首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translation of the hepatitis C virus (HCV) genomic RNA initiates from an internal ribosome entry site (IRES) in its 5′ untranslated region and requires a minimal subset of translation initiation factors to occur, namely eukaryotic initiation factor (eIF) 2 and eIF3. Low-resolution structural information has revealed how the HCV IRES RNA binds human eIF3 and the 40S ribosomal subunit and positions the start codon for initiation. However, the exact nature of the interactions between the HCV IRES RNA and the translational machinery remains unknown. Using limited proteolysis and mass spectrometry, we show that distinct regions of human eIF3 are sufficient for binding to the HCV IRES RNA and the 40S subunit. Notably, the eIF3 subunit eIF3b is protected by HCV IRES RNA binding, yet is exposed in the complex when compared to subunits eIF3e, eIF3f, eIF3h, and eIF3l. Limited proteolysis reveals that eIF3 binding to the 40S ribosomal subunit occurs through many redundant interactions that can compensate for each other. These data suggest how the HCV IRES binds to specific regions of eIF3 to target the translational machinery to the viral genomic RNA and provide a framework for modeling the architecture of intact human eIF3.  相似文献   

2.
Enterobacter cloacae SLD1a-1 is capable of reductive detoxification of selenate to elemental selenium under aerobic growth conditions. The initial reductive step is the two-electron reduction of selenate to selenite and is catalyzed by a molybdenum-dependent enzyme demonstrated previously to be located in the cytoplasmic membrane, with its active site facing the periplasmic compartment (C. A. Watts, H. Ridley, K. L. Condie, J. T. Leaver, D. J. Richardson, and C. S. Butler, FEMS Microbiol. Lett. 228:273-279, 2003). This study describes the purification of two distinct membrane-bound enzymes that reduce either nitrate or selenate oxyanions. The nitrate reductase is typical of the NAR-type family, with α and β subunits of 140 kDa and 58 kDa, respectively. It is expressed predominantly under anaerobic conditions in the presence of nitrate, and while it readily reduces chlorate, it displays no selenate reductase activity in vitro. The selenate reductase is expressed under aerobic conditions and expressed poorly during anaerobic growth on nitrate. The enzyme is a heterotrimeric (αβγ) complex with an apparent molecular mass of ~600 kDa. The individual subunit sizes are ~100 kDa (α), ~55 kDa (β), and ~36 kDa (γ), with a predicted overall subunit composition of α3β3γ3. The selenate reductase contains molybdenum, heme, and nonheme iron as prosthetic constituents. Electronic absorption spectroscopy reveals the presence of a b-type cytochrome in the active complex. The apparent Km for selenate was determined to be ~2 mM, with an observed Vmax of 500 nmol SeO42− min−1 mg−1 (kcat, ~5.0 s−1). The enzyme also displays activity towards chlorate and bromate but has no nitrate reductase activity. These studies report the first purification and characterization of a membrane-bound selenate reductase.  相似文献   

3.

Background

The dual specificity phosphatase cdc25C was the first human cdc25 family member found to be essential in the activation of cdk1/cyclin B1 that takes place at the entry into mitosis. Human cdc25C is phosphorylated on Proline-dependent SP and TP sites when it becomes active at mitosis and the prevalent model is that this phosphorylation/activation of cdc25C would be part of an amplification loop with cdk1/cyclin B1.

Methodology/Principal Findings

Using highly specific antibodies directed against cdc25C phospho-epitopes, pT67 and pT130, we show here that these two phospho-forms of cdc25C represent distinct pools with differential localization during human mitosis. Phosphorylation on T67 occurs from prophase and the cdc25C-pT67 phospho-isoform closely localizes with condensed chromosomes throughout mitosis. The phospho-T130 form of cdc25C arises in late G2 and associates predominantly with centrosomes from prophase to anaphase B where it colocalizes with Plk1. As shown by immunoprecipitation of each isoform, these two phospho-forms are not simultaneously phosphorylated on the other mitotic TP sites or associated with one another. Phospho-T67 cdc25C co-precipitates with MPM2-reactive proteins while pT130-cdc25C is associated with Plk1. Interaction and colocalization of phosphoT130-cdc25C with Plk1 demonstrate in living cells, that the sequence around pT130 acts as a true Polo Box Domain (PBD) binding site as previously identified from in vitro peptide screening studies. Overexpression of non-phosphorylatable alanine mutant forms for each isoform, but not wild type cdc25C, strongly impairs mitotic progression showing the functional requirement for each site-specific phosphorylation of cdc25C at mitosis.

Conclusions/Significance

These results show for the first time that in human mitosis, distinct phospho-isoforms of cdc25C exist with different localizations and interacting partners, thus implying that the long-standing model of a cdc25C/cdk1 multi-site auto amplification loop is implausible.  相似文献   

4.
Endosomal biogenesis depends on multiple fusion and fission events. For fusion, the heterohexameric CORVET complex as an effector of the endosomal Rab5/Vps21 GTPase has a central function in the initial tethering event. Here, we show that the CORVET-specific Vps3 and Vps8 subunits, which interact with Rab5/Vps21, require their N-terminal domains for localization and function. Surprisingly, CORVET may lack either one of the two N-terminal domains, but not both, to promote protein sorting via the endosome. The dually truncated complex mislocalizes to the cytosol and is impaired in endocytic protein sorting, but not in assembly. Furthermore, the endosomal localization can be rescued by overexpression of Vps21 or one of the truncated CORVET subunits, even though CORVET assembly is not impaired by loss of the N-terminal domains or in strains lacking all endosomal Rab5s and Ypt7. We thus conclude that CORVET requires only its C-terminal domains for assembly and has beyond its putative β-propeller domains additional binding sites for endosomes, which could be important to bind Vps21 and other endosome-specific factors for efficient endosome tethering.  相似文献   

5.

Background

APOBEC3G (A3G) and related cytidine deaminases of the APOBEC3 family of proteins are potent inhibitors of many retroviruses, including HIV-1. Formation of infectious HIV-1 requires the suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through the common mechanism of recruiting the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. The domains in Vif and various APOBEC3 proteins required for APOBEC3 recognition and degradation have not been fully characterized.

Methods and Findings

In the present study, we have demonstrated that the regions of APOBEC3F (A3F) that are required for its HIV-1-mediated binding and degradation are distinct from those reported for A3G. We found that the C-terminal cytidine deaminase domain (C-CDD) of A3F alone is sufficient for its interaction with HIV-1 Vif and its Vif-mediated degradation. We also observed that the domains of HIV-1 Vif that are uniquely required for its functional interaction with full-length A3F are also required for the degradation of the C-CDD of A3F; in contrast, those Vif domains that are uniquely required for functional interaction with A3G are not required for the degradation of the C-CDD of A3F. Interestingly, the HIV-1 Vif domains required for the degradation of A3F are also required for the degradation of A3C and A3DE. On the other hand, the Vif domains uniquely required for the degradation of A3G are dispensable for the degradation of cytidine deaminases A3C and A3DE.

Conclusions

Our data suggest that distinct regions of A3F and A3G are targeted by HIV-1 Vif molecules. However, HIV-1 Vif suppresses A3F, A3C, and A3DE through similar recognition determinants, which are conserved among Vif molecules from diverse HIV-1 strains. Mapping these determinants may be useful for the design of novel anti-HIV inhibitors.  相似文献   

6.
Recent evidence has suggested that plasma membrane sphingolipids and cholesterol spontaneously coalesce into raft-like microdomains and that specific proteins, including CD4 and some other T-cell signaling molecules, sequester into these rafts. In agreement with these results, we found that CD4 and the associated Lck tyrosine kinase of peripheral blood mononuclear cells and H9 leukemic T cells were selectively and highly enriched in a low-density lipid fraction that was resistant at 0 degrees C to the neutral detergent Triton X-100 but was disrupted by extraction of cholesterol with filipin or methyl-beta-cyclodextrin. In contrast, the CXCR4 chemokine receptor, a coreceptor for X4 strains of human immunodeficiency virus type 1 (HIV-1), was almost completely excluded from the detergent-resistant raft fraction. Accordingly, as determined by immunofluorescence with confocal microscopy, CD4 and CXCR4 did not coaggregate into antibody-induced cell surface patches or into patches of CXCR4 that formed naturally at the ruffled edges of adherent cells. The CXCR4 fluorescent patches were extracted with cold 1% Triton X-100, whereas the CD4 patches were resistant. In stringent support of these data, CD4 colocalized with patches of cholera toxin bound to the raft-associated sphingoglycolipid GM1, whereas CXCR4 did not. Addition of the CXCR4-activating chemokine SDF-1 alpha did not induce CXCR4 movement into rafts. Moreover, binding of purified monomeric gp120 envelope glycoproteins from strains of HIV-1 that use this coreceptor did not stimulate detectable redistributions of CD4 or CXCR4 between their separate membrane domains. However, adsorption of multivalent gp120-containing HIV-1 virion particles appeared to destabilize the local CD4-containing rafts. Indeed, adsorbed HIV-1 virions were detected by immunofluorescence microscopy and were almost all situated in nonraft regions of the cell surface. We conclude that HIV-1 initially binds to CD4 in a raft domain and that its secondary associations with CXCR4 require shifts of proteins and associated lipids away from their preferred lipid microenvironments. Our evidence suggests that these changes in protein-lipid interactions destabilize the plasma membrane microenvironment underlying the virus by at least several kilocalories per mole, and we propose that this makes an important contribution to fusion of the viral and cellular membranes during infection. Thus, binding of HIV-1 may be favored by the presence of CD4 in rafts, but the rafts may then disperse prior to the membrane fusion reaction.  相似文献   

7.
In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as ‘designer drugs’ and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS)-2-(ethylamino)-2-(3-methoxyphenyl)cyclohexanone) and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenyl)cyclohexanamine) and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenyl)cyclohexyl]piperidine and 1-[1-(4-methoxyphenyl)cyclohexyl]piperidine), were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects.  相似文献   

8.
Ionotropic glutamate receptors (iGluRs) mediate fast excitatory neurotransmission. Upon glutamate application, 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid receptors undergo rapid and almost complete desensitization that can be attenuated by positive allosteric modulators. The molecular mechanism of positive allosteric modulation has been elucidated previously by crystal structures of the ligand-binding core of iGluR2 in complex with, for example, cyclothiazide (CTZ). Here, we investigate the structure and function of CTZ and three closely related analogues NS1493, NS5206, and NS5217 at iGluR2, by X-ray crystallography and fast application patch-clamp electrophysiology. CTZ was the most efficacious and potent modulator of the four compounds on iGluR2(Q)i [Emax normalized to response of glutamate: 754% (CTZ), 490% (NS1493), 399% (NS5206), and 476% (NS5217) and EC50 in micromolar: 10 (CTZ), 26 (NS1493), 43 (NS5206), and 48 (NS5217)]. The four modulators divide into three groups according to efficacy and desensitization kinetics: (1) CTZ increases the peak current efficacy twice as much as the three analogues and nearly completely blocks receptor desensitization; (2) NS5206 and NS5217 have low efficacy and only attenuate desensitization partially; (3) NS1493 has low efficacy but nearly completely blocks receptor desensitization. A hydrophobic substituent at the 3-position of the 1,1-dioxo-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine ring system is important for compound efficacy, with the following ranking: norbornenyl (bicyclo[2.2.1]hept-2-ene) > cyclopentyl > methyl. The replacement of the norbornenyl moiety with a significantly less hydrophobic cyclopentane ring increases the flexibility of the modulator as the cyclopentane ring adopts various conformations at the iGluR2 allosteric binding site. The main structural feature responsible for a nearly complete block of desensitization is the presence of an NH hydrogen bond donor in the 4-position of the 1,1-dioxo-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine ring system, forming an anchoring hydrogen bond to Ser754. Therefore, the atom at the 4-position of CTZ seems to be a major determinant of receptor desensitization kinetics.  相似文献   

9.
10.
11.
12.
Recent advances in sequencing technology allow for accurate detection of mitochondrial sequence variants, even those in low abundance at heteroplasmic sites. Considerable sequencing cost savings can be achieved by enriching samples for mitochondrial (relative to nuclear) DNA. Reduction in nuclear DNA (nDNA) content can also help to avoid false positive variants resulting from nuclear mitochondrial sequences (numts). We isolate intact mitochondrial organelles from both human cell lines and blood components using two separate methods: a magnetic bead binding protocol and differential centrifugation. DNA is extracted and further enriched for mitochondrial DNA (mtDNA) by an enzyme digest. Only 1 ng of the purified DNA is necessary for library preparation and next generation sequence (NGS) analysis. Enrichment methods are assessed and compared using mtDNA (versus nDNA) content as a metric, measured by using real-time quantitative PCR and NGS read analysis. Among the various strategies examined, the optimal is differential centrifugation isolation followed by exonuclease digest. This strategy yields >35% mtDNA reads in blood and cell lines, which corresponds to hundreds-fold enrichment over baseline. The strategy also avoids false variant calls that, as we show, can be induced by the long-range PCR approaches that are the current standard in enrichment procedures. This optimization procedure allows mtDNA enrichment for efficient and accurate massively parallel sequencing, enabling NGS from samples with small amounts of starting material. This will decrease costs by increasing the number of samples that may be multiplexed, ultimately facilitating efforts to better understand mitochondria-related diseases.  相似文献   

13.
14.
Ras proteins are distributed in different types of plasma membrane microdomains and endomembranes. However, how microlocalization affects the signals generated by Ras and its subsequent biological outputs is largely unknown. We have approached this question by selectively targeting RasV12 to different cellular sublocalizations. We show here that compartmentalization dictates Ras utilization of effectors and the intensity of its signals. Activated Ras can evoke enhanced proliferation and transformation from most of its platforms, with the exception of the Golgi complex. Furthermore, signals that promote survival emanate primarily from the endoplasmic reticulum pool. In addition, we have investigated the need for the different pools of endogenous Ras in the conveyance of upstream mitogenic and transforming signals. Using targeted RasN17 inhibitory mutants and in physiological contexts such as H-Ras/N-Ras double knockout fibroblasts, we demonstrate that Ras functions at lipid rafts and at the Golgi complex are fully dispensable for proliferation and transformation.  相似文献   

15.
16.
17.
The surface protein internalin A (InlA) contributes to the invasion of human intestinal epithelial cells by Listeria monocytogenes. Screening of L. monocytogenes strains isolated from human clinical cases (n = 46), foods (n = 118), and healthy animals (n = 58) in the United States revealed mutations in inlA leading to premature stop codons (PMSCs) in L. monocytogenes ribotypes DUP-1052A and DUP-16635A (PMSC mutation type 1), DUP-1025A and DUP-1031A (PMSC mutation type 2), and DUP-1046B and DUP-1062A (PMSC mutation type 3). While all DUP-1046B, DUP-1062A, DUP-16635A, and DUP-1031A isolates (n = 76) contained inlA PMSCs, ribotypes DUP-1052A and DUP-1025A (n = 72) contained isolates with and without inlA PMSCs. Western immunoblotting showed that all three inlA PMSCs result in the production of truncated and secreted InlA. Searches of the Pathogen Tracker database, which contains subtype and source information for more than 5,000 L. monocytogenes isolates, revealed that the six ribotypes shown to contain isolates with inlA PMSCs were overall more commonly isolated from foods than from human listeriosis cases. L. monocytogenes strains carrying inlA PMSCs also showed significantly (P = 0.0004) reduced invasion of Caco-2 cells compared to isolates with homologous 3′ inlA sequences without PMSCs. Invasion assays with an isogenic PMSC mutant further supported the observation that inlA PMSCs lead to reduced invasion of Caco-2 cells. Our data show that specific L. monocytogenes subtypes which are common among U.S. food isolates but rare among human listeriosis isolates carry inlA mutations that are associated with, and possibly at least partially responsible for, an attenuated invasion phenotype.  相似文献   

18.
International Journal of Peptide Research and Therapeutics - Endophytic actinomycetes associated with medicinal plants of Chhattisgarh are rich source of novel antimicrobial compounds. The aim of...  相似文献   

19.
CD2 (E receptor, LFA-3 receptor) and E2 molecules (Bernard, 1988) on human T lymphocytes, CD58 (LFA-3, lymphocyte function associated antigen 3) on human erythrocytes and S14,S42,S110-220 molecules (Bernard, 1987) of sheep erythrocytes are involved in rosette formation of human T lymphocytes with human or sheep erythrocytes. Rosette formation of human and macaque pan-T lymphocytes with tree shrew (Tupaia belangeri) red blood cells (TRBC) (TRBC rosette) has shown different physicochemical properties from that of rosette formation with sheep red blood cells (E rosette) (Ben, 1985). CD2, CD3/TCR complex, CD5, CD6, and CD7 are not involved in TRBC rosette formation (Zheng, 1990). In order to know whether E2, LFA-3,S14,S42 and S110-220 molecules are involved in TRBC rosette formation or human and macaque T lymphocytes, rosette inhibition and antigenic modulation or co-modulation were performed with relevant monoclonal antibodies (McAbs), and hemolytic assay and slide agglutination were also conducted. TRBC rosette formation of human and rhesus monkey PBL was not blocked by E2 McAb (inhibition rate 2.8% and 2.1%, respectively). In contrast, human E rosette formation was obviously blocked at inhibition rate of 49.8% and macaque E rosette formation was slightly inhibited (13.3%). The modulation or co-modulation of E2 molecule with E2 McAb did not affect human TRBC rosette formation. Similar results were shown in rosette formation inhibition of Jurkat cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Commercial samples of polyethylene glycol as well as detergents incorporating the polyoxyethylene linkage may contain substantial concentrations of peroxides and aldehydes, as well as aldehyde precursors. Facile procedures for essentially eliminating either the first or all three of these contaminants from concentrated aqueous stock solutions are described. Under some conditions, the purified solutions can be stored at room temperature under aerobic conditions for time periods of weeks without significant decomposition. Possible antioxidants that might be used under other conditions to stabilize such solutions during long-term aerobic studies are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号