigned to the average repeating-unit in the polysaccharide.  相似文献   

20.
Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号