首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth and ovarian function of crossbred beef heifers grazing low and high endophyte-infected tall fescue pastures were studied for 2 successive years. In April of each year, 20 weanling and 20 yearling heifers were included in the study. All heifers were weighed at 28-d intervals for 112 d. Blood samples were collected from each heifer on Day 0 and +7 of each of five 28-d periods and analyzed for progesterone concentration. Heifers with progesterone concentrations >/= 1.5 ng/ml on either or both Day 0 and +7 were classified as having normal cyclic ovaries. High endophyte-infected fescue pastures adversely altered the ovarian activity (P < 0.05) of weanling heifers in both years. In each trial, average weight gains were lower (P < 0.05) in yearling and weanling heifers grazing the high endophyte-infected pastures than in heifers grazing low endophyte-infected pastures. In 1992, heifers were synchronized with PGF(2alpha) administered on Days 101 and 112. Blood samples were collected on 0, 4, 8 and 12 d after the second PGF(2alpha) injection for progesterone analysis. Heifers grazing high and low endophyte-infected pastures were pastured separately with 4 bulls each and were given heatmount detectors. At 96 h, less estrus activity was observed (P < 0.10; power=0.63) in weanling heifers grazing the high vs. low endophyte pastures although pregnancy rates were similar for all groups. Progesterone concentrations suggested that weanling heifers on the high endophyte pastures had a higher incidence of luteal dysfunction after PGF(2alpha) synchronization. In summary, high endophyte-infected pastures decreased growth in both weanling and yearling heifers, ovarian activity and luteal function were adversely altered in weanling heifers with subsequent decreased estrus response to estrus synchronization.  相似文献   

2.
The objective of this study was to evaluate ovarian function after inducing ovulation with a deslorelin implant in nonlactating dairy cows and heifers. Cattle received GnRH on Day -9, and PGF2alpha on Day -2. On Day 0, in Experiment 1, cows received either 100 microg GnRH (Control), a 750 microg (DESLORELIN 750) or 1000 microg (DESLORELIN 1000) deslorelin implant. On Day 0, in Experiment 2, cows received 100 microg of GnRH or a 450 microg (DESLORELIN 450) deslorelin implant. In Experiments 1 and 2, cows received PGF2alpha on Day 16. Ultrasonography and blood sampling for plasma progesterone (P4) were used to monitor ovarian activity. On Day 0, in Experiment 3, heifers received either 100 microg of GnRH or 750 microg (DESLORELIN 750) deslorelin implant. On Day 16, all heifers received PGF2alpha. Blood samples were collected on Days 7, 13 and 16. In Experiments 1-3, deslorelin implants did not elevate plasma concentrations of P4 in a systematic manner during the late luteal phase. In Experiments 1 and 2, deslorelin implants decreased the size of the largest follicle and the number of Class II and III follicles. In Experiments 1 and 2, deslorelin-treated cows failed to ovulate by Day 28. In conclusion, deslorelin implants induced ovulation, stimulated development of a normal CL, and delayed follicular growth during the subsequent diestrus period. For future applications, the dose of the deslorelin implant will have to be adjusted, and if used for timed-inseminations, nonpregnant cows will have to be resynchronized to minimize delayed returns to estrus and ovulation.  相似文献   

3.
A 2 x 3 factorial experiment was conducted to determine the effects of an implant (trenbolene acetate/estradiol or no implant) and method of estrus suppression (immunization against GnRH, melengestrol acetate, or no suppression) on growth performance and carcass characteristics of heifers fed for slaughter. At the start of a 21-d feed adaption phase, crossbred beef heifers (n = 144, 390+/-2.8 kg) were given their first dose of an anti-GnRH vaccine or started on melengestrol acetate (MGA). Thereafter, heifers were fed a high-concentrate diet (78% barley grain) for 84 d (Days 0 to 83), received implants on Day 0, a second vaccination on Day 21, and were slaughtered on Days 84 or 85. Implanting increased average daily gain (1.72 vs 1.50 kg/d, P < 0.01), feed efficiency (6.02 vs 6.75 kg dry matter intake/kg gain, P < 0.01), preslaughter weight (532 vs 513 kg, P < 0.01), carcass weight (301 vs 289 kg, P < 0.01), and ribeye area (88.6 vs 85.9 cm2, P < 0.05), but had no affect (P > 0.05) on dry matter intake, grade fat thickness, marbling score, or lean yield. Compared to heifers fed MGA, those immunized against GnRH had a greater ribeye area (90.0 vs 84.6 cm2) and lean yield (63 vs 61%), and had thinner grade fat (7.5 vs 8.6 mm; P < 0.05 for each). Furthermore, immunized heifers had lower (P < 0.001) plasma progesterone concentrations than control heifers on Days 42, 63 and 83. Heifers fed MGA had less estrus mounting activity (P < 0.05) and lower plasma progesterone concentrations (P < 0.001) than the remaining heifers. Method of estrus suppression did not affect (P > 0.05) preslaughter weight, average daily gain, dry matter intake, feed efficiency, carcass weight, or marbling score. In conclusion, implanting significantly increased growth performance and preslaughter and carcass weights. Compared to heifers fed MGA, immunization against GnRH significantly increased ribeye area and lean yield, and reduced grade fat thickness  相似文献   

4.
The first postpartum ovulation after early weaning of calves (30 35 days of age) from cows is normally followed by a short luteal phase (6 10 days) unless the animals are pretreated with a progestogen (e.g. norgestomet). Reduced luteal lifespan in cattle is reportedly due to the premature release of a luteolysin (presumably prostaglandin F2 alpha [PGF2 alpha]). Therefore, the objective was to determine if oxytocin-induced release of PGF2 alpha (measured by the stable PGF2 alpha metabolite, 15-keto-13,14-dihydro PGF2 alpha [PGFM]) was greater for cows having a short compared to a normal luteal phase on Day 5 following the first postpartum estrus (Day 0). Thirty postpartum beef cows were randomly assigned into three groups (n = 10 per group) expected to have short (Short d 5) or normal (Norgestomet d 5 and Norgestomet d 16) luteal phases. Cows in Norgestomet d 5 and d 16 groups received Norgestomet (progestogen) implants for 9 days beginning 21 23 days postpartum. On Day 5 (Short d 5 and Norgestomet d 5) or Day 16 (Norgestomet d 16) following first postpartum estrus, each animal was injected (i.v.) with 100 IU oxytocin. In addition, cows in the Short d 5 group were subdivided into two groups following second estrus (normal luteal phase, n = 5 per group) to receive 100 IU oxytocin on Day 5 (Normal d 5) or 16 (Normal d 16), respectively. Estrous cycle length (means +/- SE) for cows in the Short d 5 group (8.7 +/- 0.4 days) was shorter (p less than 0.01) than for cows in all other groups (21.1 +/- 0.3 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Forty-five nonpregnant, nonlactating, Angus and Brangus cows were utilized to determine how long a Norgestomet ear implant would inhibit estrus when administered at various stages of an estrous cycle. All cows completed a nontreated estrous cycle to ensure normal cyclicity. At the second observed estrus (estrus = Day 1), cows were randomly allotted to be treated at metestrus (Day 3 or Day 4, n = 15); at diestrus (Day 9 or Day 10, n = 14); or at proestrus (Day 15 or Day 16, n = 16). All cows received a 2-ml intramuscular injection of 3 mg of Norgestomet accompanied by a 6-mg Norgestomet ear implant, which remained in situ for 21 days, or until individual cows were observed in estrus. Estrus was inhibited for a mean (+/- SEM) of 18.7 +/- 0.7, 19.9 +/- 0.8, and 17.0 +/- 0.8 days, respectively, when cows were treated at metestrus, diestrus, and proestrus (metestrus and diestrus vs proestrus; P < 0.05). Estrus was inhibited for an entire 21-day implantation period in 27, 50, and 38% of cows treated at metestrus, diestrus, and proestrus, respectively (P > 0.10). Norgestomet inhibited estrus in all cows for 11, 17, and 11 days after implantation when treatment was initiated at metestrus, diestrus, and proestrus, respectively (P > 0.10). These data indicate that a 6-mg Norgestomet ear implant effectively inhibits estrus in all cows for a maximum of 11 days, with some cows exhibiting estrus by Day 12 with the Norgestomet implant in situ.  相似文献   

6.
The synchrony of ovulation was examined in superstimulated heifers that had a downregulated pituitary gland and which were induced to ovulate by injection of exogenous LH. The pituitary was downregulated and desensitized to GnRH by treatment with the GnRH agonist deslorelin. Nulliparous heifers (3.5 yr old) at random stages of the estrous cycle were assigned to 1 of 3 groups, and on Day -7 received the following treatments: Group 1 (control, n = 8), 1 norgestomet ear implant; Group 2 (GnRH agonist, n = 8); Group 3 (GnRH agonist-LH protocol, n = 8), 2 deslorelin ear implants. Ovarian follicle growth in all heifers was superstimulated with twice-daily intramuscular injections of FSH (Folltropin-V): Day O, 40 mg (80 mg total dose); Day 1, 30 mg; Day 2; 20 mg; Day 3, 10 mg. On Day 2, all heifers were given a luteolytic dose of PGF (7 A.M.), Norgestomet implants were removed from heifers in Group 1 (6 P.M.). Heifers in Group 3 were given an injection of 25 mg, i.m. porcine LH (Lutropin) on Day 4 (4 P.M.). Ovarian follicle status was monitored at 8-h intervals from Day 3 (8 A.M.) to Day 6 (4 P.M.) using an Aloka Echo Camera and 7.5 MHz transducer. Heifers in Groups 2 and 3 exhibited estrus earlier (P < 0.05) than heifers in Group 1. Heifers in Group 2 did not have a preovulatory LH surge and they did not ovulate. Individual control heifers in Group 1 ovulated between 12 A.M. on Day 5 and 8 A.M. on Day 6. Heifers with deslorelin implants and injected with LH in Group 3 ovulated between 4 P.M. on Day 5 and 8 A.M. on Day 6. It was confirmed that superstimulated heifers with GnRH agonist implants can be induced to ovulate with LH. It was also demonstrated that ovulation is closely synchronized after injection of LH. Thus, a single, fixed-time insemination schedule could be used in a GnRH agonist-LH superovulation protocol, with significant practical and economic advantages for superovulation and embryo transfer programs.  相似文献   

7.
Three experiments were conducted to examine the progestogen plus PMSG treatment for its effectiveness in inducing synchronous puberty in prepuberal zebu heifers in three different seasons. In Experiment 1, ten Ongole heifers (age 21 months) were treated with Norgestomet implants for nine days and an intramuscular injection of 400 IU of PMSG two days before implant removal. Ten heifers (age 25 months) were kept as untreated controls. Animals were inseminated 12 h after detection of cyclic estrus (not bred at induced estrus) until all animals conceived. The proportion of treated animals showing estrous, ovulatory, and cyclic activity were 100%, 75% and 25% respectively, while the average age at first conception was significantly less (P < 0.05) than in the control group. In Experiment 2, 18 Ongole heifers (age 22 months) were divided into treatment and control groups. Fixed-time inseminations were done 48 and 72 h after implant removal and 12 h after being detected in heat at other times. Estrus was seen in all while 63% became pregnant (P < 0.05). At the end of the 100-day experiment, the percent pregnant were 33 and 63 in the control and treatment groups, respectively. In the third study, twenty-six Ongole heifers (age 22 months) were assigned to treatment and control groups. Eighty-eight percent of the animals exhibited estrus, 75% ovulated (P < 0.01) and 25% conceived to fixed-time insemination. The pregnancy rate at the end of the experiment was 10 and 56% (P < 0.01) respectively in control and treated groups. Estrous response and fertility were better in the cooler month (February) and the treatment imposed in the hotter month (May) resulted in a significantly higher (P < 0.05) age and body weight at conception.  相似文献   

8.
Exposure of the developing urogenital tract to steroids can affect structure and function of adult tissues and compromise reproductive performance. This study was conducted to determine 1) if exposure of neonatal heifer calves to progesterone (P) and estradiol benzoate (E), delivered from a commercial growth-promoting implant, would affect adult uterine morphology or uterine luminal protein content; and 2) whether such effects would be related to neonatal age at the first exposure. At birth (Day 0), 20 crossbred beef heifers were assigned to 1 of 4 treatment groups (n = 5 per group), defined by age at implant placement. Heifers either received an implant on Days 0, 21 or 45, or served as untreated controls. The heifers were maintained together and slaughtered at 15 mo of age, during the luteal phase of an induced estrous cycle, when reproductive tracts and blood samples were obtained. Peripheral plasma P concentrations were determined by RIA. Uterocervical wet weights were recorded, and uterine luminal flushings (ULF) were assayed for total protein. Cross-sections of uterine tissues were evaluated histomorphometrically to determine myometrial and endometrial areas and relative endometrial gland density. Treatment did not affect plasma P concentrations (3.2 +/- 0.5 ng/ml). Regardless of age at treatment, neonatal PE exposure reduced uterocervical wet weight by 35% (112.8 < 173.9 +/- 13.9 g; P < 0.01), myometrial area by 23% (125.3 < 162.8 +/- 8.5 mm2; P < 0.02), and endometrial area by 27% (33.3 < 45.4 +/- 2.7 mm2; P < 0.09) compared with the untreated controls. Endometrial gland density was reduced (P < 0.01) by 40% in treated heifers. This effect was related to age at implant placement. Uterine gland density was reduced (P < 0.01) by 65% in heifers treated at birth, while reductions of 22 and 33% were observed for heifers treated on neonatal Day 21 or 45, respectively. Consistently, ULF protein content was lower (P < 0.01) in the treated heifers (2.67 < 4.98 +/-. 72 mg/ULF). Thus, exposure of newborn calves to PE can have profound effects on adult uterine morphology and environment, the extent of which may depend upon the developmental period when exposure occurs. The potential of such alterations to affect reproductive performance in adult beef heifers remains to be investigated.  相似文献   

9.
The present study evaluated the effect of the type of norgestomet ear implant (new vs. used) on the ovarian follicular response (experiment 1) and pregnancy per artificial insemination (AI) (P/AI; experiment 2) of beef heifers subjected to an estradiol plus progestin timed artificial insemination (TAI) program. In experiment 1, 57 cyclic beef heifers were randomly assigned to one of two groups according to the type (new or previously used for 9 days) of norgestomet ear (NORG) implant. At the time of NORG implant insertion, the heifers were treated with 2 mg of intramuscular estradiol benzoate. Eight days later, the NORG implants were removed, and the heifers received an intramuscular administration of 150 μg of d-cloprostenol, 300 IU of equine chorionic gonadotropin, and 0.5 mg of estradiol cypionate. The heifers had their ovaries scanned every 12 hours from the time of NORG implant removal to 96 hours after verifying the occurrence and timing of ovulation. No difference (P = 0.89) was observed in the ovulation rates between the two treatments (new = 80.0%; 24/30 vs. used = 81.5%; 22/27). However, the heifers treated with a used NORG implant had (P = 0.04) higher proportion (36.4%; 8/22) of early ovulation (between 36 and 48 hours after NORG implant removal) compared with the heifers treated with a new NORG implant (8.3%; 2/24). In experiment 2, at the beginning of the synchronization protocol, 416 beef heifers were randomly assigned into two groups, as described in the experiment 1. Two days after the NORG implant removal, the heifers were reassigned to be inseminated at 48 or 54 hours after NORG implant removal. There was an interaction (P = 0.03) between the type of NORG implant and the timing of TAI on P/AI. The timing of insemination only had an effect (P = 0.02) on the P/AI when the heifers were treated with a used NORG implant [(TAI 54 hours = 41.9% (44/105) vs. TAI 48 hours = 58.6% (58/99)]. In conclusion, beef heifers synchronized with a used NORG implant plus estradiol exhibited a higher proportion of earlier ovulations, and TAI in these heifers should be performed 48 hours after removal of used NORG implants.  相似文献   

10.
Two experiments were conducted to determine the effects of norgestomet ear implants on progesterone response and estradiol secretion in prepubertal beef heifers. In the first experiment, 47 beef heifers were treated with norgestomet. The implants were implanted subcutaneously for 9 d. After implant removal, blood samples were taken from heifers 2 to 4 d per week for 40 d. Following progesterone determination in jugular venous plasma, heifers were classified according to their progesterone response: 1) no response (Group 1); no rise in progesterone above 1 ng/ml throughout the sampling period; 2) one cycle (Group 2); one increase in progesterone above 1 ng/ml for at least 2 d followed by no further increase in progesterone during the sampling period; and 3) two cycles (Group 3); a rise in progesterone above 1 ng/ml for at least 2 d followed by another cycle of normal duration. Heifers treated with norgestomet were classified as 23 with no response, 9 with 1 cycle and 15 with 2 cycles. Concentrations of estradiol were measured in jugular venous samples on Day 2 after implant removal. Mean concentrations of estradiol were greater in Group 3 than in Group 1 (P < or = 0.01). In Experiment 2, 29 prepubertal beef heifers were assigned randomly to either a 9-d treatment with norgestomet (n = 14) or to serve as untreated controls (n = 15). Blood plasma samples were collected daily from Days 0 to 44 after implant removal. After progesterone determination, heifers were classified as 8 with no response, 4 with 1 cycle and 3 with 2 cycles in the control group, and 5 with no response, 3 with 1 cycle and 6 with 2 cycles in the norgestomet group (frequencies did not differ; P > 0.1). Jugular venous blood plasma was also collected at 4-h intervals from 0 h to 96 h after implant removal and concentrations of estradiol were measured. Patterns of estradiol secretion differed (P < or = 0.05) and overall mean concentrations of estradiol over the first 96 h following implant removal were greater (P < or = 0.01) in norgestomet-treated heifers versus the controls. We conclude that norgestomet can produce a variable progesterone response with heifers with 2 cycles secreting more estradiol. Implants of norgestomet also causes more acute secretion of estradiol in prepubertal beef heifers.  相似文献   

11.
Singh U  Khurana NK  Inderjeet 《Theriogenology》1998,50(8):1191-1199
Zebu cattle are notorious for poor fertility characterized by late maturity and long intercalving intervals attributed to a variety of factors, including genetic, nutritional and climatic. The aim of the present investigation, therefore, was to induce fertile estrus in acyclic pubertal heifers and postpartum anestrous Zebu cows by hormonal intervention. Pubertal Hariana and Sahiwal anestrous heifers (n=51) and postpartum cows (n=55) were either assigned a placebo (controls, N=6 for each breed and parity) or treated with 10-d norgestomet (3 mg) subcutaneous ear implants, with an initial injection of 3 mg, im norgestomet + 5 mg estradiol valerate, followed by 500 IU eCG at implant withdrawal (NOR-treated groups). Jugular venous plasma samples were obtained from a total of 28 animals (controls : 4 heifers and 4 cows; NOR-treated : 12 heifers and 8 cows) on Days 0 (implant insertion), 3, 7, 9 and Day 10 (implant withdrawal), every 12 h on Days 11 and 12, and then once daily on Days 17, 24 and 31. All the samples were assayed for progesterone. Almost all (97%) heifers and 81% cows were induced to estrus, the majority (92% heifers and 79% cows) within 120 h of implant removal. Synchrony of the induced estrus was better in cows, but interval to estrus and estrus duration were significantly longer in heifers (P<0.05). Post-treatment fertility, based on Day 28 nonretum rate, first service, and overall conception rates, was better in heifers (78.9, 60.5 and 73.7%, respectively) than cows (77.1, 48.6 and 62.9%, respectively), but the differences were significant only for the overall pregnancy rate (71.8% for heifers and 51.2% for cows; P<0.05). Low pre-treatment plasma progesterone values (<0.5ng/mL) were consistent with ovarian inactivity, confirming the true anestrus status of experimental animals. Controls failed to exhibit estrus and maintained low progesterone concentrations throughout the study. In treated animals, high progesterone values from Day 17 onwards suggested ovulatory estrus. These early luteal phase progesterone concentrations in nonpregnant (P=0.06) and nonpregnant, nonretum (P<0.05) animals were low in comparison with those of pregnant animals. Good fertility resulting from breeding according to estrus, inspite of variable intervals to estrus and estrus duration, advocates its advantage over fixed-time insemination in norgestomet-treated anestrous Zebu cattle.  相似文献   

12.
Forty-five crossbred beef heifers (weight = 268.3 +/- 5.7 kg) were used to determine the effects of dietary gossypol on ovarian morphology, erythrocyte fragility and fertility. Heifers were randomly assigned to 1 of 3 isonitrogenous dietary treatments. The diet consisted of rice mill feed and milo supplemented with soybean meal (n = 13; control), cottonseed meal (n = 16; low supplementation) which supplied 6.1 g free gossypol animal(-1) day(-1), or whole cottonseed (n = 16; high supplementation) which supplied 13.7 g free gossypol animal(-1) day(-1). The heifers were group-fed each diet for 64 days and were maintained on similar but separate fescue pastures overseeded with wheat. After 64 days, 4 heifers from each diet were confined and fed their respective diets. On Day 10 following estrus, each animal was unilaterally ovariectomized, and the ovary containing the corpus luteum was removed. The remaining ovary was removed 6 to 12 hours after detection of estrus in the next cycle. Erythrocyte fragility increased (P < 0.02) in heifers receiving gossypol compared with that of the controls. Cyclicity in the heifers was 81.3, 68.8 and 38.4% for high, low and control diets, respectively, at the end of the 64-day treatment period. First service conception rate, as determined by palpation per rectum, was similar among treatments (58.3, 33.3, 33.3% for high, low and control groups, respectively). Weight gain increased (P < 0.03) in control heifers compared with that of heifers receiving gossypol. Gross ovarian morphology and histology were similar for all heifers. Although gossypol produced mild toxicosis in heifers, no adverse reproductive effects could be detected from gossypol intake.  相似文献   

13.
Eighty-four 18-month-old crossbred beef heifers, 3 to 4 months pregnant, were assigned by stratified randomization to either a high or low (control) beta-carotene (B-car) diet to determine the effect of long-term supplementation of B-car on reproductive performance. The heifers were followed through pregnancy, calving and subsequent breeding. The basal diet consisted of barley, canola meal and barley straw. Heifers supplemented by B-car received 625 mg B-car per day in the concentrate. Vitamin A and D complex injections were given monthly to all heifers. Heifers were bred by artificial insemination after Day 60 postpartum. Throughout the study heifers fed the B-car supplement had higher levels of B-car in plasma (> 300 ug/dl) (P < 0.01) than the heifers fed the control diet (< 50 ug/dl). Vitamin A status was satisfactory in all heifers throughout the study. Birth weight of calves, weight gain, and incidence of mortality were not influenced by B-car. For the control and B-car treatments, days postpartum to first normal luteal phase were 67.5 and 62.6 days; days postpartum to first detected estrus were 70.1 and 65.3, and services per conception were 1.24 and 1.29, respectively. Long-term supplementation of B-car increased prepartum plasma progesterone but had no effect on postpartum fertility.  相似文献   

14.
《Theriogenology》2013,79(9):1997-2006
Dairy heifers were used to compared the effects of two timed AI + controlled internal drug release (CIDR) protocols (5-day vs. a modified 7-day) on: (1) luteal regression to initiate a new ovarian follicular wave; (2) ovarian response to the initial GnRH injection; and (3) pregnancy outcomes. Holstein heifers (N = 543) were assigned randomly to two treatments: (1) 25 mg PGF (im) and a CIDR insert on Day −7 followed by 100 μg of GnRH (GnRH-1) on Day −5 and 25 mg PGF (im) at CIDR insert removal (7-day [7D]) on Day 0; or (2) 100 μg GnRH (GnRH-1) and insertion of a CIDR on Day −5 and 25 mg PGF (im) at CIDR removal (5-day [5D]) on Day 0. Insemination with frozen-thawed conventional or gender-biased semen occurred after detected estrus from Days 0 to 2 or by appointment at 72 h after PGF when a second 100-μg dose of GnRH was given. Blood was collected on Days −7, −5, 0, and 3 to determine concentrations of progesterone and incidence of luteolysis. Ovaries were scanned on Days −5 and 0. Luteolysis in the 7D treatment by 48 h after the initial PGF was greater (P < 0.01) than what occurred spontaneously in the 5D treatment (36.2% vs. 19.7%, respectively). Incidence of ovulation after GnRH-1 on Day −5 was greater (P < 0.05) for 7D than for 5D heifers, but the proportion of heifers with an induced CL on Day 0 did not differ between treatments. Heifers inseminated after detected estrus (166/543, 30.6%) on Days 0, 1, and 2 had greater (P < 0.05) pregnancy per AI (P/AI) at 32 days post AI than after timed AI (38.2% vs. 28.3%) on Day 3. Pregnancy P/AI, however, was greater (P < 0.05) for 7D heifers inseminated at estrus (46.5%) than for 7D heifers receiving the timed AI (26.8%) and differed (P < 0.05) from all 5D heifers regardless of insemination time at estrus (30.5%) or at timed AI at 72 h (29.9%). At the Florida location in which conventional and sexed semen were used during two breeding clusters, P/AI using sexed semen (43.9%, N = 56) did not differ from that of conventional semen (21.2%, N = 50). Remaining replicates of sexed semen produced similar P/AI at the other two locations (sexed = 27.6%, N = 71; and sexed = 31.9%, N = 215). We concluded that the modified 7-day CO-Synch + CIDR program produced more P/AI in heifers inseminated at estrus than a standard 5-day CO-Synch + CIDR program, but when timed AI occurred at 72 h after PGF and CIDR insert removal, P/AI did not differ between programs.  相似文献   

15.
Two trials involving 85 heifers and 67 cows were conducted to determine the effect of estrous cycle stage at the time of Syncro-Mate-B((R)) (SMB) treatment on interval to estrus following implant removal and on conception rate at the synchronized estrus. In Trial 1, 57 beef and 28 dairy heifers were treated with SMB on each representative day of a 22-d estrous cycle (estrus = Day 0). Beef heifers were artificially inseminated approximately 48 h after implant removal, whereas dairy heifers were inseminated 0 to 12 h after detection of estrus. Inseminations were scored by the inseminator according to their difficulty. Interval to the onset of estrus was not different between heifers treated early ( Day 11) in the cycle (35.2 +/- 7.2 h). Conception rate at the synchronized estrus was slightly higher in early-cycle heifers (22 47 = 47% ) compared to late-cycle heifers (14 38 = 37% , P = 0.2). Heifers that were difficult to inseminate had lower (P < 0.01) conception rates (2 11 = 18% ) at the synchronized estrus than heifers considered normal (21 51 = 41% ) or easier than normal to inseminate (13 23 = 57% ). In Trial 2, of the 131 beef cows synchronized, 67 that were estimated to be either early or late in the estrous cycle by progesterone analysis were utilized. Cows were treated with SMB and inseminated without regard to estrus 48-h after implant removal. Inseminations were scored as in Trial 1. Calves were separated from cows from the time of implant removal to insemination. Conception rate was higher (P < 0.05) in cows treated with SMB early ( Day 11, 16 35 = 46% ). Cows that were difficult to inseminate had a lower (P < 0.01) conception rate (0 8 = 0% ) than cows that were normal (43 94 = 46% ) or easier than normal to inseminate (13 29 = 45% ).  相似文献   

16.
The aim of this study was to induce the formation of a persistent dominant ovarian follicle and to compare the effects of 3 methods of acute administration of P4 on ovarian follicular development and on the timing and synchrony of ovulation. Stage of the estrous cycle was initially synchronized in Bos indicus heifers with a norgestomet implants (3 mg) for 10 d and with an analogue of PGF2 alpha (15 mg) on the first and last day of norgestomet treatment. Eight days after removal of the implants, heifers were randomly assigned to 4 groups. All heifers received a norgestomet implant (Day 0), which was removed 17 d later (Day 17); PGF2 alpha was administered on Days 0 and 4. Heifers in the control group (n = 5) received no other treatment. On Day 10 heifers in Group P4C (n = 5) were treated with a CIDR for 24 h; heifers in Group P4O (n = 5) were administered 100 mg i.m. of P4 in oil, while heifers in Group P4S (n = 5) were administered 100 mg i.m. of P4 in saline/alcohol. Data were analyzed using bootstrap estimates of location (mean) and spread (standard deviation; SD). Compared with the control heifers, day of emergence of the ovulatory follicle was delayed, and age and duration of dominance of the ovulatory follicle were reduced in the P4C and P4O heifers (P < 0.05) but not in the P4S heifers (P > 0.05). In all groups treated with P4 both the mean and variability (SD) in the timing of ovulation did not differ with that of the control group (P > 0.05) but there was less variability in the day of emergence, age, duration of dominance and diameter of the ovulatory follicle than in the control group (P < 0.05). Delayed timing and reduced synchrony (SD) of ovulation and greater age of the ovulatory follicle (P < 0.05) occurred in P4S heifers than in P4C heifers. We conclude that administration of 100 mg of P4 in oil is as effective as treatment with a CIDR for synchronizing emergence and ovulation of a newly recruited dominant follicle. However, reduced synchrony of ovulation, greater age of the ovulatory follicle and delayed timing of ovulation occurred following administration 100 mg of P4 in saline/alcohol compared with the CIDR device.  相似文献   

17.
Inseminated crossbred beef cows and heifers were used in 2 experiments to investigate embryo survival after prostaglandin-induced or spontaneous luteal regression. In Experiment 1, luteal regression was induced by an intramuscular (im) injection of cloprostenol (500 mug) on Day 15 (day of ovulation = Day 0). Progestagen was replaced 24 or 36 h later either by one-and-a-half Syncro-Mate-B (SMB) ear implants (9 mg of norgestomet) and norgestomet solution (2.25 mg, im) containing no estradiol in 1 replicate or by 2 SMB implants (12 mg of norgestomet) and progesterone (100 mg, im) in the second replicate. Combined for both replicates, the Day-24 pregnancy rate in an untreated control group (Group 1, 16/19; 84%) was higher (P < 0.01) than in the 24-h group (Group 2, 9/20; 45%), which also was higher (P < 0.02) than in the 36-h group (Group 3, 3/23; 13%). In Experiment 2, 15 or 16 d after breeding, cattle with a corpus luteum at least 16 x 16 mm were given either 2 SMB implants or no treatment. At 24 to 26 d after breeding, pregnancy rates (48/65, 74% versus 49/68, 72%) were not significantly different, and all but 1 of the pregnant progestagen-supplemented cattle had a functional corpus luteum.  相似文献   

18.
Two trials were conducted to evaluate the efficacy of short-term progestin administration to resynchronize the second estrus after artificial insemination in yearling beef heifers. In Trial 1 crossbred yearling heifers (n = 208) were synchronized with Syncro-Mate-B (SMB) and artificially inseminated (AI) between 48 and 54 h following implant removal. Implant removal is defined as Day 1. Following AI, the heifers were randomly assigned to 1 of 2 experimental groups. Group 1 heifers were fed melengestrol acetate (MGA) daily from Day 17 to 21 at a rate of 0.5 mg/head, while Group 2 control received no exogenous progestin during this period. Synchrony of estrus was defined as the 3-d period in which the highest number of heifers expressed behavioral estrus in each group. There was no difference (P < 0.05) in the pregnancy rate during the second estrus due to MGA supplementation. More MGA-treated heifers (P < 0.01) expressed estrus in a 3-d period than the controls. In Trial 2, yearling heifers (n = 108) were synchronized with 2 injections of PGF(2alpha) (second PGF(2alpha) injection is designated as Day 1) administered 14 d apart with AI 12 h after the onset of behavioral estrus. The heifers were then randomly assigned to 1 of the following 3 treatment groups after initial AI: 1) MGA fed at 0.5 mg/head daily from Days 17 to 21; 2) norgestomet administered in 6.0-mg implants from Days 17 to 21; 3) untreated control heifers. Blood samples were collected on Day 21 and analyzed for progesterone (P(4)). Elevated P(4) (> 1 ng/ml) on Day 21 indicated pregnancy to the first insemination. Synchrony among the 3 groups of heifers was similar (P > 0.10); however, the second estrus was less (P < 0.05) variable in the MGA and norgestomet treated heifers. During the resynchronized second estrus, conception rates were not affected by progestin treatment (MGA 40%, norgestomet 64%, and control 62%; P > 0.10). However, a proportion of heifers treated MGA 10% 4 36 and norgestomet 3% 1 36 expressed behavioral estrus during second estrus even though they were diagnosed as pregnant from first service by elevated P(4) levels on Day 21. We conclude that short-term use of progestin from Days 17 to 21 following AI causes closer synchrony of estrus; however, inseminating pregnant heifers that exhibit behavioral estrus may cause abortion.  相似文献   

19.
Postpartum beef cows and heifers in Group 1 received 8 mug of buserelin on Day 0 (the beginning of the experiment) and 500 mug of cloprostenol (PGF) on Day 6 (GnRH I, n = 54). In Group 2 (GnRH II, n = 54), the females were injected with buserelin on Day 0 (8 mug) and Day 3 (4 mug), and PGF on Day 6 and Day 9 for females not detected in estrus previously. Animals were bred by AI 12 hours after the onset of estrus. Blood samples were collected on Day -11 and Day 0 to assess cyclicity and on Day 3 and Days 6 to 12 to examine luteal activity. Progesterone levels did not differ between the 2 groups between Days 0 to 9. In both groups, the proportion of spontaneous estruses from Days 0 to 6 was reduced. Precision of estrus was higher (P < 0.005) in the GnRH II group than in the GnRH I group of cows that were detected in estrus between Days 6 and 9. The synchronization rate, interval to estrus, pregnancy and conception rates were similar in GnRH I and GnRH II groups. The conception rate and interval to estrus were similar in cyclic and acyclic cows. Increasing the number of buserelin injections enhanced the precision of estrus, but not the conception rate, without any detrimental effect on luteal activity and induced more estruses in postpartum acyclic beef cattle.  相似文献   

20.
Four experiments were conducted to investigate modifications to gonadotropin releasing hormone (GnRH)-based fixed-time Al protocols in beef cattle. In Experiment 1, the effect of reducing the interval from GnRH treatment to prostaglandin (PGF) was examined. Lactating beef cows (n = 111) were given 100 mg gonadorelin (GnRH) on Day 0 (start of treatment) and either 500 microg cloprostenol (PGF) on Day 6 with Al and 100 microg GnRH 60 h later, or PGF on Day 7 with Al and GnRH 48 h later (6- or 7-day Co-Synch regimens). Pregnancy rates were 32/61 (53.3%) versus 26/50 (52.0%), respectively (P = 0.96). In Experiment 2. cattle (n = 196) were synchronized with a 7-day Co-Synch regimen and received either no further treatment or a CIDR-B device (Days 0-7). Pregnancy rates were 32/71 (45.1%) versus 33/77 (42.9%) in cows (P < 0.8), and 9/23 (39.1 %) versus 17/25 (68.0%) in heifers (P < 0.05). In Experiment 3, 49 beef heifers were randomly assigned to receive 12.5 mg pLH on Day 0, PGF on Day 7 and 12.5 mg of pLH on Day 9 with Al 12 h later (pLH Ovsynch), or similar treatment plus a CIDR-B device from Days 0 to 7 (pLH Ovsynch + CIDR-B), or 1 mg estradiol benzoate (EB) and 100 mg progesterone on Day 0, a CIDR-B device from Days 0 to 7 (EB/ P4 + CIDR-B), PGF on Day 7 (at the time of CIDR-B removal) and 1 mg i.m. EB on Day 8 with AI on Day 9 (52 h after PGF). Pregnancy rate in the EB/P4 + CIDR-B group (75.0%) was higher (P < 0.04) than in the pLH Ovsynch group (37.5%): the pLH Ovsynch + CIDR-B group was intermediate (64.7%). In Experiment 4, 266 non-lactating cows were allocated to a 7-day Co-Synch protocol (Co-Synch), a 7-day Co-Synch plus 0.6 mg per head per day melengestrol acetate (MGA) from Days 0 to 6 inclusive (Co-Synch + MGA) or MGA (Days 0-6) plus 2 mg EB and 50 mg progesterone on Day 0. 500 microg PGF on Day 7, 1 mg EB on Day 8 and fixed-time Al 28 h later (EB/ P4 + MGA). Pregnancy rates (P < 0.25) were 44.8% (39/87: Co-Synch), 47.8% (43/90; Co-Synch + MGA), and 60.7% (54/89: EB/P4 + MGA). In conclusion, a 6- or 7-day interval from GnRH to PGF in a Co-Synch regimen resulted in similar pregnancy rates in cows. The addition of a progestin to a Co-Synch or Ovsynch regimen significantly improved pregnancy rates in heifers but not in cows. Progestin-based regimens that included EB consistently resulted in high pregnancy rates to fixed-time Al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号